首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The changes in the vibrational transitions of the protein and redox cofactors of the photosynthetic reaction center were examined by picosecond infrared spectroscopy. The spectra in the vibrational mid-infrared region (1800-1550 cm-1) of hydrated and partially dehydrated reaction centers were investigated from 50 ps to 4 ns after photoinitiation of the electron transfer. Features in the infrared difference spectra were identified with both protein and redox cofactor vibrational modes and correlated with electron transfer events whose kinetics were measured in the infrared and visible regions. The observed protein response is confined to a few amide I transitions (1644 cm-1, 1661 cm-1, 1665 cm-1) and carboxylic residues (1727 cm-1). About 85% of the observed signal corresponded to alterations in the cofactor-associated ester and keto carbonyls. The amide I and carboxylic transitions appeared prior to 50 ps, suggesting that the primary electron transfer event is coupled with a specific piece of the protein backbone and to glutamic or aspartic residues nearby the special pair. Infrared absorption changes accompanying bacteriochlorophyll-dimer cation formation dominated the signal at all times investigated. Infrared spectral changes observed in hydrated and partially dehydrated reaction centers were distinctly different; a band at 1665 cm-1 with a spectral width of 6 cm-1 in the hydrated protein, corresponding to a protein amide I bleach, was not present in the dehydrated film. These differences are discussed in terms of the markedly different electron transfer kinetics observed in the presence of water.  相似文献   

2.
Raman difference spectra have been obtained for the cytochromes c of a number of species by simultaneous data acquisition from two samples. Frequency differences as small as 0.1 cm-1 can be measured reproducibly by the technique we have developed. In comparisons between cytochromes c isolated from two different species, the frequency differences in the heme vibrational modes range from 0 to 6 cm-1. The vibrational frequencies of the heme are sensitive to the electronic charge density on the porphyrin macrocycle. The frequency differences are interpreted in terms of the influence of the heme-packed aromatic and highly electronegative amino acid side chains on the pi* charge density and distribution on the heme. Such a control of the electronic properties of the heme by the protein may be important for the function of cytochrome c.  相似文献   

3.
We have obtained room-temperature transient infrared difference spectra of the M412 photoproduct of bacteriorhodopsin (bR) by using a "rapid-sweep" Fourier-transform infrared (FT-IR) technique that permits the collection of an entire spectrum (extending from 1000 to 2000 cm-1 with 8-cm-1 resolution) in 5 ms. These spectra exhibit less than 10(-4) absorbance unit of noise, even utilizing wet samples containing approximately 10 pmol of bR in the measuring beam. The bR----M transient difference spectrum is similar to FT-IR difference spectra previously obtained under conditions where M decay was blocked (low temperature or low humidity). In particular, the transient spectrum exhibits a set of vibrational difference bands that were previously attributed to protonation changes of several tyrosine residues on the basis of isotopic derivative spectra of M at low temperature. Our rapid-sweep FT-IR spectra demonstrate that these tyrosine/tyrosinate bands are also present under more physiological conditions. Despite the overall similarity to the low-temperature and low-humidity spectra, the room-temperature bR----M transient difference spectrum shows significant additional features in the amide I and amide II regions. These features' presence suggests that a small alteration of the protein backbone accompanies M formation under physiological conditions and that this conformational change is inhibited in the absence of liquid water.  相似文献   

4.
Time-resolved pump-and-probe experiments of reaction centers of the purple bacterium Rhodobacter sphaeroides (R26) in the mid-IR region between 1000 and 1800 cm-1 are recorded with a time resolution of 300-400 fs. The difference spectra of the states P*, P+HA-, and P+QA- with respect to the ground state P predominantly reflect changes of the special pair. They show positive and negative bands due to changes of distinct vibrational modes superimposed on a broad background of enhanced absorption. A number of certain bands can be assigned to the special pair P, to the bacteriopheophytin HA, and to the quinone QA. The temporal evolution of the IR absorbance changes is well described by the time constants known from femtosecond spectroscopy of the electronic states. Differences occur only at very early times, which are indicative of fast vibrational relaxation with a time constant of a few hundred femtoseconds.  相似文献   

