首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Viruses exploit cellular SUMOylation machinery to favour their own propagation. We show that NS5A is a target protein of small ubiquitin‐like modifier (SUMO) and is SUMOylated at lysine residue 348. We demonstrated that SUMOylation increased protein stability of NS5A by inhibiting ubiquitylation, and SUMOylation was also required for protein interaction with NS5B. These data imply that SUMO modification may contribute to HCV replication. Indeed, silencing of UBC9 impaired HCV replication in Jc1‐infected cells, and HCV replication level was also significantly reduced in SUMO‐defective subgenomic replicon cells. Taken together, these data indicate that HCV replication is regulated by SUMO modification of NS5A protein. We provide evidence for the first time that HCV exploits host cellular SUMO modification system to favour its own replication.  相似文献   

3.
Hepatitis C virus (HCV) subgenomic replicon has been reported to replicate efficiently and continuously in human hepatoma Huh-7 cells. To extend the previous results to other isolated HCV clones, we constructed another HCV replicon from HC-J4, one of chimpanzee-infectious HCV clones. An HCV replicon derived from HC-J4 (RpJ4) consists of HCV-5' untranslated region, neomycin phosphotransferase gene, the encephalomyocarditis virus internal ribosomal entry site, HCV nonstructural region, NS3 to NS5B, and HCV-3' untranslated region. The adaptive mutations known to be required for HCV-Con1 replicon were introduced in RpJ4 replicon, aa.(amino acids number according to HC-J4) 2197 serine to proline, deletion of serine at aa.2201, and aa.2204 serine to isoleucine (RpJ4-S2197P, RpJ4-S22001del, and RpJ4-S2204I). RpJ4/ISDR mutant and RpJ4-S2201del/ISDR mutant were also constructed by introducing six amino acid mutations into the interferon sensitivity determining region (ISDR). After transfection into Huh-7 cells and G418 selection, RpJ4 and RpJ4/ISDR mutants did not produce any colony. In contrast, G418-resistant cells were transduced efficiently by RpJ4-S2197P, RpJ4-S2204I, RpJ4-S2201del and RpJ4-S2201del/ISDR mutant, with the RpJ4-S2201del/ISDR mutant being most efficient. Hence the HCV replicon derived from HC-J4 can replicate efficiently following the introduction of adaptive mutations into the upstream region of ISDR. Moreover, additional introduction of mutations into ISDR further enhanced its replication. These findings demonstrate that the genetic structure of the NS5A domain is critical in HCV replications.  相似文献   

4.
Ribavirin (RBV), a guanosine analogue, has been suggested to exert an antiviral action against hepatitis C virus (HCV) by causing lethal mutations and suppressing RNA polymerase in vitro, but the mechanism of its clinical therapeutic effects is currently unknown. To test the hypothesis that RBV could act both as an RNA mutagen and inhibit viral RNA synthesis in vivo, we studied the evolution of the nucleotide sequences of HCV RNA at the nonstructural (NS) 5B region in patients receiving RBV, placebo, or interferon alfa (IFN-alpha) monotherapy. The RBV group showed a slightly more accelerated evolution rate of HCV RNA quasispecies than either the IFN-alpha or placebo group. RBV caused preferentially A-to-G and U-to-A mutations. Interestingly, an NS5B amino acid 415 Phe-to-Tyr (F415Y) mutation emerged in all (5 of 5) patients infected with HCV genotype 1a during the RBV treatment. Subsequently, the parental 415F strain reemerged in some patients after the treatment was discontinued. The effect of the amino acid substitution at NS5B415 on HCV RNA replication was then investigated using an HCV subgenomic replicon in Huh7 cells. We showed that treatment of replicon cells with RBV reduced the HCV RNA level of NS5B415F replicon, but not NS5B415Y, in a dose-dependent manner. Thus, NS5B F415Y mutation represents an RBV-resistant variant. The 3-dimensional modeling and structure analysis of NS5B protein revealed that the 415th amino acid is located at the P helix region of the thumb subdomain, which may interact with the minor groove of the template-primer duplex in the putative RNA-binding cleft. In conclusion, RBV could work as a weak mutagen for HCV RNA in HCV-infected patients. Furthermore, the selection of an RBV-resistant variant with a single amino acid substitution in NS5B suggested that RBV may directly interact with HCV RNA polymerase, thus interfering with its enzymatic activity.  相似文献   

