首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aurora kinases play important roles in cell division and are frequently overexpressed in human cancer. AMG 900 is a novel pan-Aurora kinase inhibitor currently being tested in Phase I clinical trials. We aimed to evaluate the in vitro activity of AMG 900 in a panel of 44 human breast cancer and immortalized cell lines and identify predictors of response. AMG 900 inhibited proliferation at low nanomolar concentrations in all cell lines tested. Response was further classified based on the induction of lethality. 25 cell lines were classified as highly sensitive (lethality at 10 nM of AMG 900 >10 %), 19 cell lines as less sensitive to AMG 900 (lethality at 10 nM of AMG 900 <10 %). Traditional molecular subtypes of breast cancer did not predict for this differential response. There was a weak association between AURKA amplification and response to AMG 900 (response ratio = 2.53, p = 0.09). mRNA expression levels of AURKA, AURKB, and AURKC and baseline protein levels of Aurora kinases A and B did not significantly associate with response. Cell lines with TP53 loss of function mutations (RR = 1.86, p = 0.004) and low baseline p21 protein levels (RR = 2.28, p = 0.0004) were far more likely to be classified as highly sensitive to AMG 900. AMG 900 induced p53 and p21 protein expression in cell lines with wt TP53. AMG 900 caused the accumulation of cells with >4 N DNA content in a majority of cell lines independently of sensitivity and p53 status. AMG 900 induced more pronounced apoptosis in highly sensitive p53-dysfunctional cell lines. We have found that AMG 900 is highly active in breast cancer cell lines and that TP53 loss of function mutations as well as low baseline expression of p21 protein predict strongly for increased sensitivity to this compound in vitro.  相似文献   

2.
The primary breast tumors of 27 patients were analyzed for the expression of estrogen receptors (ER) and DNA synthesis. Seventeen tumors were ER-positive, and the simultaneous expression of ER and DNA synthesis could be analyzed in 14 ER-positive tumors. DNA synthesis was measured through the thymidine labeling index (TLI). ER expression was detected by immunohistochemistry with monoclonal antibodies. In these tumors, 38.6% +/- 13.1% of the cells were ER-positive (average TLI = 0.60% +/- 0.70%), as opposed to the presence of 61.4% +/- 13.1% of ER-negative cells (average TLI = 0.65% +/- 0.53%). In 12 of 14 tumors, both ER-positive and ER-negative cells were found to be engaged in DNA synthesis, whereas in two tumors only ER-negative cells were synthesizing DNA. On the basis of the TLI and the proportion of ER-negative and ER-positive cells in the total population, it is suggested that the ER-positive and ER-negative compartments are interrelated in most tumors. In five tumors, the ER-negative compartment would be a precursor of the ER-positive segment, whereas in six tumors the ER-positive segment appears to be a precursor of the ER-negative one. In three tumors, no evidence of an interrelationship between both segments could be found. In the 14 tumors analyzed, it also was found that 69.1% +/- 21.3% of the DNA-synthesizing cells were ER-negative; this probably accounts for the temporary remissions observed after hormonal treatment in breast cancer.  相似文献   

3.
ErbB-4 is a recently discovered member of the class I receptor tyrosine kinase family (ErbB). Little is known about its expression and its importance in human malignancy. To delineate the biological function of ErbB-4 receptors in breast cancer, we used a hammerhead ribozyme strategy to achieve down-regulation of ErbB-4 receptors in various breast cancer cell lines. We observed that down-regulation of ErbB-4 in estrogen receptor-positive (ER+) human breast cancer cell lines (MCF-7 and T47D), which express relatively high levels of ErbB-4, significantly inhibited colony formation. No effects were observed in estrogen receptor-negative (ER-) MDA-MB-453 cells, which express low levels of endogenous ErbB4 and high levels of ErbB-2 and ErbB-3. This occurred despite the fact that fluorescence-activated cell sorter analysis of these latter cells revealed that the expression of the ErbB-4 receptor was completely abrogated by ribozyme treatment. Furthermore, down-regulation of ErbB-4 in T47D and MCF-7 cells significantly inhibited tumor formation in athymic nude mice (P < 0.03 and P < 0.001, respectively). In addition, NRG-stimulated phosphorylation of ErbB-4- and NRG-induced colony formation was significantly reduced in ribozyme-transfected T47D cells. These data provide the first evidence that elevation of ErbB-4 expression plays a role in the proliferation of some ER+ human breast cancer cell lines (T47D and MCF-7) that express high levels of ErbB-4. We have also investigated the expression of ErbB-4 in human primary breast carcinoma specimens, using immunohistochemical staining with an anti-ErbB-4 monoclonal antibody. ErbB-4 expression was found in 60% of the 50 primary breast tumors examined, and high intense immunoreactivity of ErbB-4 was detected in 18% of these primary breast tumors. ErbB-4 receptor expression appeared to correlate with ER+ primary breast tumors. A similar correlation was also observed in the human breast cancer cell lines. These results provide a better understanding of the biological significance of ErbB-4 receptor in breast cancer. Our data suggest that elevation of the ErbB-4 receptor plays a role in ER+ breast cancer cell proliferation. Moreover, ribozyme technology provides a useful tool to delineate the role of a particular gene product.  相似文献   

