首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cao F  Peng D  Liu L  Jin Z  Fan N  Deng Y  Booth JR 《Human brain mapping》2009,30(3):797-809
Developmental differences in the neurocognitive networks for phonological and semantic processing in Chinese word reading were examined in 13 adults and 13 children using functional magnetic resonance imaging (fMRI). Rhyming and semantic association judgments were made to two-character words that were presented sequentially in the visual modality. These lexical tasks were compared with a nonlinguistic control task involving judgment of line patterns. The first main finding was that adults showed greater activation than children in right middle occipital gyrus on both the meaning and rhyming task, suggesting adults more effectively engage right hemisphere brain regions involved in the visual-spatial analysis of Chinese characters. The second main finding was that adults showed greater activation than children in left inferior parietal lobule for the rhyming as compared with the meaning task, suggesting greater specialization of phonological processing in adults. The third main finding was that children who had better performance in the rhyming task on characters with conflicting orthographic and phonological information relative to characters with nonconflicting information showed greater activation in left middle frontal gyrus, suggesting greater engagement of brain regions involved in the integration of orthography and phonology.  相似文献   

2.
Previous neuroimaging studies have found atypical cerebellar activation in individuals with dyslexia in either motor-related tasks or language tasks. However, studies investigating atypical cerebellar activation in individuals with dyslexia have mostly used tasks tapping phonological processing. A question that is yet unanswered is whether the cerebellum in individuals with dyslexia functions properly during orthographic processing of words, as growing evidence shows that the cerebellum is also involved in visual and spatial processing. Here, we investigated cerebellar activation and cerebro-cerebellar functional connectivity during word processing in dyslexic readers and typically developing readers using tasks that tap orthographic and phonological codes. In children with dyslexia, we observed an abnormally higher engagement of the bilateral cerebellum for the orthographic task, which was negatively correlated with literacy measures. The greater the reading impairment was for young dyslexic readers, the stronger the cerebellar activation was. This suggests a compensatory role of the cerebellum in reading for children with dyslexia. In addition, a tendency for higher cerebellar activation in dyslexic readers was found in the phonological task. Moreover, the functional connectivity was stronger for dyslexic readers relative to typically developing readers between the lobule VI of the right cerebellum and the left fusiform gyrus during the orthographic task and between the lobule VI of the left cerebellum and the left supramarginal gyrus during the phonological task. This pattern of results suggests that the cerebellum compensates for reading impairment through the connections with specific brain regions responsible for the ongoing reading task. These findings enhance our understanding of the cerebellum’s involvement in reading and reading impairment.  相似文献   

3.
Developmental dyslexia, characterized by difficulty in reading, has been associated with phonological and orthographic processing deficits. fMRI was performed on dyslexic and normal-reading children (8-12 years old) during phonological and orthographic tasks of rhyming and matching visually presented letter pairs. During letter rhyming, both normal and dyslexic reading children had activity in left frontal brain regions, whereas only normal-reading children had activity in left temporo-parietal cortex. During letter matching, normal-reading children showed activity throughout extrastriate cortex, especially in occipito-parietal regions, whereas dyslexic children had little activity in extrastriate cortex during this task. These results indicate dyslexia may be characterized in childhood by disruptions in the neural bases of both phonological and orthographic processes important for reading.  相似文献   

4.
We combined fMRI with eye tracking and speech recording to examine the neural and cognitive mechanisms that underlie reading. To simplify the study of the complex processes involved during reading, we used naming speed (NS) tasks (also known as rapid automatized naming or RAN) as a focus for this study, in which average reading right‐handed adults named sets of stimuli (letters or objects) as quickly and accurately as possible. Due to the possibility of spoken output during fMRI studies creating motion artifacts, we employed both an overt session and a covert session. When comparing the two sessions, there were no significant differences in behavioral performance, sensorimotor activation (except for regions involved in the motor aspects of speech production) or activation in regions within the left‐hemisphere‐dominant neural reading network. This established that differences found between the tasks within the reading network were not attributed to speech production motion artifacts or sensorimotor processes. Both behavioral and neuroimaging measures showed that letter naming was a more automatic and efficient task than object naming. Furthermore, specific manipulations to the NS tasks to make the stimuli more visually and/or phonologically similar differentially activated the reading network in the left hemisphere associated with phonological, orthographic and orthographic‐to‐phonological processing, but not articulatory/motor processing related to speech production. These findings further our understanding of the underlying neural processes that support reading by examining how activation within the reading network differs with both task performance and task characteristics.  相似文献   