5.
BACKGROUND: Mutations in nonstructural (NS) hepatitis C virus (HCV) proteins enhance replication in HCV-1a/b replicons. The prevalence of such mutations and their clinical significance in vivo are unknown. METHODS: Parts of HCV NS3 and NS4B-NS5B genes that included 31 in vitro replication-enhancing sites were sequenced for 26 patients with chronic HCV genotype 1 infection. RESULTS: Five patients showed specific mutations within NS3 at sites enhancing replication in the replicon. Those mutations were associated with a slower decrease in HCV RNA concentration during interferon (IFN)- alpha -based therapy (P = .007). Neither specific nor other mutations within NS3 and NS4B-NS5B were associated with baseline HCV RNA concentrations. Within NS5A, fewer mutations in the major HCV strain (P = .001) and increased quasi-species complexity (P = .02) and diversity (P = .02) correlated with increasing baseline HCV RNA concentrations. In silico analyses of NS3 protein structures suggested that the majority of observed mutations did not lead to major conformational changes. CONCLUSIONS: Specific mutations leading to enhanced replication in the replicon system were detected in 5 of 26 patients in vivo and were not associated with baseline HCV RNA concentrations but were associated with a slower decrease in HCV RNA concentration during IFN- alpha -based therapy. Quasi-species heterogeneity of NS5A correlated with baseline HCV RNA concentrations.  相似文献   

6.
目的构建含增强型绿色荧光蛋白(EGFP)报告基因的HCV复制子表达载体,并实现其在细胞中的复制表达。方法用分子生物学基因克隆技术对HCV 2a型复制子的基因进行改造,用EGFP基因替代HCV基因组中的包膜基因(E1和E2)体外构建重组单顺反子HCV亚基因组复制子真核表达质粒pcDNA-JFH1-EGFP,经限制性内切酶酶切分析和测序鉴定;脂质体介导转染人肝癌细胞系Huh-7细胞,用荧光显微镜观察EGFP表达,采用半定量RT-PCR方法检测重组复制子的HCV RNA负链,采用Western blot检测HCV NS3蛋白的复制表达,并观察IFN-α对重组质粒表达的HCV RNA复制的抑制作用。结果构建的4个重组质粒酶切分析与预期相符,HCV亚基因复制子表达载体中未发生EGFP和HCV编码区读码框架改变,转染重组载体Huh-7细胞检测到HCV负链及EGFP和HCV NS3蛋白表达。转染后48h,1 000IU/ml和2 000IU/ml IFN-α处理的细胞HCV RNA表达水平分别为未处理组的20.0%和7.6%。结论含EGFP报告基因的单顺反子HCV亚基因组复制子表达载体pcDNA-JFH1-EGFP构建成功,在Huh-7细胞中能有效复制表达,为进一步研究HCV提供了实验平台。  相似文献   

7.
Hepatitis C virus (HCV) is a main cause of chronic liver disease, which may lead to the development of liver cirrhosis and hepatocellular carcinoma. Therapeutic options are still limited in a significant proportion of patients. Small interfering RNAs (siRNAs) are an efficient tool to inhibit gene expression by RNA interference. As HCV RNA replicates in the cytoplasm of liver cells without integration into the genome, RNA-directed antiviral strategies are likely to successfully block its replication cycle. In this study, a panel of siRNAs was used to target various important regions of the HCV genome [5' untranslated region (UTR), NS3, NS4A, NS4B, NS5B, 3' UTR]. Convergent opposing human H1 and U6 polymerase III promoters were used to generate siRNAs. Target genes in sense and antisense orientation were attached to a luciferase reporter system to test the inhibitory efficiency of both siRNA strands. Our data revealed effective RNA interference against the HCV(+)-strand, the HCV(-)-strand or both strands simultaneously up to 65%. Subsequently, active siRNAs were tested in HCV subgenomic replicon cells and suppression of HCV RNA and NS5B protein levels up to 75% was confirmed. Interestingly, siRNAs that were effective against the sense as well as the antisense strand revealed the greatest inhibitory effects on HCV subgenomic replicons. Additionally, combinations of siRNAs induced a greater inhibition of HCV subgenomic replication of up to 90% proving the potential of this combined antiviral approach.  相似文献   

