首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background In order to elucidate placebo and nocebo effects in visceral pain, we analyzed the effects of positive and negative expectations on rectal pain perception, rectal pain thresholds, state anxiety and cortisol responses in healthy women. Methods Painful rectal distensions were delivered at baseline, following application of an inert substance combined with either positive instructions of pain relief (placebo group, N = 15), negative instructions of pain increase (nocebo group, N = 17), or neutral instructions (control, N = 15). Perceived pain intensity, unpleasantness/aversion and urge‐to‐defecate, state anxiety and serum cortisol were determined at baseline, immediately following group‐specific instructions and on a second study day after the same instructions (test day). Rectal pain thresholds were determined at baseline and on the test day. Key Results Whereas perceived pain intensity was significantly decreased in the placebo group, the nocebo group revealed significantly increased pain intensity ratings, along with significantly greater anticipatory anxiety on the test day (all P < 0.05 vs controls). Cortisol concentrations were significantly increased in the nocebo group following treatment but not on the test day. Conclusions & Inferences The experience of abdominal pain can be experimentally increased or decreased by inducing positive or negative expectations. Nocebo effects involve a psychological stress response, characterized by increased anticipatory anxiety. These findings further underscore the role of cognitive and emotional factors in the experience of visceral pain, which has implications for the pathophysiology and treatment of patients with chronic abdominal complaints.  相似文献   

2.
p.  dunckley    q.  aziz ‡  r. g.  wise    j.  brooks    i.  tracey  † & l.  chang § 《Neurogastroenterology and motility》2007,19(7):569-577
A better understanding of the cortical processes underlying attentional modulation of visceral and somatic pain in health are essential for interpretation of future imaging studies of hypervigilance towards bodily sensations which is considered to be an aetiologically important factor in the heightened pain reported by patients with irritable bowel syndrome and fibromyalgia. Twelve healthy subjects were recruited for this study. Simultaneous trains of electrical pulses (delivered to either the rectum or lower abdomen) and auditory tones lasting 6 s were delivered to the subjects during a whole-brain functional scan acquisition. Subjects were instructed to attend to the auditory tones (distracter task) or electrical pulses (pain task). Pain intensity ratings were significantly lower during the distraction task compared with the pain task (P < 0.01) in both sensory modalities. The left primary somatosensory cortex increased in activity with increasing pain report, during attention to visceral pain. Bilateral anterior insula (aIns) cortex activity increased with increasing somatic pain report independent of the direction of attention. Conversely, the primary and secondary auditory cortices significantly increased in activation with decreased pain report. These results suggest that pain intensity perception during attentional modulation is reflected in the primary somatosensory cortex (visceral pain) and aIns cortex activity (somatic pain).  相似文献   

3.
Placebo has been reported to exert beneficial effects in patients regarding the treatment of pain. Human functional neuroimaging technology can study the intact human brain to elucidate its functional neuroanatomy and the neurobiological mechanism of the placebo effect. Blood flow measurement using functional magnetic resonance imaging and positron emission tomography (PET) has revealed that analgesia is related to decreased neural activities in pain-modulatory brain regions, such as the rostral anterior cingulate cortex (rACC), insula, thalamus, and brainstem including periaqueductal gray (PAG) and ventromedial medulla. The endogenous opioid system and its activation of μ-opioid receptors are thought to mediate the observed effects of placebo. The μ-opioid receptor-selective radiotracer-labeled PET studies show that the placebo effects are accompanied by reduction in activation of opioid neural transmission in pain-sensitive brain regions, including rACC, prefrontal cortex, insula, thalamus, amygdala, nucleus accumbens (NAC) and PAG. Further PET studies with dopamine D2/D3 receptor-labeling radiotracer demonstrate that basal ganglia including NAC are related to placebo analgesic responses. NAC dopamine release induced by placebo analgesia is related to expectation of analgesia. These data indicate that the aforementioned brain regions and neurotransmitters such as endogenous opioid and dopamine systems contribute to placebo analgesia.  相似文献   