4.
Effects of estrogens on the cytoplasmic microtubule networkwere examined by the indirect immunofluorescence method usinganti-ß-tubulin antibody. Estradiol, a naturally occurringestrogen, decreased the amount of cytoplasmic microtubule fibersduring interphase in the human breast cancer cell lines MCF-7and MDA-MB-231. Since MDA-MB-231 is an estrogen receptor-negativecell line, estradiol-induced microtubule disruption seems tobe independent of estradiol binding to receptors. The effectiveconcentration of estradiol required for induction of microtubuledisruption in 50% of the cells (EC50) was 81 µM for MCF-7cells and 82 µM for MDA-MB-231 cells. A synthetic estrogen,diethylstilbestrol, also induced a decrease in microtubule fibers,with an EC50 value of 48 µM for MCF-7 cells and 50 µMfor MDA-MB-231 cells. When estrogentreated and microtubule-depolymerizedcells were washed and the medium was replaced with fresh, intracellularmicrotubule networks reappeared within 3 h. When MCF-7 cellswere cultured for 4 days with estradiol (50 µM), cellgrowth was completely inhibited. However, estrone affected themicrotubule network and cell proliferation only slightly. Theseresults suggest that estradiol-induced microtubule disruptionis closely related to its inhibitory effect on cell growth.  相似文献   

5.
6.
Androstene-3beta, 17alpha-diol (17alpha-AED) inhibits DNA synthesis and induces apoptosis in several myeloid cancer cell lines. The purpose of this study was to determine if 17alpha-AED inhibition of human breast carcinoma cell proliferation is dependent on the estrogen or androgen receptor. At concentrations of 12.5 to 50 x 10(-9) M 17alpha-AED inhibited the proliferation of ZR75-1, estrogen receptor-positive (ER+) cells, by 54% to 68%. Further, 17alpha-AED inhibited MDA-MB231, estrogen receptor-negative (ER-) cells, by 33.6% to 56.0%. The inhibitory effect was dose dependent with a minimal effective inhibitory dose at 12.5x10(-9) M for both cell lines. Both 17beta-AED and estradiol potentiate the inhibitory effect of 17alpha-AED on ER+ cells at lower doses (3.13 to 6.25 x 10(-9) M) where 17alpha-AED alone was not inhibitory. The inhibitory action of 17alpha-AED on human mammary carcinomas appears to be independent of either the alpha estrogen or the androgen receptors.  相似文献   