5.
6.
We used the activation likelihood estimation (ALE) method to quantitatively synthesize data from 19 published brain mapping studies of phonological processing in reading, six with Chinese and 13 with alphabetic languages. It demonstrated high concordance of cortical activity across multiple studies in each written language system as well as significant differences of activation likelihood between languages. Four neural systems for the phonological processing of Chinese characters included: (1) a left dorsal lateral frontal system at Brodmann area (BA) 9; (2) the dorsal aspect of left inferior parietal system; (3) a bilateral ventral-occipitotemporal system including portions of fusiform gyrus and middle occipital gyrus; and (4) a left ventral prefrontal system covering the superior aspect of inferior frontal gyrus. For phonological processing of written alphabetic words, cortical areas identified here are consistent with the three neural systems proposed previously in the literature: (1) a ventral prefrontal system involving superior portions of left inferior frontal gyrus; (2) a left dorsal temporoparietal system including mid-superior temporal gyri and the ventral aspect of inferior parietal cortex (supramarginal region); and (3) a left ventral occipitotemporal system. Contributions of each of these systems to phonological processing in reading were discussed, and a covariant learning hypothesis is offered to account for the findings that left middle frontal gyrus is responsible for addressed phonology in Chinese whereas left temporoparietal regions mediate assembled phonology in alphabetic languages. Language form, cognitive process, and learning strategy drive the development of functional neuroanatomy.  相似文献   

7.
The reading system can be broken down into four basic subcomponents in charge of prelexical, orthographic, phonological, and lexico-semantic processes. These processes need to jointly work together to become a fluent and efficient reader. Using functional magnetic resonance imaging (fMRI), we systematically analyzed differences in neural activation patterns of these four basic subcomponents in children (N = 41, 9–13 years) using tasks specifically tapping each component (letter identification, orthographic decision, phonological decision, and semantic categorization). Regions of interest (ROI) were selected based on a meta-analysis of child reading and included the left ventral occipito-temporal cortex (vOT), left posterior parietal cortex (PPC), left inferior frontal gyrus (IFG), and bilateral supplementary motor area (SMA). Compared to a visual baseline task, enhanced activation in vOT and IFG was observed for all tasks with very little differences between tasks. Activity in the dorsal PPC system was confined to prelexical and phonological processing. Activity in the SMA was found in orthographic, phonological, and lexico-semantic tasks. Our results are consistent with the idea of an early engagement of the vOT accompanied by executive control functions in the frontal system, including the bilateral SMA.  相似文献   

8.
The aim of this study was to investigate the role of several specific neurocognitive functions in developmental dyslexia (DD). The performances of 60 dyslexic children and 65 age-matched normally reading children were compared on tests of phonological abilities, visual processing, selective and sustained attention, implicit learning, and executive functions. Results documented deficits in dyslexics on both phonological and non-phonological tasks. More stringently, in dyslexic children individual differences in non-phonological abilities accounted for 23.3% of unique variance in word reading and for 19.3% in non-word reading after controlling for age, IQ and phonological skills. These findings are in accordance with the hypothesis that DD is a multifactorial deficit and suggest that neurocognitive developmental dysfunctions in DD may not be limited to the linguistic brain area, but may involve a more multifocal cortical system.  相似文献   

9.
Numerous studies have shown that phonological skills are critical for successful reading acquisition. However, how the brain network supporting phonological processing evolves and how it supports the initial course of learning to read is largely unknown. Here, for the first time, we characterized the emergence of the phonological network in 28 children over three stages (prereading, beginning reading, and emergent reading) longitudinally. Across these three time points, decreases in neural activation in the left inferior parietal cortex (LIPC) were observed during an audiovisual phonological processing task, suggesting a specialization process in response to reading instruction/experience. Furthermore, using the LIPC as the seed, a functional network consisting of the left inferior frontal, left posterior occipitotemporal, and right angular gyri was identified. The connection strength in this network co‐developed with the growth of phonological skills. Moreover, children with above‐average gains in phonological processing showed a significant developmental increase in connection strength in this network longitudinally, while children with below‐average gains in phonological processing exhibited the opposite trajectory. Finally, the connection strength between the LIPC and the left posterior occipitotemporal cortex at the prereading level significantly predicted reading performance at the emergent reading stage. Our findings highlight the importance of the early emerging phonological network for reading development, providing direct evidence for the Interactive Specialization Theory and neurodevelopmental models of reading.  相似文献   

