首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Annals of oncology》2018,29(12):2379-2383
BackgroundThe comparison between relatively intact nanoscale extracellular vesicle-derived DNA (nEV-DNA) and fragmented circulating cell-free DNA (cfDNA) in mutation detection among patients with non-small-cell lung cancer (NSCLC) has not been carried out yet, and thus deserves investigation.Patients and methodsBoth nEV-DNA and cfDNA was obtained from 377 NSCLC patients with known EGFR mutation status and 69 controls. The respective EGFRE19del/T790M/L858R mutation status was interrogated with amplification-refractory-mutation-system-based PCR assays (ARMS-PCR).ResultsNeither nEV-DNA nor cfDNA levels show a strong correlation with tumor volumes. There is no correlation between cfDNA and nEV-DNA levels either. The detection sensitivity of nEV-DNA and cfDNA using ARMS-PCR in early-stage NSCLC was 25.7% and 14.2%, respectively, with 96.6% and 91.7% specificity, respectively. In late-stage NSCLC, both nEV-DNA and cfDNA show ∼80% sensitivity and over 95% specificity.ConclusionsnEV-DNA is superior to cfDNA for mutation detection in early-stage NSCLC using ARMS-PCR. However, the advantages vanish in late-stage NSCLC.  相似文献   

2.
The therapeutic landscape of metastatic clear cell renal cell carcinoma (ccRCC) has rapidly expanded, and there is an urgent need to develop noninvasive biomarkers that can select an optimal therapy or evaluate the response in real time. To evaluate the clinical utility of circulating tumor DNA (ctDNA) analysis in ccRCC, we established a highly sensitive assay to detect mutations in von Hippel-Lindau gene (VHL) using a combination of digital PCR and multiplex PCR–based targeted sequencing. The unique assay could detect VHL mutations with a variant allele frequency (VAF) <1.0%. Further, we profiled the mutation status of VHL in 76 cell-free DNA (cfDNA) and 50 tumor tissues from 56 patients with ccRCC using the assay. Thirteen VHL mutations were identified in cfDNA from 12 (21.4%) patients with a median VAF of 0.78% (range, 0.13%-4.20%). Of the 28 patients with VHL mutations in matched tumor tissues, eight (28.6%) also had VHL mutation in cfDNA with a median VAF of 0.47% (range, 0.13%-2.88%). In serial ctDNA analysis from one patient, we confirmed that the VAF of VHL mutation changed consistent with tumor size by radiographic imaging during systemic treatment. In conclusion, VHL mutation in cfDNA was detected only in a small number of patients even using the highly sensitive assay; nevertheless, we showed the potential of ctDNA analysis as a novel biomarker in ccRCC.  相似文献   

3.
《Annals of oncology》2017,28(4):741-747
BackgroundExosomes arise from viable cancer cells and may reflect a different biology than circulating cell-free DNA (cfDNA) shed from dying tissues. We compare exosome-derived DNA (exoDNA) to cfDNA in liquid biopsies of patients with pancreatic ductal adenocarcinoma (PDAC).Patients and methodsPatient samples were obtained between 2003 and 2010, with clinically annotated follow up to 2015. Droplet digital PCR was performed on exoDNA and cfDNA for sensitive detection ofKRAS mutants at codons 12/13. A cumulative series of 263 individuals were studied, including a discovery cohort of 142 individuals: 68 PDAC patients of all stages; 20 PDAC patients initially staged with localized disease, with blood drawnafter resection for curative intent; and 54 age-matched healthy controls. A validation cohort of 121 individuals (39 cancer patients and 82 healthy controls) was studied to validateKRAS detection rates in early-stage PDAC patients. Primary outcome was circulatingKRAS status as detected by droplet digital PCR. Secondary outcomes were disease-free and overall survival.ResultsKRAS mutations in exoDNA, were identified in 7.4%, 66.7%, 80%, and 85% of age-matched controls, localized, locally advanced, and metastatic PDAC patients, respectively. Comparatively, mutantKRAS cfDNA was detected in 14.8%, 45.5%, 30.8%, and 57.9% of these individuals. Higher exoKRAS MAFs were associated with decreased disease-free survival in patients with localized disease. In the validation cohort, mutantKRAS exoDNA was detected in 43.6% of early-stage PDAC patients and 20% of healthy controls.ConclusionsExosomes are a distinct source of tumor DNA that may be complementary to other liquid biopsy DNA sources. A higher percentage of patients with localized PDAC exhibited detectableKRAS mutations in exoDNA than previously reported for cfDNA. A substantial minority of healthy samples demonstrated mutantKRAS in circulation, dictating careful consideration and application of liquid biopsy findings, which may limit its utility as a broad cancer-screening method.  相似文献   