7.
Wogonin is a plant monoflavonoid which has been reported to inhibit cell growth and/or induce apoptosis in various tumors. Herein, we investigated the in vitro and in vivo anticancer effects and associated mechanisms of wogonin in human breast cancer. Effects of wogonin were examined in estrogen receptor (ER)-positive and -negative human breast cancer cells in culture for proliferation, cell cycle progression, and apoptosis. The in vivo effect of oral wogonin was examined on tumor xenograft growth in athymic nude mice. The molecular changes associated with the biological effects of wogonin were analyzed by immunoblotting. Cell growth was attenuated by wogonin (50-200 microM), independently of its ER status, in a time- and concentration-dependent manner. Apoptosis was enhanced and accompanied by upregulation of PARP and Caspase 3 cleavages as well as proapoptotic Bax protein. Akt activity was suppressed and reduced phosphorylation of its substrates, GSK-3beta and p27, was observed. Suppression of Cyclin D1 expression suggested the downregulation of the Akt-mediated canonical Wnt signaling pathway. ER expression was downregulated in ER-positive cells, while c-ErbB2 expression and its activity were suppressed in ER-negative SK-BR-3 cells. Wogonin feeding to mice showed inhibition of tumor growth of T47D and MDA-MB-231 xenografts by up to 88% without any toxicity after 4 weeks of treatment. As wogonin was effective both in vitro and in vivo, our novel findings open the possibility of wogonin as an effective therapeutic and/or chemopreventive agent against both ER-positive and -negative breast cancers, particularly against the more aggressive and hormonal therapy-resistant ER-negative types.  相似文献   

8.

Background

Prolyl oligopeptidase (POP, EC 3.4.1.26) is a serine peptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We previously reported that POP inhibition suppressed the growth of NB-1 human neuroblastomas cells and KATO III human gastric cancer cells. POP activity is commonly elevated in many cancers, which includes breast cancer. However, the effect of POP inhibition as a candidate breast cancer therapy is unknown.

Methods

The effects of POP inhibition and knockdown on the proliferation of cultured human estrogen receptor-positive (ER+) MCF7 and T47D, and ER-negative (ER?) MDA-MB-231 breast cancer cell lines and the MCF12A non-tumorigenic epithelial cell line were tested by analyzing their influence on cell proliferation (WST-1 assay), cell viability (trypan blue exclusion assay), and cell cycle arrest (cell cycle analysis, cell cycle regulator proteins expression).

Results

POP-specific inhibitors 3-({4-[2-(E)-styrylphenoxy]butanoyl}-l-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thiopropyl-thioprolinal and RNAi-mediated POP knockdown inhibited the proliferation of MCF7 cells without inducing cell death. SUAM-14746-induced growth inhibition was also observed in T47D and MDA-MB-231 cells, but not in MCF12A cells. This growth inhibition was associated with G1 phase arrest; reduced cyclin D1 and D3, cyclin-dependent kinase 4 (CDK4), E2F1, and retinoblastoma protein (pRb) expression; and increased cyclin-dependent kinase inhibitor 1B (p27kip1) expression. Moreover, the SUAM-14746-mediated cell cycle arrest of MCF7 cells was associated with increased pRb2/p130 protein expression and an increase in the number of cells in the quiescent G0 state, as defined by low RNA levels.

Conclusions

SUAM-14746 inhibited breast cancer cell growth in a cytostatic manner without inducing lethality, and POP-specific inhibitors may be an effective treatment against ER+ and ER? breast cancer.
  相似文献   

9.

Background  

Estrogen receptor-α (ERα) is essential for mammary gland development and is a major oncogene in breast cancer. Since ERα is not colocalized with the cell proliferation marker Ki-67 in the normal mammary glands and the majority of primary breast tumors, it is generally believed that paracrine regulation is involved in ERα mediated cell proliferation. In the paracrine model, ERα-positive cells don't proliferate but will release some paracrine growth factors to stimulate the neighboring cells to proliferate. In a subpopulation of cancer cells in some primary breast tumors, however, ERα does colocalize with the cell proliferation marker Ki-67, suggesting an autocrine regulation by ERα in some primary breast tumors.  相似文献   

10.

Introduction

Indole-3-carbinol (I3C), an autolysis product of glucosinolates present in cruciferous vegetables, and its dimeric derivative (3,3''-DIM) have been indicated as promising agents in preventing the development and progression of breast cancer. We have recently shown that I3C cyclic tetrameric derivative CTet formulated in γ-cyclodextrin (γ-CD) efficiently inhibited cellular proliferation in breast cancer cell lines. This study aims to analyze the mechanisms involved in the in vitro inhibition of cell proliferation and to evaluate the in vivo antitumor activity of CTet in a xenograft study.