5.
A pathway of electron transfer is described that operates in the wild-type reaction center (RC) of the photosynthetic bacterium Rhodobacter sphaeroides. The pathway does not involve the excited state of the special pair dimer of bacteriochlorophylls (P*), but instead is driven by the excited state of the monomeric bacteriochlorophyll (BA*) present in the active branch of pigments along which electron transfer occurs. Pump-probe experiments were performed at 77 K on membrane-bound RCs by using different excitation wavelengths, to investigate the formation of the charge separated state P+HA-. In experiments in which P or BA was selectively excited at 880 nm or 796 nm, respectively, the formation of P+HA- was associated with similar time constants of 1.5 ps and 1. 7 ps. However, the spectral changes associated with the two time constants are very different. Global analysis of the transient spectra shows that a mixture of P+BA- and P* is formed in parallel from BA* on a subpicosecond time scale. In contrast, excitation of the inactive branch monomeric bacteriochlorophyll (BB) and the high exciton component of P (P+) resulted in electron transfer only after relaxation to P*. The multiple pathways for primary electron transfer in the bacterial RC are discussed with regard to the mechanism of charge separation in the RC of photosystem II from higher plants.  相似文献   

6.
A room-temperature study is reported of the femtosecond spectral evolution of the stimulated emission band of the primary electron-transfer precursor P* in bacterial photosynthesis. The study was performed with membranes of the antenna-deficient RCO1 mutant of Rhodobacter sphaeroides. A time-dependent red shift, reflecting nuclear motion out of the Franck-Condon region of the excited state, is resolved. Analysis of oscillatory features persisting for > 1 ps in the kinetics revealed main frequencies of the activated motions at 30, 84, 145, and 192 cm-1. The oscillations occur on the time scale of primary electron transfer. Our results set a lower limit for the vibrational dephasing time in P* that is not compatible with the usual assumption in theoretical treatments of complete vibrational relaxation prior to electron transfer, even at room temperature.  相似文献   

7.
We studied the nature of the protein binding site of rhodopsin, using two-photon spectroscopy to assign the location of the low-lying "covalent" 1Ag*- -like pi pi * state in a model rhodopsin containing a locked-11-cis chromophore. The two-photon thermal lens maximum is observed at 22,800 cm-1, approximately equal to 2000 cm-1 above the one-photon absorption maximum, indicating that the protein environment has induced a level ordering reversal of the low-lying pi pi * states relative to that observed in retinyl Schiff bases in solution. The spectroscopic results clearly indicate that the chromophore is protonated and that the binding site is uncharged. Electrostatic energy contour maps of the binding site are calculated, showing possible locations for the external counterion(s). Two models of the binding site are proposed that accommodate the available spectroscopic data. One model involves a protonated Schiff base chromophore stabilized by a single negatively charged aspartic or glutamic acid residue. A more complicated model involving two residues (one charged, the other neutral) is also proposed. The latter model is interesting because it also accommodates the observed deuterium isotope effect in the form of a proton translocation between the two residues. The translocation is assumed to be a ground state process, initiated subsequent to the photoisomerization of the chromophore and energetically driven via destabilization of the counterion environment as a result of isomerization-induced charge separation.  相似文献   

8.
傅立叶变换红外光谱分析对大肠肿瘤诊断价值的探讨   总被引:4,自引:0,他引:4  
目的 探讨傅立叶变换红外(FT-IR)光谱分析技术对的大肠肿瘤的诊断价值。方法 用FT-IR光谱仪分析的癌手术标本的癌及正常组织脱落细胞各50例。多因素Logistic回归分析后,建立判别方程模型,回带分析计算诊断符合率。结果 1.癌细胞核的磷酸二酯基团伸缩振动谱带明显位移;2癌细胞蛋白质分子中C-O键吸收谱改变显著,吸收峰强度比1174cm^-1/1155cm^-1增强;3.回带分析结果与原方程判别结果基本一致。4.该方法判别大肠恶性肿瘤细胞的特异度、灵敏度、阳性预测值和阴性预测值分别为90.91%、86.36%、86.96%和90.48%。结论 FT-IR光谱对鉴别大肠恶性肿瘤细胞有一定临床应用价值,有望成为一种快速筛检恶性肿瘤细胞的工具。  相似文献   