4.
《Annals of oncology》2018,29(6):1445-1453
BackgroundTargeted methylation sequencing of plasma cell-free DNA (cfDNA) has a potential to expand liquid biopsies to patients with tumors without detectable oncogenic alterations, which can be potentially useful in early diagnosis.Patients and methodsWe developed a comprehensive methylation sequencing assay targeting 9223 CpG sites consistently hypermethylated according to The Cancer Genome Atlas. Next, we carried out a clinical validation of our method using plasma cfDNA samples from 78 patients with advanced colorectal cancer, non-small-cell lung cancer (NSCLC), breast cancer or melanoma and compared results with patients’ outcomes.ResultsMedian methylation scores in plasma cfDNA samples from patients on therapy were lower than from patients off therapy (4.74 versus 85.29; P = 0.001). Of 68 plasma samples from patients off therapy, methylation scores detected the presence of cancer in 57 (83.8%), and methylation-based signatures accurately classified the underlying cancer type in 45 (78.9%) of these. Methylation scores were most accurate in detecting colorectal cancer (96.3%), followed by breast cancer (91.7%), melanoma (81.8%) and NSCLC (61.1%), and most accurate in classifying the underlying cancer type in colorectal cancer (88.5%), followed by NSCLC (81.8%), breast cancer (72.7%) and melanoma (55.6%). Low methylation scores versus high were associated with longer survival (10.4 versus 4.4 months, P < 0.001) and longer time-to-treatment failure (2.8 versus 1.6 months, P = 0.016).ConclusionsComprehensive targeted methylation sequencing of 9223 CpG sites in plasma cfDNA from patients with common advanced cancers detects the presence of cancer and underlying cancer type with high accuracy. Methylation scores in plasma cfDNA correspond with treatment outcomes.  相似文献   

5.
《Annals of oncology》2018,29(4):945-952
BackgroundLeptomeningeal metastases (LM) are more frequent in non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. Due to limited access to leptomeningeal lesions, the purpose of this study was to explore the potential role of cerebrospinal fluid (CSF) as a source of liquid biopsy in patients with LM.Patients and methodsPrimary tumor, CSF, and plasma in NSCLC with LM were tested by next-generation sequencing. In total, 45 patients with suspected LM underwent lumbar puncture, and those with EGFR mutations diagnosed with LM were enrolled.ResultsA total of 28 patients were enrolled in this cohort; CSF and plasma were available in 26 patients, respectively. Driver genes were detected in 100% (26/26), 84.6% (22/26), and 73.1% (19/26) of samples comprising CSF cell-free DNA (cfDNA), CSF precipitates, and plasma, respectively; 92.3% (24/26) of patients had much higher allele fractions in CSF cfDNA than the other two media. Unique genetic profiles were captured in CSF cfDNA compared with those in plasma and primary tissue. Multiple copy number variations (CNVs) were mainly identified in CSF cfDNA, and MET copy number gain identified in 47.8% (11/23) of patients was the most frequent one, while other CNVs included ERBB2, KRAS, ALK, and MYC. Moreover, loss of heterozygosity (LOH) of TP53 was identified in 73.1% (19/26) CSF cfDNA, which was much higher than that in plasma (2/26, 7.7%; P < 0.001). There was a trend towards a higher frequency of concomitant resistance mutations in patients with TP53 LOH than those without (70.6% versus 33.3%; P = 0.162). EGFR T790M was identified in CSF cfDNA of 30.4% (7/23) of patients who experienced TKI progression.ConclusionCSF cfDNA could reveal the unique genetic profiles of LM and should be considered as the most representative liquid biopsy medium for LM in EGFR-mutant NSCLC.  相似文献   

6.
《Annals of oncology》2017,28(3):642-650
BackgroundCell-free DNA (cfDNA) from plasma offers easily obtainable material forKRAS mutation analysis. Novel, multiplex, and accurate diagnostic systems using small amounts of DNA are needed to further the use of plasma cfDNA testing in personalized therapy.Patients and methodsSamples of 16 ng of unamplified plasma cfDNA from 121 patients with diverse progressing advanced cancers were tested with aKRASG12/G13 multiplex assay to detect the seven most common mutations in the hotspot of exon 2 using droplet digital polymerase chain reaction (ddPCR). The results were retrospectively compared to mutation analysis of archival primary or metastatic tumor tissue obtained at different points of clinical care.ResultsEighty-eight patients (73%) hadKRASG12/G13 mutations in archival tumor specimens collected on average 18.5 months before plasma analysis, and 78 patients (64%) hadKRASG12/G13 mutations in plasma cfDNA samples. The two methods had initial overall agreement in 103 (85%) patients (kappa, 0.66; ddPCR sensitivity, 84%; ddPCR specificity, 88%). Of the 18 discordant cases, 12 (67%) were resolved by increasing the amount of cfDNA, using mutation-specific probes, or re-testing the tumor tissue, yielding overall agreement in 115 patients (95%; kappa 0.87; ddPCR sensitivity, 96%; ddPCR specificity, 94%). The presence of ≥ 6.2% ofKRASG12/G13 cfDNA in the wild-type background was associated with shorter survival (P=0.001).Conclusion(s)Multiplex detection ofKRASG12/G13 mutations in a small amount of unamplified plasma cfDNA using ddPCR has good sensitivity and specificity and good concordance with conventional clinical mutation testing of archival specimens. A higher percentage of mutantKRASG12/G13 in cfDNA corresponded with shorter survival.  相似文献   

