首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The equine herpesvirus 1 (EHV-1) EICP27 protein cooperates with either the immediate-early (IE) or the EICP0 protein to synergistically trans-activate viral promoters. GST-pulldown and co-immunoprecipitation assays revealed that the EICP27 protein's cooperation with the IE or the EICP0 protein involves its physical interaction with these viral proteins. In the case of the IE-EICP27 protein interaction, IE residues 424 to 826 and EICP27 residues 41 to 206 harbor the interactive domains. Electrophoretic mobility shift assays (EMSA) suggested that the EICP27 protein is not a sequence-specific DNA-binding protein as it fails to directly bind to the IE promoter, the early EICP27, EICP0, and TK promoters, or the late gD and IR5 promoters. However, EMSA studies also showed that the interaction of the IE and EICP27 proteins results in the recruitment of the EICP27 protein to representative early promoters. These results support our hypothesis that the EICP27 protein participates in the trans-activation of EHV-1 promoters, and suggest its presence within RNA polymerase II preinitiation complexes that assemble at viral promoters.  相似文献   

2.
The early 293 amino acid EICP22 protein (EICP22P) of equine herpesvirus 1 localizes within the nucleus and functions as an accessory regulatory protein (J. Virol. 68 (1994) 4329). Transient transfection assays indicated that although the EICP22P by itself only minimally trans-activates EHV-1 promoters, the EICP22P functions synergistically with the immediate-early protein (IEP) to enhance expression of EHV-1 early genes (J. Virol. 71 (1997) 1004). We previously showed that the EICP22 protein enhances the DNA-binding activity of the EHV-1 IEP and that it also physically interacts with the IEP (J. Virol. 74 (2000) 1425). In this communication, we employed transient trans-activation assays utilizing EICP22P deletion mutants to address whether the sequences required for EICP22P-IEP physical interactions are essential for EICP22P's ability to interact synergistically with the IEP. Assays employing various classes of the EHV-1 promoters fused to the chloramphenicol acetyl-transferase (CAT) reporter gene indicated that: (1) neither full length nor any of the EICP22P mutants tested was able to overcome repression of the IE promoter elicited by the IEP, (2) the full-length EICP22P interacted synergistically with the IEP to trans-activate the early and late promoters tested, and (3) all of the EICP22P mutants, including those that were able to physically interact with IEP and itself, failed to function synergistically with the IEP to trans-activate representative EHV-1 early and late promoters. The results suggest that EICP22P sequences required for its interaction with the IE protein are not sufficient to mediate its synergistic effect on the trans-activation function of the IEP. The possible explanations as to why sequences in addition to those that mediate EICP22P-IEP interaction and EICP22P self-interactions are essential for the synergistic function of EICP22P are discussed.  相似文献   

3.
4.
5.
6.
7.
8.
The EICP0 gene (gene 63) of equine herpesvirus 1 (EHV-1) encodes an early regulatory protein that is a promiscuous trans-activator of all classes of viral genes. Bacterial artificial chromosome (BAC) technology and RecE/T cloning were employed to delete the EICP0 gene from EHV-1 strain KyA. Polymerase chain reaction, Southern blot analysis, and DNA sequencing confirmed the deletion of the EICP0 gene and its replacement with a kanamycin resistance gene in mutant KyA. Transfection of rabbit kidney cells with the EICP0 mutant genome produced infectious virus, indicating that the EICP0 gene is not essential for KyA replication in cell culture. Experiments to assess the effect of the EICP0 deletion on EHV-1 gene programming revealed that mRNA expression of the immediate-early gene and representative early and late genes as well as the synthesis of these viral proteins were reduced as compared to the kinetics of viral mRNA and protein synthesis observed for the wild type virus. However, the transition from early to late viral gene expression was not prevented or delayed, suggesting that the absence of the EICP0 gene did not disrupt the temporal aspects of EHV-1 gene regulation. The extracellular virus titer and plaque areas of the EICP0 mutant virus KyADeltaEICP0, in which the gp2-encoding gene 71 gene that is absent in the KyA BAC was restored, were reduced by 10-fold and 19%, respectively, when compared to parental KyA virus; while the titer and plaque areas of mutant KyADeltaEICP0Deltagp2 that lacks both the EICP0 gene and gene 71 were reduced more than 50-fold and 67%, respectively. The above results show that the EICP0 gene is dispensable for EHV-1 replication in cell culture, and that the switch from early to late viral gene expression for the representative genes examined does not require the EICP0 protein, but that the EICP0 protein may be structurally required for virus egress and cell-to-cell spread.  相似文献   