8.
BACKGROUND/AIMS: The establishment of HCV replicon systems strongly improved the research on the replication processes but poorly advanced our knowledge on the subcellular localization of the structural glycoproteins, mainly due to their low expression. We sought to verify whether reinforcing E1E2 expression in the context of both HCV genomic and subgenomic replicon from either homologous or heterologous strains leads to formation of supramolecular structures including structural and nonstructural proteins. METHODS: Robust expression of HCV glycoproteins was achieved by stable expression of E1E2p7 from genotype 1a and 1b. RESULTS: In these cells, E1 and E2 triggered the formation of dot-like structures in which they co-localized with core and the nonstructural proteins NS3 and NS5A. Confocal microscopy analyses suggested that accumulation of HCV proteins occurs in an ER-derived subcompartment. Moreover, by labeling de novo-synthesized HCV RNA, we showed that these structures constitute a site of viral RNA synthesis. CONCLUSIONS: Expression in trans of HCV glycoproteins in the context of replicative viral genome or subgenome generates accumulation of structural and nonstructural viral proteins in peculiar cytoplasmic structures. The simultaneous presence of viral RNA, structural and nonstructural protein suggests that these complexes represent not only sites of HCV replication but also potential places of viral pre-budding.  相似文献   

9.
10.
BACKGROUND/AIMS: Small interfering RNAs (siRNAs) are an efficient tool to specifically inhibit gene expression by RNA interference. Since hepatitis C virus (HCV) replicates in the cytoplasm of liver cells without integration into the host genome, RNA-directed antiviral strategies are likely to successfully block the HCV replication cycle. Additional benefit might arise from inhibition of cellular cofactors of HCV replication, such as proteasome alpha-subunit 7 (PSMA7) or Hu antigen R (HuR). METHODS: In this study, we investigated direct and cofactor-mediated inhibition of HCV by a panel of DNA-based retroviral vectors expressing siRNAs against highly conserved HCV sequences or the putative HCV cofactors PSMA7 and HuR. Effects were determined in HCV IRES-mediated translation assays and subgenomic HCV replicon cells. RESULTS: PSMA7- and HuR-directed siRNAs successfully inhibited expression of the endogenous genes, and PSMA7 and HuR silencing significantly diminished HCV replicon RNA and NS5B protein levels. HCV-directed siRNAs substantially inhibited HCV IRES-mediated translation and subgenomic HCV replication. Combinations of PSMA7- and HuR-directed siRNAs with HCV-directed siRNAs revealed additive HCV RNA inhibitory effects in monocistronic replicon cells. CONCLUSIONS: A dual approach of direct- and cofactor-mediated inhibition of HCV replication might avoid selection of mutants and thereby become a powerful strategy against HCV.  相似文献   