7.
《Clinical lung cancer》2021,22(4):e519-e527
BackgroundNext-generation sequencing of circulating cell-free DNA (cfDNA) can identify sensitizing and resistance mutations in non–small-cell lung cancer (NSCLC). cfDNA is helpful when tissue is insufficient for genomic testing or repeat biopsy is not feasible or poses unacceptable risk. Here we report the experience of cfDNA testing at the time of diagnosis and how this intervention can help avoid further invasive interventions, how it can be used to determine initiation of therapy, and how variation allele frequency of the somatic alteration affects response to subsequent treatment.Patients and MethodsThis is a single-institution retrospective study of patients with advanced NSCLC who had cfDNA from plasma tested using the Guardant360 panel, which identifies somatic genomic alterations by massive parallel sequencing of target genes. An institutional Clinical Laboratory Improvement Amendments tissue panel using fluorescence in situ hybridization (for MET, RET, ROS1, and ALK) and next-generation sequencing for selected genes was used for tissue analysis. Actionable mutations are those with US Food and Drug Administration–approved targeted therapies (EGFR, ALK, ROS, BRAF, NTRK fusions) or therapies soon to be approved (RET fusions and MET amplifications, or MET exon 14 skipping mutation).ResultsA total of 163 blood samples from 143 patients were evaluated, 82 at diagnosis and 81 at disease progression. A total of 94 cases had tissue and cfDNA testing performed within 12 weeks of each other. Seventy-six (81%) of 94 cases were concordant, of which 22 cases were concordantly positive and 54 concordantly negative. Eighteen (19%) of 94 cases were discordant, of which 11 had negative blood and positive tissue results, and 7 had positive blood and negative tissue results. cfDNA testing had a sensitivity of 67% (95% confidence interval [CI], 51%, 83%), specificity of 89% (95% CI, 81%, 97%), negative predictive value of 83% (95% CI, 74%, 92%), and positive predictive value of 76% (95% CI, 60%, 91%). Nineteen (21%) of 82 cfDNA samples analyzed at diagnosis had actionable mutations identified (4 EGFR exon 19 deletion, 2 EGFR exon 21 L858R, 2 EGFR L861Q, 1 L861R, 4 EML4-ALK fusion, 2 CD74-ROS1 fusion, 2 MET exon 14 skipping mutation, 2 KIF5B-RET fusion). Of the 82 patients with cfDNA testing performed at the time of diagnosis, 8 patients (10%) initiated targeted therapy on the basis of cfDNA results only, with 6 patients experiencing partial response, 1 patient complete response, and 1 patient stable disease. The response rate for patients who initiated targeted therapies on the basis of cfDNA only at diagnosis was 88%. Variant allele frequency had no impact on response.ConclusionsInitiation of targeted therapy for advanced NSCLC was feasible based only on identification of actionable mutations by cfDNA testing in 9% of the cases for which tissue diagnosis could not be obtained. Actionable targets were identified by cfDNA in 20% of the samples sent at diagnosis. A substantial number of patients benefited from cfDNA testing at initial diagnosis because it identified actionable mutations that led to appropriate targeted treatments.  相似文献   