4.
Abstract  The aim of the study was to analyse effects of psychological stress on the neural processing of visceral stimuli in healthy women. The brain functional magnetic resonance imaging blood oxygen level-dependent response to non-painful and painful rectal distensions was recorded from 14 healthy women during acute psychological stress and a control condition. Acute stress was induced with a modified public speaking stress paradigm. State anxiety was assessed with the State-Trait-Anxiety Inventory; chronic stress was measured with the Perceived Stress Questionnaire. During non-painful distensions, activation was observed in the right posterior insular cortex (IC) and right S1. Painful stimuli revealed activation of the bilateral anterior IC, right S1, and right pregenual anterior cingulate cortex. Chronic stress score was correlated with activation of the bilateral amygdala, right posterior IC (post-IC), left periaqueductal grey (PAG), and right dorsal posterior cingulate gyrus (dPCC) during non-painful stimulation, and with activation of the right post-IC, right PAG, left thalamus (THA), and right dPCC during painful distensions. During acute stress, state anxiety was significantly higher and the acute stress – control contrast revealed activation of the right dPCC, left THA and right S1 during painful stimulation. This is the first study to demonstrate effects of acute stress on cerebral activation patterns during visceral pain in healthy women. Together with our finding that chronic stress was correlated wit the neural response to visceral stimuli, these results provide a framework for further studies addressing the role of chronic stress and emotional disturbances in the pathophysiology of visceral hyperalgesia.  相似文献   

5.
6.
AIM: The aim of the study was to determine and compare the areas of brain activated in response to colorectal distention (CRD) using functional magnetic resonance imaging (fMRI) and c-fos protein expression. METHODS: For fMRI study (3.0 T magnet), anaesthetized rats underwent phasic CRD, synchronized with fMRI acquisition. Stimulation consisted of eight cycles of balloon deflation (90 s) and inflation (30 s), at 40, 60 or 80 mmHg of pressure. For c-fos study two sets of experiments were performed on anaesthetized rats: comparing (A) brain activation in rats with the inserted colorectal balloon (n = 5), to the rats without the balloon (n = 5); and (B) rats with inserted balloon (n = 10), to the rats with inserted and distended balloon (n = 10). The pressure of 80 mmHg was applied for 2 h of 30 s inflation and 90 s deflation, alternating cycles. RESULTS: Functional MRI revealed significant activation in the amygdala, hypothalamus, thalamus, cerebellum and hippocampus. Significant increase in c-fos expression was observed in amygdala and thalamus in the first set of experiments, and hypothalamus and parabrachial nuclei in the second. CONCLUSION: The two methods are not interchangeable but appeared to be complementary: fMRI was more sensitive, whereas c-fos had much greater resolution.  相似文献   

7.
Primary dysmenorrhea (PDM) is cyclic menstrual pain in the absence of pelvic anomalies, and it is thought to be a sex‐hormone related disorder. Existing study has focused on the effects of menstrual cramps on brain function and structure, ignoring the psychological changes associated with menstrual pain. Here we examined whether pain empathy in PDM differs from healthy controls (HC) using task‐based functional magnetic resonance imaging (fMRI). Fifty‐seven PDM women and 53 matched HC were recruited, and data were collected at the luteal and menstruation phases, respectively. During fMRI scans, participants viewed pictures displaying exposure to painful situations and pictures without any pain cues and assessed the level of pain experienced by the person in the picture. Regarding the main effect of the pain pictures, our results showed that compared to viewing neutral pictures, viewing pain pictures caused significantly higher activation in the anterior insula (AI), anterior cingulate cortex, and the left inferior parietal lobule; and only the right AI exhibited a significant interaction effect (group × picture). Post‐hoc analyses confirmed that, relative to neutral pictures, the right AI failed to be activated in PDM women viewing painsss pictures. Additionally, there was no significant interaction effect between the luteal and menstruation phases. It suggests that intermittent pain can lead to abnormal empathy in PDM women, which does not vary with the pain or pain‐free phase. Our study may deepen the understanding of the relationship between recurrent spontaneous pain and empathy in a clinical disorder characterized by cyclic episodes of pain.  相似文献   