9.
10.
11.
The genomes of equine herpesvirus 1 (EHV-1) defective interfering (DI) particles that mediate persistent infection were shown to encode a unique hybrid open reading frame composed of sequences that encode the 196 N-terminal amino acids of ICP22 linked in-frame to the C-terminal 68 amino acids of ICP27. Previous studies demonstrated that this hybrid gene, designated as ICP22/ICP27. was expressed abundantly at both the mRNA and the protein levels in DI particle-enriched infections, but not in standard EHV-1 infection (Chen et al., 1996 J. Virol. 70, 313-320). Since the ICP22/ICP27 hybrid protein contains portions of two EHV-1 early regulatory proteins, its effect on EHV-1 gene regulation was investigated. In EHV-1-infected cells, the ICP22/ICP27 hybrid protein expressed from plasmid vectors significantly reduced expression of a reporter gene under the control of the EHV-1 immediate-early (IE) gene promoter and early gene promoter, such as the viral ICP27 gene. In uninfected cells, the ICP22/ICP27 hybrid protein moderately down-regulated the IE and ICP22 promoters, up-regulated late gene promoters such as IR5, and altered the regulatory function of the IE and 1CP22 proteins in co-transfected cells. These results demonstrated that DI particles might alter viral gene regulation by expression of a unique hybrid gene encoded on the DI particle genome.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Hyodo K  Mine A  Iwakawa HO  Kaido M  Mise K  Okuno T 《Virology》2011,413(2):300-309
The specific recognition of genomic RNAs by viral replicase proteins is a key regulatory step during the early replication process in positive-strand RNA viruses. In this study, we characterized the RNA-binding activity of the auxiliary replicase protein p27 of Red clover necrotic mosaic virus (RCNMV), which has a bipartite genome consisting of RNA1 and RNA2. Aptamer pull-down assays identified the amino acid residues of p27 involved in its specific interaction with RNA2. The RNA-binding activity of p27 correlated with its activity in recruiting RNA2 to membranes. We also identified the amino acids required for the formation of the 480-kDa replicase complex, a key player of RCNMV RNA replication. These amino acids are not involved in the functions of p27 that bind viral RNA or replicase proteins, suggesting an additional role for p27 in the assembly of the replicase complex. Our results demonstrate that p27 has multiple functions in RCNMV replication.  相似文献   

19.
20.
The pseudorabies virus (PRV) glycoprotein known as gG is generally regarded as an early protein, and the immediate early IE180 protein regulates its expression during infection. This study, however, provides evidence that although induction by IE180 is observed, the expression of a marker protein (EGFP), or gG itself, under the control of the gG promoter, can also occur independently of the expression of IE180. This result was demonstrated both with transient transfection assays using plasmids and with viral infections. In transient transfections, the expression under control of the gG promoter depends on the cell type and surprisingly, can be 1.3-fold higher than the expression under the control of the IE180 promoter in Hela Tet-Off cells. Recombinant PRV S3 was constructed by replacing gE in the PRV genome with a chimeric transgene, expressing EGFP under the control of the gG promoter. In PK15 cells infected with NIA-3 wild-type virus or with S3 recombinant virus, expression of gG PRV mRNA (or EGFP mRNA) under the control of the gG promoter in the presence of cycloheximide was detected by RT-PCR. This again indicates that some basal expression was produced in infected cells independently of IE180. This expression was augmented by IE180 protein in both plasmid transfections and viral infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号