11.
Summary. The mechanisms of synergy in antiviral activity of interferon‐α and ribavirin in treating chronic hepatitis C virus (HCV) infection are still unknown. Interferon‐α indirectly induces cleavage of viral RNA by RNase L at UU/UA dinucleotides. There is evidence that HCV genomes with a higher number of UU/UA dinucleotides are more sensitive to interferon‐α. As a guanosine analogue, ribavirin exerts a mutagenic effect promoting G‐to‐A and C‐to‐U transitions. This study investigates whether ribavirin‐induced mutagenesis causes a higher frequency of UU/UA dinucleotides in the viral progeny sequences. Increased mutational frequencies in favour of G‐to‐A and C‐to‐U transitions during ribavirin treatment was reported by Hofmann et al. (Gastroenterology 2007;132:921–930). Overall, 937 nucleotide sequences from that publication were reanalysed for RNase L cleavage sites. These included HCV NS3 quasispecies from three patients with ribavirin monotherapy and NS5B quasispecies from patients who received ribavirin alone (n = 7) or in combination with interferon‐α (n = 7) at baseline and during treatment; NS5B quasispecies from a subgenomic HCV replicon system after 24, 48 and 72 h of cultivation with or without ribavirin or with levovirin. For NS3 quasispecies during ribavirin monotherapy and NS5B quasispecies from patients who received ribavirin alone or in combination with interferon‐α, analysis of RNase L cleavage sites did not reveal changes during treatment or differences between treatment regimes. Similarly, RNaseL cleavage sites from NS5B quasispecies of the HCV replicon did not differ significantly between time points or treatments. In conclusion, Ribavirin‐induced mutagenesis did not increase RNase L cleavage sites (UU/UA dinucleotides) within the HCV NS3 or NS5B encoding regions.  相似文献   

12.
Human leukocyte antigen B27 is associated with spontaneous viral clearance in hepatitis C virus (HCV) infection. Viral escape within the immunodominant, HLA-B27-restricted, HCV-specific, cluster of differentiation (CD)8(+) T-cell epitope, nonstructural protein (NS)5B(2841-2849) (ARMILMTHF), has been shown to be limited by viral fitness costs as well as broad T-cell cross-recognition, suggesting a potential mechanism of protection by HLA-B27. Here, we studied the subdominant HLA-B27-restricted epitope, NS5B(2936-2944) (GRAAICGKY), to further define the mechanisms of protection by HLA-B27. We identified a unique pattern of escape mutations within this epitope in a large cohort of HCV genotype 1a-infected patients. The predominant escape mutations represented conservative substitutions at the main HLA-B27 anchor residue or a T-cell receptor contact site, neither of which impaired viral replication capacity, as assessed in a subgenomic HCV replicon system. In contrast, however, in a subset of HLA-B27(+) subjects, rare escape mutations arose at the HLA-B27 anchor residue, R(2937) , which nearly abolished viral replication. Notably, these rare mutations only occurred in conjunction with the selection of two equally rare, and structurally proximal, upstream mutations. Coexpression of these upstream mutations with the rare escape mutations dramatically restored viral replication capacity from <5% to ≥ 70% of wild-type levels. CONCLUSION: The selection of rare CTL escape mutations in this HLA-B27-restricted epitope dramatically impairs viral replicative fitness, unless properly compensated. These data support a role for the targeting of highly constrained regions by HLA-B27 in its ability to assert immune control of HCV and other highly variable pathogens.  相似文献   

13.
BACKGROUND & AIMS: Heme oxygenase-1 (HO-1) is an antioxidant defense and key cytoprotective enzyme, which is repressed by Bach1. Micro-RNA-122 (miR-122) is specifically expressed and highly abundant in human liver and required for replication of hepatitis C virus (HCV) RNA. This study was to assess whether a specific miR-122 antagomir down-regulates HCV protein replication and up-regulates HO-1. METHODS: We transfected antagomir of miR-122, 2'-O-methyl-mimic miR-122, or nonspecific control antagomir, into wild-type (WT) Huh-7 cells or Huh-7 stably replicating HCV subgenomic protein core through nonstructural protein 3 of HCV (NS3) (CNS3 replicon cells) or NS3-5B (9-13 replicon cells). RESULTS: Antagomir of miR-122 reduced the abundance of HCV RNA by 64% in CNS3 and by 84% in 9-13 cells. Transfection with 2'-O-methlyl-mimic miR-122 increased HCV levels up to 2.5-fold. Antagomir of miR-122 also decreased Bach1 and increased HO-1 mRNA levels in CNS3, 9-13, and WT Huh-7 cells. Increasing HO-1 by silencing Bach1 with 50 nmol/L Bach1-short interfering RNA or by treatment with 5 mumol/L cobalt protoporphyrin or heme (known inducers of HO-1) decreased HCV RNA and protein by 50% in HCV replicon cells. CONCLUSIONS: Down-regulation of HCV replication using an antagomir targeted to miR-122 is effective, specific, and selective. Increasing HO-1, by silencing the Bach1 gene or by treatment with cobalt protoporphyrin or heme, decreases HCV replication. Thus, miR-122 plays an important role in the regulation of HCV replication and HO-1/Bach1 expression in hepatocytes. Down-regulation of miR-122 and up-regulation of HO-1 may be new strategies for anti-HCV intervention and cytoprotection.  相似文献   