8.
Experimentally induced tonic muscle pain evokes divergent muscle vasoconstrictor responses, with some individuals exhibiting a sustained increase in muscle sympathetic nerve activity (MSNA), and others a sustained decrease. These patterns cannot be predicted from an individual's baseline physiological or psychological measures. The aim of this study was to investigate whether the different muscle sympathetic responses to tonic muscle pain were associated with differential changes in regional brain activity. Functional magnetic resonance imaging (fMRI) of the brain was performed concurrently with microelectrode recording of MSNA from the peroneal nerve during a 40‐min infusion of hypertonic saline into the ipsilateral tibialis anterior muscle. MSNA increased in 26 and decreased in 11 of 37 subjects during tonic muscle pain. Within the prefrontal and cingulate cortices, precuneus, nucleus accumbens, caudate nucleus, and dorsomedial hypothalamus, blood oxygen level dependent (BOLD) signal intensity increased in the increasing‐MSNA group and remained at baseline or decreased in the decreasing‐MSNA group. Similar responses occurred in the dorsolateral pons and in the region of the rostral ventrolateral medulla. By contrast, within the region of the dorsolateral periaqueductal gray (dlPAG) signal intensity initially increased in both groups but returned to baseline levels only in the increasing‐MSNA group. These results suggest that the divergent sympathetic responses to muscle pain result from activation of a neural pathway that includes the dlPAG, an area thought to be responsible for the behavioral and cardiovascular responses to psychological rather than physical stressors. Hum Brain Mapp 38:869–881, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
Background Although many studies of painful rectal stimulation have found activation in the insula, cingulate, somatosensory, prefrontal cortices and thalamus, there is considerable variability when comparing functional magnetic resonance imaging (fMRI) results. Multiple factors may be responsible, including the model used in fMRI data analysis. Here, we assess the temporal response of activity to rectal barostat distension using novel fMRI and magnetoencephalography (MEG) analysis. Methods Liminal and painful rectal barostat balloon inflation thresholds were assessed in 14 female healthy volunteers. Subliminal, liminal and painful 40s periods of distension were applied in a pseudo‐randomized paradigm during fMRI and MEG neuroimaging. Functional MRI data analysis was performed comparing standard box‐car models of the full 40s of stimulus (Block) with models of the inflation (Ramp‐On) and deflation (Ramp‐Off) of the barostat. Similar models were used in MEG analysis of oscillatory activity. Key Results Modeling the data using a standard Block analysis failed to detect areas of interest found to be active using Ramp‐On and Ramp‐Off models. Ramp‐On generated activity in anterior insula and cingulate regions and other pain‐matrix associated areas. Ramp‐Off demonstrated activity of a network of posterior insula, SII and posterior cingulate. Active areas were consistent with those identified from MEG data. Conclusions & Inferences In studies of visceral pain, fMRI model design strongly influences the detected activity and must be accounted for to effectively explore the fMRI data in healthy subjects and within patient groups. In particular a strong cortical response is detected to inflation and deflation of the barostat, rather than to its absolute volume.  相似文献   

10.
11.
12.
Functional magnetic resonance imaging (fMRI) of thoracic spinal cord neurons was used to examine the neural correlates of visceral emotional responses. Participants completed four spinal fMRI runs involving passive viewing (i.e. no movement) and motoric responses to negative or neutral images. Negative images, particularly in the movement condition, elicited robust activity in motoric nuclei, indicating ‘action preparedness’. These images also enhanced activity in autonomic and sensory nuclei, thus providing a clear neural representation of visceral responses to emotional stimuli.  相似文献   

13.
In this pilot study we use T2-weighted magnetic resonance imaging (MRI) to identify possible peripheral nerve inflammation in 4 patients with diffuse chronic pain. In all 4 patients, there was an increase in median and ulnar nerve T2 signal intensity at the wrist (P < 0.05 vs. controls). Positive clinical signs of peripheral nerve mechanosensitivity combined with MRI findings suggest that these patients may have an underlying peripheral nerve pathology.  相似文献   