8.
《Annals of oncology》2017,28(1):136-141
BackgroundAnalysis of circulating cell-free DNA (cfDNA) is under intensive investigation for its potential to identify tumor somatic mutations. We have now explored the usefulness of such liquid biopsy testing with both the digital polymerase chain reaction (dPCR) and next-generation sequencing (NGS) during treatment of patients with the epidermal growth factor receptor (EGFR) inhibitor afatinib.Patients and methodsEligible patients had advanced lung adenocarcinoma with EGFR activating mutations and were treated with afatinib. Plasma samples were collected before and during (4 and 24 weeks) afatinib treatment as well as at disease progression. Tumor and plasma DNA were analyzed by dPCR and NGS.ResultsThirty-five patients were enrolled. The objective response rate and median progression-free survival (PFS) were 77.1% and 13.8 months, respectively. Tumor and plasma DNA were available for 32 patients. dPCR and NGS detected EGFR activating mutations in 81.3% and 71.9% of baseline cfDNA samples, respectively. In 19 patients treated with afatinib for ≥24 weeks, the number of EGFR mutant alleles detected in cfDNA by dPCR declined rapidly and markedly after treatment onset, becoming undetectable or detectable at only a low copy number (<10 copies per milliliter) at 4 weeks. Median PFS was slightly longer for patients with undetectable EGFR mutant alleles in cfDNA at 4 weeks than for those in whom such alleles were detectable (14.3 versus 10.0 months). A total of 45 somatic mutations was identified in baseline tumor DNA, and 30 (66.7%) of these mutations were identified in cfDNA by NGS. Allele frequency for somatic mutations in cfDNA determined by NGS changed concordantly during afatinib treatment with the number of EGFR mutant alleles determined by dPCR.ConclusionsMonitoring of cfDNA by dPCR is informative for prediction of afatinib efficacy, whereas that by NGS is reliable and has the potential to identify mechanisms of treatment resistance.  相似文献   

9.
《Annals of oncology》2019,30(4):597-603
BackgroundNoninvasive genotyping using plasma cell-free DNA (cfDNA) has the potential to obviate the need for some invasive biopsies in cancer patients while also elucidating disease heterogeneity. We sought to develop an ultra-deep plasma next-generation sequencing (NGS) assay for patients with non-small-cell lung cancers (NSCLC) that could detect targetable oncogenic drivers and resistance mutations in patients where tissue biopsy failed to identify an actionable alteration.Patients and methodsPlasma was prospectively collected from patients with advanced, progressive NSCLC. We carried out ultra-deep NGS using cfDNA extracted from plasma and matched white blood cells using a hybrid capture panel covering 37 lung cancer-related genes sequenced to 50 000× raw target coverage filtering somatic mutations attributable to clonal hematopoiesis. Clinical sensitivity and specificity for plasma detection of known oncogenic drivers were calculated and compared with tissue genotyping results. Orthogonal ddPCR validation was carried out in a subset of cases.ResultsIn 127 assessable patients, plasma NGS detected driver mutations with variant allele fractions ranging from 0.14% to 52%. Plasma ddPCR for EGFR or KRAS mutations revealed findings nearly identical to those of plasma NGS in 21 of 22 patients, with high concordance of variant allele fraction (r = 0.98). Blinded to tissue genotype, plasma NGS sensitivity for de novo plasma detection of known oncogenic drivers was 75% (68/91). Specificity of plasma NGS in those who were driver-negative by tissue NGS was 100% (19/19). In 17 patients with tumor tissue deemed insufficient for genotyping, plasma NGS identified four KRAS mutations. In 23 EGFR mutant cases with acquired resistance to targeted therapy, plasma NGS detected potential resistance mechanisms, including EGFR T790M and C797S mutations and ERBB2 amplification.ConclusionsUltra-deep plasma NGS with clonal hematopoiesis filtering resulted in de novo detection of targetable oncogenic drivers and resistance mechanisms in patients with NSCLC, including when tissue biopsy was inadequate for genotyping.  相似文献   

10.
《Annals of oncology》2017,28(9):2248-2255
BackgroundIn a significant percentage of advanced non-small-cell lung cancer (NSCLC) patients, tumor tissue is unavailable or insufficient for genetic analyses. We prospectively analyzed if circulating-free DNA (cfDNA) purified from blood can be used as a surrogate in this setting to select patients for treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs).Patients and methodsBlood samples were collected in 119 hospitals from 1138 advanced NSCLC patients at presentation (n = 1033) or at progression to EGFR-TKIs (n = 105) with no biopsy or insufficient tumor tissue. Serum and plasma were sent to a central laboratory, cfDNA purified and EGFR mutations analyzed and quantified using a real-time PCR assay. Response data from a subset of patients (n = 18) were retrospectively collected.ResultsOf 1033 NSCLC patients at presentation, 1026 were assessable; with a prevalence of males and former or current smokers. Sensitizing mutations were found in the cfDNA of 113 patients (11%); with a majority of females, never smokers and exon 19 deletions. Thirty-one patients were positive only in plasma and 11 in serum alone and mutation load was higher in plasma and in cases with exon 19 deletions. More than 50% of samples had <10 pg mutated genomes/µl with allelic fractions below 0.25%. Patients treated first line with TKIs based exclusively on EGFR positivity in blood had an ORR of 72% and a median PFS of 11 months. Of 105 patients screened after progression to EGFR-TKIs, sensitizing mutations were found in 56.2% and the p.T790M resistance mutation in 35.2%.ConclusionsLarge-scale EGFR testing in the blood of unselected advanced NSCLC patients is feasible and can be used to select patients for targeted therapy when testing cannot be done in tissue. The characteristics and clinical outcomes to TKI treatment of the EGFR-mutated patients identified are undistinguishable from those positive in tumor.  相似文献   