Methods

Estrogen receptor-positive MCF-7 and triple-negative MDA-MB-231 breast cancer cell lines were exposed to CTet to evaluate cell cycle perturbation (propidium iodide staining and cytofluorimetric acquisition), induction of autophagic morphological features (co-localization of LC3b autophagosome marker and LAMP2a lysosome marker by immunofluorescence) and changes in protein expression (immunoblot and microarray-based gene expression analyses). To test the in vivo efficacy of CTet, female athymic nude mice inoculated with MCF-7 cells were i.p. treated with 5 mg/kg/day of CTet for five days/week for two weeks and the tumor mass was externally monitored.

Results

CTet induced accumulation in G2/M phase without evidence of apoptotic response induction in both cell lines tested. In triple-negative MDA-MB-231 the autophagic lysosomal activity was significantly up-regulated after exposure to 4 μM of CTet for 8 hours, while the highest CTet concentration was necessary to observe autophagic features in MCF-7 cells. The inhibition of Akt activity and p53-independent p21/CDKN1A and GADD45A overexpression were identified as the main molecular events responsible for CTet activity in MCF-7 and p53-mutant MDA-MB-231 cells. In vivo, CTet administration was able to significantly inhibit the growth of MCF-7 xenotransplanted into nude mice, without adverse effect on body weight or on haematological parameters.

Conclusions

Our data support CTet formulated with γ-CD as a promising and injectable anticancer agent for both hormone-responsive and triple-negative breast tumors.  相似文献   

11.
12.
13.
14.

Introduction

Dendritic cells (DCs) are key antigen-presenting cells that play an essential role in initiating and directing cellular and humoral immunity, including anti-tumor responses. Due to their critical role in cancer, induction of DC apoptosis may be one of the central mechanisms used by tumors to evade immune recognition.

Methods

Spontaneous apoptosis of blood DCs (lineage negative HLA-DR positive cells) was assessed in peripheral blood mononuclear cells (PBMCs) using Annexin-V and TUNEL assays immediately after blood collection. The role of tumor products was assessed by culturing cells with supernatants derived from breast cancer cell lines (TDSN) or PBMCs (PBMC-SN, as a control). The capacity of DC stimulation to prevent apoptosis was assessed by incubating DC with inflammatory cytokines, poly I:C, IL-12 or CD40 ligand (CD40L) prior to culture with TDSN. Apoptosis was determined by flow cytometry and microscopy, and Bcl-2 expression determined by intracellular staining.

Results

In this study we document the presence of a significantly higher proportion of apoptotic (Annexin-V+ and TUNEL+) blood DCs in patients with early stage breast cancer (stage I to II; n = 13) compared to healthy volunteers (n = 15). We examined the role of tumor products in this phenomenon and show that supernatants derived from breast cancer lines induce apoptosis of blood DCs in PBMC cultures. Aiming to identify factors that protect blood DC from apoptosis, we compared a range of clinically available maturation stimuli, including inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6 and prostaglandin (PG)E2 as a cytokine cocktail), synthetic double-stranded RNA (poly I:C) and soluble CD40 ligand. Although inflammatory cytokines and poly I:C induced robust phenotypic maturation, they failed to protect blood DCs from apoptosis. In contrast, CD40 stimulation induced strong antigen uptake, secretion of IL-12 and protected blood DCs from apoptosis through sustained expression of Bcl-2. Exogenous IL-12 provided similar Bcl-2 mediated protection, suggesting that CD40L effect is mediated, at least in part, through IL-12 secretion.

Conclusion

Cumulatively, our results demonstrate spontaneous apoptosis of blood DCs in patients with breast cancer and confirm that ex vivo conditioning of blood DCs can protect them from tumor-induced apoptosis.  相似文献   