14.
15.
Visceral hypersensitivity in irritable bowel syndrome (IBS) has been associated with altered cerebral activations in response to visceral stimuli. It is unclear whether these processing alterations are specific for visceral sensation. In this study we aimed to determine by functional magnetic resonance imaging (fMRI) whether cerebral processing of supraliminal and subliminal rectal stimuli and of auditory stimuli is altered in IBS. In eight IBS patients and eight healthy controls, fMRI activations were recorded during auditory and rectal stimulation. Intensities of rectal balloon distension were adapted to the individual threshold of first perception (IPT): subliminal (IPT -10 mmHg), liminal (IPT), or supraliminal (IPT +10 mmHg). IBS patients relative to controls responded with lower activations of the prefrontal cortex (PFC) and anterior cingulate cortex (ACC) to both subliminal and supraliminal stimulation and with higher activation of the hippocampus (HC) to supraliminal stimulation. In IBS patients, not in controls, ACC and HC were also activated by auditory stimulation. In IBS patients, decreased ACC and PFC activation with subliminal and supraliminal rectal stimuli and increased HC activation with supraliminal stimuli suggest disturbances of the associative and emotional processing of visceral sensation. Hyperreactivity to auditory stimuli suggests that altered sensory processing in IBS may not be restricted to visceral sensation.  相似文献   

16.
17.
18.
Navigating large‐scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large‐scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation.  相似文献   

19.
The relationship between localized changes in brain activity and metabolism, and the blood oxygenation level-dependent (BOLD) signal used in functional magnetic resonance imaging studies is not fully understood. One source of complexity is that stimulus-elicited changes in the BOLD signal arise both from changes in oxygen consumption due to increases in activity and purely 'haemodynamic' changes such as increases in cerebral blood flow. It is well established that robust cortical haemodynamic changes can be elicited by increasing the concentration of inspired CO(2) (inducing hypercapnia) and it is widely believed that these haemodynamic changes occur without significant effects upon neural activity or cortical metabolism. Hypercapnia is therefore commonly used as a calibration condition in functional magnetic resonance imaging studies to enable estimation of oxidative metabolism from subsequent stimulus-evoked functional magnetic resonance imaging BOLD signal changes. However, there is little research that has investigated in detail the effects of hypercapnia upon all components of the haemodynamic response (changes in cerebral blood flow, volume and oxygenation) in addition to recording neural activity. In awake animals, we used optical and electrophysiological techniques to measure cortical haemodynamic and field potential responses to hypercapnia (60 s, 5% CO(2)). The main findings are that firstly, in the awake rat, the temporal structure of the haemodynamic response to hypercapnia differs from that reported previously in anaesthetized preparations in that the response is more rapid. Secondly, there is evidence that hypercapnia alters ongoing neural activity in awake rats by inducing periods of cortical desynchronization and this may be associated with changes in oxidative metabolism.  相似文献   

20.
Social feedback, such as praise or critique, profoundly impacts our mood and social interactions. It is unknown, however, how parents experience praise and critique about their child and whether their mood and neural responses to such ‘vicarious’ social feedback are modulated by parents’ perceptions of their child. Parents (n = 60) received positive, intermediate and negative feedback words (i.e. personality characteristics) about their adolescent child during a magnetic resonance imaging scan. After each word, parents indicated their mood. After positive feedback their mood improved and activity in ventromedial prefrontal cortex and posterior cingulate cortex/precuneus increased. Negative feedback worsened parents’ mood, especially when perceived as inapplicable to their child, and increased activity in anterior cingulate cortex, anterior insula, dorsomedial prefrontal cortex and precuneus. Parents who generally viewed their child more positively showed amplified mood responses to both positive and negative feedback and increased activity in dorsal striatum, inferior frontal gyrus and insula in response to negative feedback. These findings suggest that vicarious feedback has similar effects and engages similar brain regions as observed during feedback about the self and illustrates this is dependent on parents’ beliefs of their child’s qualities and flaws. Potential implications for parent–child dynamics and children’s own self-views are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号