11.
《Clinical lung cancer》2017,18(6):692-697
BackgroundIn patients with anaplastic lymphoma kinase (ALK)-positive non–small-cell lung cancer (NSCLC), disease progression occurs after a median of 9 to 10 months of crizotinib treatment. Several mechanisms of resistance have been identified and include ALK mutations and amplification or the activation of bypassing signaling pathways. Rebiopsy in NSCLC patients represents a critical issue and the analysis of circulating cell-free DNA (cfDNA) has a promising role for the identification of resistance mechanisms.Patients and MethodsTwenty patients with advanced ALK-positive NSCLC were enrolled after disease progression during crizotinib treatment; cfDNA was analyzed using digital droplet polymerase chain reaction (BioRad, Hercules, CA) for ALK (p.L1196M, p.G1269A, and p.F1174L) and Kirsten rat sarcoma (KRAS) (codons 12 and 13) mutations.ResultsALK secondary mutations (p.L1196M, p.G1269A, and p.F1174L) were identified in 5 patients; 1 patient had 2 ALK mutations (p.L1196M and p.G1269A). Overall, 10 patients presented KRAS mutations (7 p.G12D, 2 p.G12V, and 1 p.G12C mutations, respectively). In 3 patients KRAS mutations were associated with ALK mutations. cfDNA was monitored during the treatment with second-generation ALK inhibitors and the amount of ALK as well as KRAS mutations decreased along with tumor regression.ConclusionALK and KRAS mutations are associated with acquired resistance to crizotinib in ALK-positive NSCLC. In particular, ALK acquired mutations can be detected in plasma and could represent a promising tumor marker for response monitoring.  相似文献   

12.

Background:

Breast-cancer metastasis suppressor 1 (BRMS1) gene encodes for a predominantly nuclear protein that differentially regulates the expression of multiple genes, leading to suppression of metastasis without blocking orthotropic tumour growth. The aim of the present study was to evaluate for the first time the prognostic significance of BRMS1 promoter methylation in cell-free DNA (cfDNA) circulating in plasma of non-small cell lung cancer (NSCLC) patients. Towards this goal, we examined the methylation status of BRMS1 promoter in NSCLC tissues, matched adjacent non-cancerous tissues and corresponding cfDNA as well as in an independent cohort of patients with advanced NSCLC and healthy individuals.

Methods:

Methylation of BRMS1 promoter was examined in 57 NSCLC tumours and adjacent non-cancerous tissues, in cfDNA isolated from 48 corresponding plasma samples, in cfDNA isolated from plasma of 74 patients with advanced NSCLC and 24 healthy individuals.

Results:

The BRMS1 promoter was highly methylated both in operable NSCLC primary tissues (59.6%) and in corresponding cfDNA (47.9%) but not in cfDNA from healthy individuals (0%), while it was also highly methylated in cfDNA from advanced NSCLC patients (63.5%). In operable NSCLC, Kaplan–Meier estimates were significantly different in favour of patients with non-methylated BRMS1 promoter in cfDNA, concerning both disease-free interval (DFI) (P=0.048) and overall survival (OS) (P=0.007). In advanced NSCLC, OS was significantly different in favour of patients with non-methylated BRMS1 promoter in their cfDNA (P=0.003). Multivariate analysis confirmed that BRMS1 promoter methylation has a statistical significant influence both on operable NSCLC patients'' DFI time and OS and on advanced NSCLC patients'' PFS and OS.

Conclusions:

Methylation of BRMS1 promoter in cfDNA isolated from plasma of NSCLC patients provides important prognostic information and merits to be further evaluated as a circulating tumour biomarker.  相似文献   