15.
Cyclin D1 overexpression has been associated with poor prognosis and resistance to therapy in human breast cancer. Thus, the development of therapeutic agents that selectively target cyclin D1 activity is of clinical interest. This study demonstrates that 12-oxo-phytodienoic acid (OPDA), a phytohormone with critical functions in growth and development in plants, induces growth arrest in MDA-MB-231 and T47D breast cancer cells. In response to OPDA treatment, the human breast cancer cell lines exhibit a progressive decline in cyclin D1 expression, which is tightly associated with the accumulation of hypophosphorylated form of the retinoblastoma protein (Rb) and G1 arrest. The decrease in cyclin D1 protein expression accompanies a dramatic decline in nuclear but not membranous beta-catenin expression and activation of glycogen synthase kinase-3-beta (GSK3beta) caused by inhibition of its serine-9 phosphorylation. The proteasome inhibitor MG132 blocks OPDA-mediated decrease in cyclin D1. In addition, the overexpression of T286A, a cyclin D1 mutant which is refractory to phosphorylation by GSK3beta and proteosomal degradation, is resistant to OPDA-mediated Rb dephosphorylation as well as G(1) cell cycle arrest. Thus, our results demonstrate that degradation of cyclin D1 protein is a key event in OPDA induced growth inhibition in breast cancer cells. These data provide the basic foundation for future efforts to develop OPDA-based approaches in the prevention and treatment of breast cancer and other types of cancer.  相似文献   

16.
17.
18.
Histone deacetylase (HDAC) 6 is a subtype of the HDAC family; it deacetylates alpha-tubulin and increases cell motility. Here, we investigate the impact of an alteration of HDAC6 expression in estrogen receptor alpha (ER)-positive breast cancer MCF-7 cells, as we identified that HDAC6 is a novel estrogen-regulated gene. MCF-7 treated with estradiol showed increased expression of HDAC6 mRNA and protein and a four-fold increase in cell motility in a migration assay. Cell motility was increased to the same degree by stably transfecting the HDAC6 expression vector into MCF-7 cells. In both cases, the cells changed in appearance from their original round shape to an axon-extended shape, like a neuronal cell. This HDAC6 accumulation caused the deacetylation of alpha-tubulin. Either the selective estrogen receptor modulator tamoxifen (TAM) or the pure antiestrogen ICI 182,780 prevented estradiol-induced HDAC6 accumulation and deacetylation of alpha-tubulin, leading to reduced cell motility. Tubacin, an inhibitory molecule that binds to the tubulin deacetylation domain of HDAC6, also prevented estradiol-stimulated cell migration. Finally, we evaluated HDAC6 protein expression in 139 consecutively archived human breast cancer tissues by immunohistochemical staining. The prognostic analyses for these patients revealed no significant differences based on HDAC6 expression. However, subset analysis of ER-positive patients who received adjuvant treatment with TAM (n = 67) showed a statistically significant difference in relapse-free survival and overall survival in favor of the HDAC6-positive group (P < 0.02 and P < 0.05, respectively). HDAC6 expression was an independent prognostic indicator by multivariate analysis (odds ratio = 2.82, P = 0.047). These results indicate the biological significance of HDAC6 regulation via estrogen signaling.  相似文献   

19.
20.
Deregulation of the p16(INK4a)-Cdk4/6-Rb pathway is commonly detected in patients with glioblastoma multiforme (GBM) and is a rational therapeutic target. Here, we characterized the p16(INK4a)-Cdk4/6-Rb pathway in the Mayo panel of GBM xenografts, established from primary tissue samples from patients with GBM, and evaluated their response to PD0332991, a specific inhibitor of Cdk4/6. All GBM xenograft lines evaluated in this study had disruptions in the p16(INK4a)-Cdk4/6-Rb pathway. In vitro evaluation using short-term explant cultures from selected GBM xenograft lines showed that PD0332991 effectively arrested cell cycle in G1-phase and inhibited cell proliferation dose-dependently in lines deleted for CDKN2A/B-p16(INK4a) and either single-copy deletion of CDK4 (GBM22), high-level CDK6 amplification (GBM34), or deletion of CDKN2C/p18(INK4c) (GBM43). In contrast, 2 GBM lines with p16(INK4a) expression and either CDK4 amplification (GBM5) or RB mutation (GBM28) were completely resistant to PD0332991. Additional xenograft lines were screened, and GBM63 was identified to have p16(INK4a) expression and CDK4 amplification. Similar to the results with GBM5, GBM63 was resistant to PD0332991 treatment. In an orthotopic survival model, treatment of GBM6 xenografts (CDKN2A/B-deleted and CDK4 wild-type) with PD0332991 significantly suppressed tumor cell proliferation and prolonged survival. Collectively, these data support the concept that GBM tumors lacking p16(INK4a) expression and with nonamplified CDK4 and wild-type RB status may be more susceptible to Cdk4/6 inhibition using PD0332991.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号