9.
It is shown that vibrational coherence modulates the femtosecond kinetics of stimulated emission and absorption of reaction centers of purple bacteria. In the DLL mutant of Rhodobacter capsulatus, which lacks the bacteriopheophytin electron acceptor, oscillations with periods of approximately 500 fs and possibly also of approximately 2 ps were observed, which are associated with formation of the excited state. The kinetics, which reflect primary processes in Rhodobacter sphaeroides R-26, were modulated by oscillations with a period of approximately 700 fs at 796 nm and approximately 2 ps at 930 nm. In the latter case, at 930 nm, where the stimulated emission of the excited state, P*, is probed, oscillations could only be resolved when a sufficiently narrow (10 nm) and concomitantly long pump pulse was used. This may indicate that the potential energy surface of the excited state is anharmonic or that low-frequency oscillations are masked when higher frequency modes are also coherently excited, or both. The possibility is discussed that the primary charge separation may be a coherent and adiabatic process coupled to low-frequency vibrational modes.  相似文献   

10.
The mechanism and kinetics of electron transfer in isolated D1/D2-cyt(b559) photosystem (PS) II reaction centers (RCs) and in intact PSII cores have been studied by femtosecond transient absorption and kinetic compartment modeling. For intact PSII, a component of approximately 1.5 ps reflects the dominant energy-trapping kinetics from the antenna by the RC. A 5.5-ps component reflects the apparent lifetime of primary charge separation, which is faster by a factor of 8-12 than assumed so far. The 35-ps component represents the apparent lifetime of formation of a secondary radical pair, and the approximately 200-ps component represents the electron transfer to the Q(A) acceptor. In isolated RCs, the apparent lifetimes of primary and secondary charge separation are approximately 3 and 11 ps, respectively. It is shown (i) that pheophytin is reduced in the first step, and (ii) that the rate constants of electron transfer in the RC are identical for PSII cores and for isolated RCs. We interpret the first electron transfer step as electron donation from the primary electron donor Chl(acc D1). Thus, this mechanism, suggested earlier for isolated RCs at cryogenic temperatures, is also operative in intact PSII cores and in isolated RCs at ambient temperature. The effective rate constant of primary electron transfer from the equilibrated RC* excited state is 170-180 ns(-1), and the rate constant of secondary electron transfer is 120-130 ns(-1).  相似文献   

11.

Objective

Most patients with rheumatoid arthritis (RA) express the shared epitope (SE). It is not known whether SE‐negative HLA–DRB1 alleles influence the development of RA. This study examined the influence of SE‐negative HLA–DR alleles (DRB1*X) on the development of RA in 3 different French populations.

Methods

HLA–DRB1 alleles were defined by polymerase chain reaction with sequence‐specific oligonucleotide hybridization or sequence‐specific primers. SE‐negative alleles were classified according to the electric charge of their P4 pocket. HLA–DRB1 alleles *0103, *0402, *07, *08, *11 (except *1107), *12, and *13 have a neutral or negative P4 charge and are called DRB1*XP4n. HLA–DRB1*03, *0403, *0406, *0407, *0901, *1107, *14, *15, and *16 have a positive P4 charge and are called DRB1*XP4p.

Results

Among the SE‐negative subjects, DRB1 genotypes with 1 or 2 DRB1*XP4n alleles were significantly overrepresented in the control subjects compared with the RA patients, whereas DRB1*XP4p/XP4p genotypes were equally represented in the patients and controls. In single‐dose SE–positive subjects, SE/XP4n genotypes were equally represented in the patients and controls. However, SE/XP4p genotypes were significantly overrepresented in the RA patients.