13.
《Annals of oncology》2019,30(11):1804-1812
BackgroundA high percentage of patients diagnosed with localized colon cancer (CC) will relapse after curative treatment. Although pathological staging currently guides our treatment decisions, there are no biomarkers determining minimal residual disease (MRD) and patients are at risk of being undertreated or even overtreated with chemotherapy in this setting. Circulating-tumor DNA (ctDNA) can to be a useful tool to better detect risk of relapse.Patients and methodsOne hundred and fifty patients diagnosed with localized CC were prospectively enrolled in our study. Tumor tissue from those patients was sequenced by a custom-targeted next-generation sequencing (NGS) panel to characterize somatic mutations. A minimum variant allele frequency (VAF) of 5% was applied for variant filtering. Orthogonal droplet digital PCR (ddPCR) validation was carried out. We selected known variants with higher VAF to track ctDNA in the plasma samples by ddPCR.ResultsNGS found known pathological mutations in 132 (88%) primary tumors. ddPCR showed high concordance with NGS (r-=-0.77) for VAF in primary tumors. Detection of ctDNA after surgery and in serial plasma samples during follow-up were associated with poorer disease-free survival (DFS) [hazard ratio (HR), 17.56; log-rank P-=-0.0014 and HR, 11.33; log-rank P-=-0.0001, respectively]. Tracking at least two variants in plasma increased the ability to identify MRD to 87.5%. ctDNA was the only significantly independent predictor of DFS in multivariable analysis. In patients treated with adjuvant chemotherapy, presence of ctDNA after therapy was associated with early relapse (HR 10.02; log-rank P-<-0.0001). Detection of ctDNA at follow-up preceded radiological recurrence with a median lead time of 11.5-months.ConclusionsPlasma postoperative ctDNA detected MRD and identified patients at high risk of relapse in localized CC. Mutation tracking with more than one variant in serial plasma samples improved our accuracy in predicting MRD.  相似文献   

14.
《Annals of oncology》2019,30(3):464-470
BackgroundCell-free DNA (cf-DNA)-based liquid biopsy is emerging as a revolutionary new method in individualized cancer treatment and prognosis monitoring, although detecting early-stage cancers using cf-DNA remains challenging, partially because of the undefined biological background of cf-DNA.Materials and methodsWe investigated somatic mutations in the cf-DNA of 259 cancer-free individuals with a median age of 47 years using an endogenous barcoding duplex method with an ultralow base error rate (2 × 10−7) and compared the variant allele frequencies (VAFs) of these mutations between the cf-DNA and the corresponding blood cell DNA.ResultsSixty percent (155/259) of the samples showed at least one nonsynonymous mutation on either of two similar target panels covering 508 and 559 cancer-related genes. For individuals older than 50 years of age, the positive rate increased to 76%. Most cf-DNA mutations were also present at similar VAFs in the paired blood cell DNA. The most frequently mutated genes were driver genes of hematologic malignancies, including DNMT3A, TET2, AXSL1, and JAK2. However, the other 58.4% (192/329) of the mutations were likely ‘passenger mutations’ of clonal hematopoiesis, including mutations in NOTCH2, FAT3, EXT2, ERBB4, and ARID2, which are driver genes of solid tumors.ConclusionHematopoietic clone-derived mutations, including ‘driver mutations’ and ‘passenger mutations’, are prevalent in the cf-DNA of both healthy individuals and cancer patients and may be a potential source of false positives in the liquid biopsy. Our results also suggest the ineffectiveness for distinguishing clonal hematopoietic mutations of low VAF (≤0.1%) from tumor-derived mutations using conventional next-generation sequencing of blood cell DNA. However, an error correction model with an ultralow error rate and high coverage depth is required for blood cell DNA sequencing, which is difficult and costly to achieve with current technologies.  相似文献   

15.
《Annals of oncology》2019,30(7):1088-1095
BackgroundMetastatic colorectal cancer (mCRC) is a heterogeneous disease where prognosis is dependent both on tumor biology and host factors. Total circulating cell-free DNA (cfDNA) has shown to harbor prognostic information in mCRC, although less is known about the biological correlates of cfDNA levels in this patient group. The primary objective was to evaluate the prognostic value of pretreatment cfDNA in patients receiving the first-line oxaliplatin-based chemotherapy for mCRC, by using a predefined upper limit of normal (ULN) from a cohort of presumed healthy individuals. The secondary objective was to model cfDNA levels as a function of predefined tumor and host factors.Patients and methodsThis was a retrospective post hoc study based on a prospective multicenter phase III trial, the NORDIC-VII study. DNA was purified from 547 plasma samples and cfDNA quantified by a droplet digital PCR assay (B2M, PPIA) with controls for lymphocyte contamination. Main clinical end point was overall survival (OS).ResultscfDNA was quantified in 493 patients, 54 were excluded mainly due to lymphocyte contamination. Median cfDNA level was 7673 alleles/ml (1050–1 645 000) for B2M and 5959 alleles/ml (555–854 167) for PPIA. High cfDNA levels were associated with impaired outcome; median OS of 16.6 months for levels above ULN and 25.9 months for levels below ULN (hazard ratio = 1.83, 95% confidence interval 1.51–2.21, P < 0.001). The result was confirmed in multivariate OS analysis adjusting for established clinicopathological characteristics. A linear regression model predicted cfDNA levels from sum of longest tumor diameters by RECIST, the presence of liver metastases and systemic inflammatory response as measured by interleukin 6 (F(6, 357) = 62.7, P < 0.001).ConclusioncfDNA holds promise as a minimally invasive and clinically relevant prognostic biomarker in mCRC before initiating first-line oxaliplatin-based chemotherapy and may be a complex entity associated with tumor burden, liver metastases and systemic inflammatory response.Trial registrationClinicalTrials.gov, NCT00145314.  相似文献   

16.