14.
Hepatitis C virus (HCV) genome consists of a positive strand RNA encoding a polyprotein, having 3 structural and 6 non-structural components including non structural protein 4B (NS4B). NS4B is a 27 KDa protein, of 261 amino acids, released after polyprotein cleavage by NS3 serine protease and localized on endoplasmic reticulum (ER). NS4B has 2 alpha helices each in its N and C terminal domains and 4 transmembrane domains in its central region. N-terminal domain resides in the ER-lumen while C-terminal domain resides in the cytoplasm. Around its middle it has a nucleotide binding motif (NBM) which plays a role in ATP and GTP hydrolysis. It is involved in hyperphosphorylation of the NS5A protein and is also thought to be involved in production of various cytokines by the activation of NF-kB pathway. NS4B plays a major role in HCV replication by inducing membranous web and facilitating other HCV proteins necessary for replication. Here we discuss various functional aspects of this protein and their potential for targeted antiviral approaches.  相似文献   

15.
Background We have reported that the presence of a mutation at the hepatitis C virus (HCV) nonstructural protein 5B (NS5B), defined as a change in amino acids at sites specific for a different reported genotype, was related to complete response (CR) to interferon (IFN) therapy in patients with chronic hepatitis C (CHC) with genotype 1b. The present study assessed the impact of the NS5B mutation on the replication of HCV in these patients.Methods Genotype-specific mutations of HCV NS5B were determined by direct sequencing. We measured HCV-RNA titers in serum by real-time detected polymerase chain reaction (PCR), and serum HCV core protein levels (as a marker of HCV-RNA replication) were measured using an enzyme immunoassay in patients with CHC genotype 1b. RNA-dependent RNA polymerase (RdRp) activity was measured by Behrens method in liver cirrhosis patients infected with HCV (n = 13) and in those infected with hepatitis B virus (HBV; n = 2).Results The titers of HCV-RNA (n = 44) and the levels of HCV core protein (n = 41) were significantly lower in patients with the HCV genotype 1b mutant compared with wild-type HCV (P < 0.05). RdRp activity in liver tissue did not show any correlation with the HCV NS5B mutation.Conclusions HCV NS5B genotype-specific mutations in HCV genotype 1b may influence HCV replication.  相似文献   

16.
The mechanisms by which alcohol exacerbates liver injury in patients with hepatitis C are unknown. We used the hepatitis C virus (HCV) subgenomic replicon cell system to evaluate the effect of ethanol on HCV replication and viral protein synthesis. Our results demonstrate that alcohol stimulates HCV replicon expression at both HCV-RNA and protein levels. Furthermore, we observed that ethanol treatment showed an additive effect in cyclooxygenase-2 (COX-2) protein expression and activity already induced by HCV viral proteins, and in turn increased HCV viral expression. Our results suggest that COX-2 activity is involved in ethanol-induced HCV-RNA and NS5A protein expression, because acetylsalicylic acid (ASA), a COX-1/2 inhibitor, blocked this induction and downregulated COX-2 protein expression and activity. Therefore, we suggest that ethanol increases HCV replication expression, at least in part, by upregulating a key cellular regulator of oxidative stress pathway known as COX-2 or its products.  相似文献   