Conclusion

The DRB1*X allele polymorphism influences susceptibility to RA. Alleles that have a neutral or negative electric charge in their P4 pocket (DRB1*XP4n), such as DRB1*0103, *0402, *07, *08, *11 (except *1107), *12, and *13, protect against RA. Alleles that have a positive electric charge in their P4 pocket (DRB1*XP4p), such as DRB1*03, *0403, *0406, *0407, *0901, *1107, *14, *15, and *16, have no influence on the predisposition to RA.
  相似文献   

12.
Role of aspartate-96 in proton translocation by bacteriorhodopsin.   总被引:17,自引:12,他引:17  
Proton transfer reactions in bacteriorhodopsin were investigated by Fourier transform infrared spectroscopy, using a mutant protein in which Asp-96 was replaced by Asn-96. By comparison of the BR - K, BR - L, and BR - M difference spectra (BR indicating bacteriorhodopsin ground state and K, L, and M indicating photo-intermediates) of the wild-type protein with the corresponding difference spectra of the mutant protein, detailed insight into the functional role of this residue in the proton pump mechanism is obtained. Asp-96 is protonated in BR, as well as another aspartic residue, which is tentatively assigned to be Asp-115. Asp-96 is not affected in the primary photoreaction. During formation of the L intermediate it is subjected to a change in the H-bonding character of its carboxylic group, but no deprotonation occurs at this reaction step. Also, in the mutant protein a light-induced structural change of the protein interior near the Asn-96 residue is probed. The BR - M difference spectrum of the mutant protein lacks the negative carbonyl band at 1742 cm-1 of Asp-96 and in addition a positive band at about 1378 cm-1, which is most likely to be caused by the carboxylate vibration of Asp-96. This argues for a deprotonation of Asp-96 in the time range of the M intermediate during its photostationary accumulation. On the basis of these results, it is suggested that the point mutation does not induce a gross change of the protein structure, but a proton-binding site in the proton pathway from the cytoplasmic side to the Schiff base is lost.  相似文献   

13.
Light intensities that limit electron flow induce rapid degradation of the photosystem II (PSII) reaction center D1 protein. The mechanism of this phenomenon is not known. We propose that at low excitation rates back electron flow and charge recombination between the QB*- or QA*- semiquinone acceptors and the oxidized S(2,3) states of the PSII donor side may cause oxidative damage via generation of active oxygen species. Therefore, damage per photochemical event should increase with decreasing rates of PSII excitation. To test this hypothesis, the effect of the dark interval between single turnover flashes on the inactivation of water oxidation, charge separation and recombination, and the degradation of D1 protein were determined in spinach thylakoids. PSII inactivation per flash increases as the dark interval between the flashes increases, and a plateau is reached at dark intervals, allowing complete charge recombination of the QB*-/S2,3 or QA*-/S2 states (about 200 and 40 s, respectively). At these excitation rates: (i) 0.7% and 0.4% of PSII is inactivated and 0.4% and 0.2% of the D1 protein is degraded per flash, respectively, and (ii) the damage per flash is about 2 orders of magnitude higher than that induced by equal amount of energy delivered by excess continuous light. No PSII damage occurs if flashes are given in anaerobic conditions. These results demonstrate that charge recombination in active PSII is promoted by low rates of excitation and may account for a the high quantum efficiency of the rapid turnover of the D1 protein induced by limiting light.  相似文献   