10.
We examined the neural representations of orthographic and phonological processing in children, while manipulating the consistency between orthographic and phonological information. Participants, aged 9-15, were scanned while performing rhyming and spelling judgments on pairs of visually presented words. The orthographic and phonological similarity between words in the pair was independently manipulated, resulting in four conditions. In the nonconflicting conditions, both orthography and phonology of the words were either (1) similar (lime-dime) or (2) different (staff-gain); in conflicting conditions, words had (3) similar phonology and different orthography (jazz-has) or (4) different phonology and similar orthography (pint-mint). The comparison between tasks resulted in greater activation for the rhyming task in bilateral inferior frontal gyri (BA 45/47), and greater activation for the spelling task in bilateral inferior/superior parietal lobules (BA 40/7), suggesting greater involvement of phonological and semantic processing in the rhyming task, and nonlinguistic spatial processing in the spelling task. Conflicting conditions were more difficult in both tasks and resulted in greater activation in the above regions. The results suggest that when children encounter inconsistency between orthographic and phonological information they show greater engagement of both orthographic and phonological processing.  相似文献   

11.
To examine the validity of different theoretical assumptions about the neuropsychological mechanisms and lesion correlates of phonological dyslexia and dysgraphia, we studied written and spoken language performance in a large cohort of patients with focal damage to perisylvian cortical regions implicated in phonological processing. Despite considerable variation in accuracy for both words and non-words, the majority of participants demonstrated the increased lexicality effects in reading and spelling that are considered the hallmark features of phonological dyslexia and dysgraphia. Increased lexicality effects were also documented in spoken language tasks such as oral repetition, and patients performed poorly on a battery of phonological tests that did not involve an orthographic component. Furthermore, a composite measure of general phonological ability was strongly predictive of both reading and spelling accuracy, and we obtained evidence that the continuum of severity that characterized the written language disorder of our patients was attributable to an underlying continuum of phonological impairment. Although patients demonstrated qualitatively similar deficits across measures of written and spoken language processing, there were quantitative differences in levels of performance reflecting task difficulty effects. Spelling was more severely affected than reading by the reduction in phonological capacity and this differential vulnerability accounted for occasional disparities between patterns of impairment on the two written language tasks. Our findings suggest that phonological dyslexia and dysgraphia in patients with perisylvian lesions are manifestations of a central or modality-independent phonological deficit rather than the result of damage to cognitive components dedicated to reading or spelling. Our results also provide empirical support for shared-components models of written language processing, according to which the same central cognitive systems support both reading and spelling. Lesion-deficit correlations indicated that phonological dyslexia and dysgraphia may be produced by damage to a variety of perisylvian cortical regions, consistent with distributed network models of phonological processing.  相似文献   

12.
The level of reading skills in children and adults is reflected in the strength of preferential neural activation to print. Such preferential activation appears in the N1 event-related potential (ERP) over the occipitotemporal scalp after around 150–250 ms and the corresponding blood oxygen level dependent (BOLD) signal in the ventral occipitotemporal (vOT) cortex. Here, orthography-sensitive (print vs. false font) processing was examined using simultaneous EEG-fMRI in 38 first grade children with poor and typical reading skills, and at varying familial risk for developmental dyslexia. Coarse orthographic sensitivity was observed as an increased activation to print in the N1 ERP and in the BOLD signal of individually varying vOT regions in 57% of beginning readers. Finer differentiation in processing orthographic strings (words vs. nonwords) further occurred in specific vOT clusters. Neither method alone showed robust differences in orthography-sensitive processing between typical and poor reading children. Importantly, using single-trial N1 ERP-informed fMRI analysis, we found differential modulation of the orthography-sensitive BOLD response in the left vOT for typical readers only. This result, thus, confirms subtle functional alterations in a brain structure known to be critical for fluent reading at the very beginning of reading instruction.  相似文献   

13.
The objective of this study was to examine the neural correlates of phonological inconsistency (relationship of spelling to sound) and orthographic inconsistency (relationship of sound to spelling) in visual word processing using functional magnetic resonance imaging (fMRI). Children (9- to 15-year-old) performed a rhyming and spelling task in which two words were presented sequentially in the visual modality. Consistent with previous studies in adults, higher phonological inconsistency was associated with greater activation in several regions including left inferior frontal gyrus and medial frontal gyrus/anterior cingulate cortex. We additionally demonstrated an effect of orthographic inconsistency in these same areas, suggesting that these regions are involved in the integration of orthographic and phonological information and, with respect to the medial frontal/anterior cingulate, greater demands on executive function. Higher phonological and orthographic consistency was associated with greater activation in precuneus/posterior cingulate cortex, the putative steady state system active during resting, suggesting lower demands on cognitive resources for consistent items. Both consistency effects were larger for the rhyming compared with the spelling task suggesting greater demands of integrating spelling and sound in the former task. Finally, accuracy on the rhyming task was negatively correlated with the consistency effect in left fusiform gyrus. In particular, this region showed insensitivity to consistency in low performers, sensitivity to inconsistency (higher activity) in moderate performers, and sensitivity to inconsistency (high activation) and to consistency (deactivation). In general, these results show that the influence of spelling-sound (and sound-spelling) correspondences on processing in fusiform gyrus develops as a function of skill.  相似文献   