Background:

Cell-free DNA (cfDNA) circulating in the blood holds a possible prognostic value in malignant diseases. Under malignant conditions, the level of cfDNA increases but the biological mechanism remains to be fully understood. We aimed to examine the correlation between cfDNA and total tumour burden defined by positron emission tomography (PET) parameters.

Methods:

Patients with advanced non-small cell lung cancer (NSCLC) were enrolled into a prospective biomarker trial. Before treatment, plasma was extracted and the level of cfDNA was determined by qPCR. An 18F-fluorodeoxyglucose (18F-FDG) PET/computed tomography (CT) scan was performed and evaluated in terms of metabolic tumour volume (MTV) and total lesion glycolysis (TLG). Tumour contours were delineated semi-automatically by a threshold standardised uptake value (SUV) of 2.5. The primary end point was correlation among cfDNA, MTV and TLG. The secondary end point was overall survival (OS) according to cfDNA, MTV and TLG.

Results:

Fifty-three patients were included. There were no correlations between cfDNA and MTV (r=0.1) or TLG (r=0.1). cfDNA >75th percentile was correlated with shorter OS (P=0.02), confirmed in a multivariate analysis. MTV>the median was associated with a significantly shorter OS (P=0.02). There was no significant difference in OS according to TLG (P=0.08).

Conclusion:

Cell-free DNA may not be a simple measure of tumour burden, but seems to reflect more complex mechanisms of tumour biology, making it attractive as an independent prognostic marker.  相似文献   

17.
《Annals of oncology》2016,27(1):154-159
BackgroundWhile previous studies have reported on the prognostic value of total plasma cell-free deoxyribonucleic acid (cfDNA) in lung cancers, few have prospectively evaluated its predictive value for systemic therapy response.Patients and methodsWe conducted a prospective study to evaluate the association between changes in total cfDNA and radiologic response to systemic therapy in patients with stage IIIB/IV non-small-cell lung cancers (NSCLCs). Paired blood collections for cfDNA and computed tomography (CT) assessments by RECIST v1.0 were performed at baseline and 6–12 weeks after therapy initiation. Total cfDNA levels were measured in plasma using quantitative real-time polymerase chain reaction. Associations between changes in cfDNA and radiologic response, progression-free survival (PFS), and overall survival (OS) were measured using Kruskal–Wallis and Kaplan–Meier estimates.ResultsA total of 103 patients completed paired cfDNA and CT response assessments. Systemic therapy administered included cytotoxic chemotherapy in 57% (59/103), molecularly targeted therapy in 17% (17/103), and combination therapy in 26% (27/103). Median change in cfDNA from baseline to response assessment did not significantly differ by radiologic response categories of progression of disease, stable disease and partial response (P = 0.10). However, using radiologic response as continuous variable, there was a weak positive correlation between change in radiologic response and change in cfDNA (Spearman's correlation coefficient 0.21, P = 0.03). Baseline cfDNA levels were not associated with PFS [hazard ratio (HR) = 1.06, 95% confidence interval (CI) 0.93–1.20, P = 0.41] or OS (HR = 1.04, 95% CI 0.93–1.17, P = 0.51), neither were changes in cfDNA.ConclusionsIn this large prospective study, changes in total cfDNA over time did not significantly predict radiologic response from systemic therapy in patients with advanced NSCLC. Pretreatment levels of total cfDNA were not prognostic of survival. Total cfDNA level is not a highly specific predictive biomarker and future investigations in cfDNA should focus on tumor-specific genomic alterations using expanded capabilities of next-generation sequencing.  相似文献   