14.
Flavoproteins can function as hydrophobic sites for vitamin B(2) (riboflavin) or, in other structures, with cofactors for catalytic reactions such as glucose oxidation. In this contribution, we report direct observation of charge separation and recombination in two flavoproteins: riboflavin-binding protein and glucose oxidase. With femtosecond resolution, we observed the ultrafast electron transfer from tryptophan(s) to riboflavin in the riboflavin-binding protein, with two reaction times: approximately 100 fs (86% component) and 700 fs (14%). The charge recombination was observed to take place in 8 ps, as probed by the decay of the charge-separated state and the recovery of the ground state. The time scale for charge separation and recombination indicates the local structural tightness for the dynamics to occur that fast and with efficiency of more than 99%. In contrast, in glucose oxidase, electron transfer between flavin-adenine-dinucleotide and tryptophan(s)/tyrosine(s) takes much longer times, 1.8 ps (75%) and 10 ps (25%); the corresponding charge recombination occurs on two time scales, 30 ps and nanoseconds, and the efficiency is still more than 97%. The contrast in time scales for the two structurally different proteins (of the same family) correlates with the distinction in function: hydrophobic recognition of the vitamin in the former requires a tightly bound structure (ultrafast dynamics), and oxidation-reduction reactions in the latter prefer the formation of a charge-separated state that lives long enough for chemistry to occur efficiently. Finally, we also studied the influence on the dynamics of protein conformations at different ionic strengths and denaturant concentrations and observed the sharp collapse of the hydrophobic cleft and, in contrast, the gradual change of glucose oxidase.  相似文献   

15.
Carbon monoxide bound to iron or copper in substrate-reduced mitochondrial cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) from beef heart has been used to explore the structural interaction of the a3 heme-copper pocket at 15 K and 80 K in the dark and in the presence of visible light. The vibrational absorptions of CO measured by a Fourier transform infrared interferometer occur in the dark at 1963 cm-1, with small absorptions near 1952 cm-1, and are due to a3 heme--CO complexes. These disappear in strong visible light and are replaced by a major absorption at 2062 cm-1 and a minor one at 2043 cm-1 due to Cu--CO. Relaxation in the dark is rapid and quantitative at 210 K, but becomes negligible below 140 K. The multiple absorptions indicate structural heterogeneity of cytochrome oxidase in mitochondria. The Cu--CO absorptions (vCO) are similar to those in hemocyanin--CO complexes from molluscs (vCO - 2062 cm-1) and crustaceans (vCO = 2043 cm-1). The 2062 cm-1 Cu--CO absorption of cytochrome oxidase is split into two bands at 15 K. Analysis of spectral data suggest the presence of a very nonpolar heme--Cu pocket in which the heme-CO complex is highly ordered, but in which the Cu--CO complex is much more flexible, especially above 80 K. A function for these structures in oxygen reduction is proposed.  相似文献   

16.
In transient optical experiments the absorbed photon raises the vibrational temperature of the chromophore. In heme proteins at room temperature conversion of a 530-nm photon into vibrational energy is estimated to raise the temperature of the heme by 500-700 K. Cooling of the heme is expected to occur mainly by interacting with the surrounding protein. We report molecular dynamics simulations for myoglobin and cytochrome c in vacuo that predict that this cooling occurs on the ps time scale. The decay of the vibrational temperature is nonexponential with about 50% loss occurring in 1-4 ps and with the remainder in 20-40 ps. These results predict the presence of nonequilibrium vibrational populations that would introduce ambiguity into the interpretation of transient ps absorption and Raman spectra and influence the kinetics of sub-ns geminate recombination.  相似文献   

17.
Femtosecond transient absorption measurements of the cis-trans isomerization of the visual pigment rhodopsin clarify the interpretation of the dynamics of the first step in vision. We present femtosecond time-resolved spectra as well as kinetic measurements at specific wavelengths between 490 and 670 nm using 10-fs probe pulses centered at 500 and 620 nm following a 35-fs pump pulse at 500 nm. The expanded spectral window beyond that available (500-570 nm) in our previous study [Schoenlein, R. W., Peteanu, L. A., Mathies, R. A. & Shank, C. V. (1991) Science 254, 412-415] provides the full differential absorption spectrum of the photoproduct as a function of delay time after photolysis. The high time-resolution data presented here contradict an alternative interpretation of the rhodopsin photochemistry offered by Callender and co-workers [Yan, M., Manor, D., Weng, G., Chao, H., Rothberg, L., Jedju, T. M., Alfano, R. R. & Callender, R. H. (1991) Proc. Natl. Acad. Sci. USA 88, 9809-9812]. Our results confirm that the red-shifted (lambda max approximately 570 nm) photo-product of the isomerization reaction is fully formed within 200 fs. Subsequent changes in the differential spectra between 200 fs and 6 ps are attributed to a combination of dynamic ground-state processes such as intramolecular vibrational energy redistribution, vibrational cooling, and conformational relaxation.  相似文献   