14.
In transparent orthographies, like German, children with developmental dyslexia (DD) are mainly characterized by a reading fluency deficit. The reading fluency deficit might be traced back to a scarce integration of orthographic and phonological representations. In order to address this question, the present study used EEG to investigate the N300, an ERP component which has been associated with the integration of orthographic and phonological representations. Twenty children without DD and 18 children with DD performed a phonological (P)-orthographic (O) matching task (P-O condition), which tapped the integration of orthographic and phonological representations. A control task was applied which did not require the integration of orthographic and phonological representations and consisted only of orthographic information (O-O condition). The O-O condition revealed a similar N300 distribution between groups with a bilateral activity over fronto-temporal electrodes. However, in the P-O condition N300 differentiated the 2 groups of children. The control group revealed greater activity over left fronto-temporal electrodes, whereas the N300 was distributed bilaterally in the group of children with DD suggesting deficient integration of orthographic and phonological representations. These findings might be related to the reading fluency deficit as it was also observed that better reading fluency was correlated with higher (r=-.36) and earlier peaking (r=-.33) N300 amplitudes in the left hemisphere and attenuated N300 amplitudes (r=.45) in the right hemisphere. Standardized low-resolution electromagnetic tomography analysis (sLORETA) revealed that children with DD rely more on right temporo-parietal brain areas compared to children without DD. Furthermore, in order to rule out that earlier deficient processes might influence the group differences found in the N300, we analyzed the N170 for group differences. We did not find significant differences between children without DD and children with DD. In conclusion the results suggest deficient integration of orthographic and phonological representations in dyslexia, as indexed by the N300, and further highlight how this activity is relevant for fluent reading.  相似文献   

15.
Previous studies have shown that reading skill in 3- to 6-year-old children is related to the automatic activation of the posterior left ventral occipitotemporal cortex (vOT) during spoken language processing, whereas 8- to 15-year-old children and adult readers activate the anterior vOT. However, it is unknown how children who are between these two age groups automatically activate orthographic representations in vOT for spoken language. In the current study, we recruited 153 7- to 8-year-old children to fill the age gap from previous studies. Using functional magnetic resonance imaging (fMRI), we measured children’s reading-related skills and brain activity during an auditory phonological task with both a small (i.e. onset) and a large (i.e. rhyme) grain size condition. We found that letter fluency, but not reading accuracy, was correlated with activation in the anterior vOT for the rhyme condition. There were no reading-related skill correlations for the posterior vOT or for activation during the onset condition in this age group. Our findings reveal that automatic activation in the anterior vOT during spoken language processing already occurs in higher skilled 7- to 8-year-old children. In addition, increases in naming automaticity is the primary determinant of the engagement of vOT during phonological awareness tasks.  相似文献   

16.
Specialization of phonological and semantic processing in Chinese word reading   总被引:12,自引:0,他引:12  
Booth JR  Lu D  Burman DD  Chou TL  Jin Z  Peng DL  Zhang L  Ding GS  Deng Y  Liu L 《Brain research》2006,1071(1):197-207
The purpose of this study was to examine the neurocognitive network for processing visual word forms in native Chinese speakers using functional magnetic resonance imaging (fMRI). In order to compare the processing of phonological and semantic representations, we developed parallel rhyming and meaning association judgment tasks that required explicit access and manipulation of these representations. Subjects showed activation in left inferior/middle frontal gyri, bilateral medial frontal gyri, bilateral middle occipital/fusiform gyri, and bilateral cerebella for both the rhyming and meaning tasks. A direct comparison of the tasks revealed that the rhyming task showed more activation in the posterior dorsal region of the inferior/middle frontal gyrus (BA 9/44) and in the inferior parietal lobule (BA 40). The meaning task showed more activation in the anterior ventral region of the inferior/middle frontal gyrus (BA 47) and in the superior/middle temporal gyrus (BA 22,21). These findings are consistent with previous studies in English that suggest specialization of inferior frontal regions for the access and manipulation of phonological vs. semantic representations, but also suggest that this specialization extends to the middle frontal gyrus for Chinese. These findings are also consistent with the suggestion that the left middle temporal gyrus is involved in representing semantic information and the left inferior parietal lobule is involved in mapping between orthographic and phonological representations.  相似文献   