18.
IntroductionJAK2 V617F mutation is one of the major criteria in the diagnosis of myeloproliferative neoplasms (MPN) and its variant allele fraction (VAF) determines the disease phenotype and outcomes. This study aimed to define characteristics and outcomes of patients with JAK2 V617F VAF < 2% compared to patients with VAF 2%-10%.Patients and MethodsWe included 5079 patients with JAK2 V617F tested during 2010-2015 and identified 216 patients (4.3%) with JAK2 V617F VAF < 10%. Twenty-seven patients were excluded because of missing follow-up data.ResultsA total of 189 patients were included for final analysis (89 patients with VAF < 2% and 100 patients with VAF 2%-10%). Patients with JAK2 V617F 2%-10% VAF had a significantly higher rate of splenomegaly, higher platelet counts, and more MPN diagnoses than the group with VAF < 2%. Ten patients (10.0%) with VAF 2%-10% and 24 patients (27.0%) with VAF < 2% had normal blood count and no thrombosis. There were no differences between the groups in all outcomes, including thrombotic complications (18.0% in both groups), progression to hematologic or solid cancers, and death. Patients without hematologic diagnosis had similar thrombotic incidence (16.7% in VAF < 2% vs. 20.0% in VAF 2%-10%).ConclusionPatients with JAK2 V617F mutation VAF < 2% have similar survival and thrombotic incidence as patients with VAF 2%-10%. Patients with low VAF should be monitored in the same manner as patients with higher VAF with the same diagnoses to prevent morbidity and mortality. Patients without hematologic diagnosis may benefit from thrombotic risk reduction strategies such as optimization of cardiovascular risk factors.  相似文献   

19.
《Annals of oncology》2018,29(5):1286-1291
BackgroundHepatocellular carcinomas (HCCs) are not routinely biopsied, resulting in a lack of tumor materials for molecular profiling. Here we sought to determine whether plasma-derived cell-free DNA (cfDNA) captures the genetic alterations of HCC in patients who have not undergone systemic therapy.Patients and methodsFrozen biopsies from the primary tumor and plasma were synchronously collected from 30 prospectively recruited, systemic treatment-naïve HCC patients. Deep sequencing of the DNA from the biopsies, plasma-derived cfDNA and matched germline was carried out using a panel targeting 46 coding and non-coding genes frequently altered in HCCs.ResultsIn 26/30 patients, at least one somatic mutation was detected in biopsy and/or cfDNA. Somatic mutations in HCC-associated genes were present in the cfDNA of 63% (19/30) of the patients and could be detected ‘de novo’ without prior knowledge of the mutations present in the biopsy in 27% (8/30) of the patients. Mutational load and the variant allele fraction of the mutations detected in the cfDNA positively correlated with tumor size and Edmondson grade. Crucially, among the seven patients in whom the largest tumor was ≥5 cm or was associated with metastasis, at least one mutation was detected ‘de novo’ in the cfDNA of 86% (6/7) of the cases. In these patients, cfDNA and tumor DNA captured 87% (80/92) and 95% (87/92) of the mutations, suggesting that cfDNA and tumor DNA captured similar proportions of somatic mutations.ConclusionIn patients with high disease burden, the use of cfDNA for genetic profiling when biopsy is unavailable may be feasible. Our results support further investigations into the clinical utility of cfDNA in a larger cohort of patients.  相似文献   

20.

Introduction

The genomic alterations driving resistance to third-generation EGFR tyrosine kinase inhibitors (TKIs) are not well established, and collecting tissue biopsy samples poses potential complications from invasive procedures. Cell-free circulating DNA (cfDNA) testing provides a noninvasive approach to identify potentially targetable mechanisms of resistance. Here we utilized a 70-gene cfDNA next-generation sequencing test to interrogate pretreatment and progression samples from 77 EGFR-mutated non-small cell lung cancer (NSCLC) patients treated with a third-generation EGFR TKI.

Patients and Methods

Rociletinib was evaluated in advanced or metastatic (second line or higher) disease with EGFR T790M-positive NSCLC in the TIGER-X (NCT01526928) and TIGER-2 (NCT02147990) studies. Plasma samples were collected at baseline and at the time of systemic progression while receiving rociletinib. The critical exons in 70 genes were sequenced in cfDNA isolated from plasma samples to elucidate a comprehensive genomic profile of alterations for each patient.

Results

Plasma-based cfDNA analysis identified 93% of the initial EGFR activating and 85% of the EGFR T790M resistance mutations in pretreatment samples with detectable tumor DNA. Profiling of progression samples revealed significant heterogeneity, with different variant types (eg, mutations, amplifications, and fusions) detected in multiple genes (EGFR, MET, RB1) that may be driving resistance in patients. Novel alterations not previously described in association with resistance to third-generation TKIs were also detected, such as an NTRK1 fusion.

Conclusion

cfDNA next-generation sequencing identified initial EGFR activating and secondary T790M resistance mutations in NSCLC patients with high sensitivity, predicted treatment response equivalent to tissue analysis, and identified multiple novel and established resistance alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号