18.
Photosynthetic conversion of light energy into chemical potential begins in reaction center protein complexes, where rapid charge separation occurs with nearly unit quantum efficiency. Primary charge separation was studied in isolated photosystem II reaction centers from spinach containing 6 chlorophyll a, 2 pheophytin a (Pheo), 1 cytochrome b559, and 2 beta-carotene molecules. Time-resolved pump-probe kinetic spectroscopy was carried out with 105-fs time resolution and with the pump laser polarized parallel, perpendicular, and at the magic angle (54.7 degrees) relative to the polarized probe beam. The time evolution of the transient absorption changes due to the formation of the oxidized primary electron donor P680+ and the reduced primary electron acceptor Pheo- were measured at 820 nm and 545 nm, respectively. In addition, kinetics were obtained at 680 nm, the wavelength ascribed to the Qy transition of the primary electron donor P680 in the reaction center. At each measured probe wavelength the kinetics of the transient absorption changes can be fit to two major kinetic components. The relative amplitudes of these components are strongly dependent on the polarization of the pump beam relative to that of the probe. At the magic angle, where no photoselection occurs, the amplitude of the 3-ps component, which is indicative of the charge separation, dominates. When the primary electron acceptor Pheo is reduced prior to P680 excitation, the 3-ps component is eliminated.  相似文献   

19.
The resonance Raman excitation profiles of a number of charge transfer transitions in electron donor/acceptor complexes with tetracyanoethylene as acceptor in solution at room temperature are reported and compared with absorption and fluorescence spectra of these complexes. All complexes show distinct anomalies which cannot be accounted for by existing theories unless they are extended. In particular, the excitation profiles peak at the low energy side of the absorption profiles by amounts of the order of 1000-2000 cm-1 and also, in the cases where two charge transfer bands are present, resonance occurs independently for the two bands. The latter observation suggests that the two bands are due to distinct species of the complex with differing geometrical configurations. The former observations is interpreted, in connection with the known asymmetry of the absorption profile and the large Stokes gap between absorption and fluorescence peaks, as arising from the relatively stronger contributions of the pure electronic and vibronic levels in the Stokes gap to the Raman scattering cross-section of the complex, and a frequency dependent damping of the vibronic transitions contributing to resonance. This provides important physical insights into the nature of charge transfer transitions of electron donor/acceptor complexes in general. In our discussion we also refer to similar anomalies in the work of others on the resonance Raman effect of the iodine visible absorption band in solution.  相似文献   

20.
A resonance Raman microscope has been developed to study the structure of the retinal prosthetic group in the visual pigments of individual photoreceptor cells. Raman vibrational spectra are obtained by focusing the probe laser on intact photoreceptors frozen on a 77 K cold stage. To elucidate the mechanism of wavelength regulation in blue visual pigments, we have used this apparatus to study the structure of the chromophore in the 440-nm absorbing pigment found in "green rods" of the toad (Bufo marinus). The 9-cis isorhodopsin form of the green rod pigment exhibits a 1662-cm-1 C = NH+ Schiff base stretching mode that shifts to 1636 cm-1 in deuterium-substituted H2O. This demonstrates that the Schiff base linkage to the protein is protonated. Protonation of the Schiff base is sufficient to explain the 440-nm absorption maximum of this pigment without invoking any additional protein-chromophore interactions. The absence of additional perturbations is supported by the observation that the ethylenic band and the perturbation-sensitive C-10-C-11 and C-14-C-15 stretching modes have the same frequency as those of the 9-cis protonated retinal Schiff base in solution. Our demonstration that a blue visual pigment contains an unperturbed protonated Schiff base provides experimental evidence that the protein charge perturbation responsible for the opsin shift in the 500-nm absorbing pigments is removed in the opsins of blue pigments, as suggested by the sequence data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号