17.
The study of the hepatitis C virus (HCV) has been hindered by the lack of in vitro model systems. The recent development of HCV subgenomic RNA replicons has permitted the study of viral RNA replication in cell culture; however, the requirements for efficient replication of replicons in this system are poorly understood. Many viral isolates do not function as replicons and most require conserved changes, termed adaptive mutations, to replicate efficiently. In this report, we focus on the HCV nonstructural protein 5A (NS5A), a frequent locus for adaptive mutation. We found the interaction between NS5A and human vesicle-associated membrane protein-associated protein A (hVAP-A), a cellular target N-ethylmaleimide-sensitive factor attachment protein receptor, to be required for efficient RNA replication: NS5A mutations that blocked interaction with hVAP-A strongly reduced HCV RNA replication. Further analyses revealed an inverse correlation between NS5A phosphorylation and hVAP-A interaction. A subset of the previously identified adaptive mutations suppressed NS5A hyperphosphorylation and promoted hVAP-A binding. Our results support a model in which NS5A hyperphosphorylation disrupts interaction with hVAP-A and negatively regulates viral RNA replication, suggesting that replicon-adaptive mutations act by preventing the phosphorylation-dependent dissociation of the RNA replication complex.  相似文献   

18.
BACKGROUND/AIMS: Infection with hepatitis C virus (HCV) is associated with alterations in body iron homeostasis by poorly defined mechanisms. To seek for molecular links, we employed an established cell culture model for viral replication, and assessed how the expression of an HCV subgenomic replicon affects iron metabolism in host Huh7 hepatoma cells. METHODS: The expression of iron metabolism genes and parameters defining the cellular iron status were analyzed and compared between parent and replicon Huh7 cells. RESULTS: By using the IronChip microarray platform, we observed replicon-induced changes in expression profiles of iron metabolism genes. Notably, ceruloplasmin mRNA and protein expression were decreased in replicon cells. In addition, transferrin receptor 1 (TfR1) was also downregulated, while ferroportin levels were elevated, resulting in reduced iron uptake and increased iron release capacity of replicon cells. These responses were associated with an iron-deficient phenotype, manifested in decreased levels of the "labile iron pool" and concomitant induction of IRE-binding activity and IRP2 expression. Furthermore, hemin-treated replicon cells exhibited a defect in retaining iron. The clearance of the replicon by prolonged treatment with interferon-alpha only partially reversed the iron-deficient phenotype but almost completely restored the capacity of cured cells to retain iron. CONCLUSIONS: We propose that Huh7 cells undergo genetic reprogramming to permit subgenomic viral replication that results in reduction of intracellular iron levels. This response may provide a mechanism to bypass iron-mediated inactivation of the viral RNA polymerase NS5B.  相似文献   

19.
Aim: The hepatitis C virus (HCV) strain JFH‐1 was cloned from a patient with fulminant hepatitis. A JFH‐1 subgenomic replicon and full‐length JFH‐1 RNA efficiently replicate in cultured cells. In this study, an infectious, selectable HCV replicon containing full‐length JFH‐1 cDNA was constructed. Methods: The full‐genome replicon was constructed using the neomycin‐resistant gene, EMCV IRES and wild‐type JFH‐1 cDNA. Huh7 cells were transfected with RNA synthesized in vitro, and then cultured with G418. Independent colonies were cloned to establish cell lines that replicate the full‐length HCV replicon. Results: HCV RNA replication was detected in each isolated cell line. HCV proteins and HCV RNA were secreted into culture medium, and exhibited identical density profiles. Interestingly, culture supernatants of the replicon cells were infectious for naïve Huh7 cells. Long‐term culture did not affect replication of replicon RNA in the replicon cells, but it reduced core protein secretion and infectivity of culture supernatant. Culture supernatant obtained after serial passage of replicon virus was infectious for Huh7 cells. Conclusions: Selectable infection was established using HCV replicon containing full‐length genotype 2a JFH‐1 cDNA. This system might be useful for HCV research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号