17.
Diffusion tensor imaging (DTI) studies have shown that left temporoparietal white matter is related to phonological aspects of reading. However, DTI lacks the sensitivity to disentangle whether phonological processing is sustained by intrahemispheric connections, interhemispheric connections, or projection tracts. Spherical deconvolution (SD) is a nontensor model which enables a more accurate estimation of multiple fiber directions in crossing fiber regions. Hence, this study is the first to investigate whether the observed relation with reading aspects in left temporoparietal white matter is sustained by a particular pathway by applying a nontensor model. Second, measures of degree of diffusion anisotropy, which indirectly informs about white matter organization, were compared between DTI and SD tractography. In this study, 71 children (5–6 years old) participated. Intrahemispheric, interhemispheric, and projection pathways were delineated using DTI and SD tractography. Anisotropy indices were extracted, that is, fractional anisotropy (FA) in DTI and quantitative hindrance modulated orientational anisotropy (HMOA) in SD. DTI results show that diffusion anisotropy in both the intrahemispheric and projection tracts was positively correlated to phonological awareness; however, the effect was confounded by subjects’ motion. In SD, the relation was restricted to the left intrahemispheric connections. A model comparison suggested that FA was, relatively to HMOA, more confounded by fiber crossings; however, anisotropy indices were highly related. In sum, this study shows the potential of SD to quantify white matter microstructure in regions containing crossing fibers. More specifically, SD analyses show that phonological awareness is sustained by left intrahemispheric connections and not interhemispheric or projection tracts. Hum Brain Mapp 36:3273–3287, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
OBJECTIVE: In a recent study on picture naming and word reading in dyslexics and control children we found a combination of normal picture retrieval times and severe reading impairments in dyslexics. Therefore, we hypothesize that brain response patterns differ between patients and controls during word reading, but are similar in picture naming as a non-letter mediated task. METHODS: Time course of brain activation was investigated by magnetoencephalography during word reading and picture naming in 9 dyslexic children and 13 age-matched controls (aged 9-10 years). RESULTS: We found 5 consecutive activations spreading from occipito-parietal to temporo-frontal sites. Group differences occurred only during reading: a delayed response in temporal superior and angular gyri at 235-285 ms and absence of activation in anterior temporal and inferior frontal regions at 430-530 ms for dyslexics. CONCLUSIONS: Problems in phonological processing are reflected in delay of early activity and absence of late activity in language related brain regions. From the lack of group differences during picture naming, we conclude the presence of two pathways: a phonological/orthographic one for word reading, which is disturbed in dyslexics, and a visual one for picture naming, which can be unaffected in dyslexics. SIGNIFICANCE: Evidence is provided for different pathways for the processing of letter-mediated and visual-eidetic information. This knowledge may be important for dyslexics in the context of coping with everyday demands and for training of relevant skills.  相似文献   

19.
In contrast to word-level skills, the neural basis of sentence comprehension in children with reading difficulties is not well understood. Using magnetic source imaging, we investigated the spatiotemporal dynamics of regional activity associated with silent passage reading in nonimpaired and students with reading difficulties. The latter exhibited underactivation of the temporoparietal and visual cortices, bilaterally, and of the left posterior cingulate region. Late activity in left temporoparietal and ventral occipitotemporal regions was found to be a significant predictor of individual reading ability in nonimpaired, but not in students with reading difficulties. These findings support the notion that reduced temporoparietal activation during word reading in context, is a hallmark of the functional deficit in reading disability.  相似文献   

20.
Selective magnocellular deficits in dyslexia: a "phantom contour" study   总被引:5,自引:0,他引:5  
A technique by Rogers-Ramachandran and Ramachandran [Vis. Res. 38 (1998) 71-77] was adapted to evaluate magnocellular (M) and parvocellular (P) visual processing efficiency, with identical task structure, in normal and dyslexic children. A battery of phonological, orthographic and cognitive tasks was administered to assess reading ability and component reading skills in both groups. For the visual processing experiment, children identified shapes created by patterns of dots flickering in counter-phase. The dots were black and white in the M condition, versus isoluminant red and green in the P condition. A staircase procedure determined the children's threshold flicker rate for shape identification. Dyslexics displayed selectively slower visual processing in the M condition but not in the P condition. Across all subjects, performance in the M condition was correlated with measures of orthographic skill, consistent with previous findings linking M processing and orthographic skill. Within the dyslexic group, processing in the M condition was negatively correlated with level of phonological awareness. The results are not consistent with the argument that dyslexics with phonological impairments suffer from deficits across all sensory modalities, as those children with the poorest phonological awareness displayed magnocellular processing well within the normal range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号