首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES: During cardiac excitation-contraction coupling, Ca2+ release from the sarcoplasmic reticulum (SR) occurs at the junctional complex with the T-tubules, containing the L-type Ca2+ channels. A partial loss of T-tubules has been described in myocytes from failing canine and human hearts. We examined how graded reduction of T-tubule density would affect the synchrony of Ca2+ release. METHODS: Adult pig ventricular myocytes were isolated and cultured for 24 and 72 h. T-tubules, visualized with di-8-ANEPPS, and [Ca2+]i transients (Fluo-3) were recorded during confocal line scan imaging. RESULTS: Cultured cardiomyocytes exhibited a progressive reduction in T-tubule density. [Ca2+]i transients showed small areas of delayed Ca2+ release which gradually increased in number and size with loss of T-tubules. Local [Ca2+]i transients in the delayed regions were reduced. Due to these changes, loss of T-tubules resulted in an overall slowing of the rise of [Ca2+] along the entire line scan and transient magnitude tended to be reduced, but there was no change in SR Ca2+ content. Human myocytes isolated from failing hearts had a T-tubule density comparable to that of freshly isolated pig myocytes. The size, but not the number, of delayed release areas tended to be larger. The overall rate of rise of [Ca2+]i was significantly faster than in pig myocytes with low T-tubule density. CONCLUSIONS: Loss of T-tubules reduces the synchrony of SR Ca2+ release. This could contribute to reduced efficiency of excitation-contraction coupling in heart failure, though dyssynchrony in human failing cells appears to be modest.  相似文献   

2.
The [Ca2+]i transient of ventricular myocytes during normal excitation-contraction coupling is the summation of primary Ca2+ release events, which originate at the junction of the sarcoplasmic reticulum (SR) and the T-tubular system. Studies in small mammals have shown a high density of release sites, but little is known of larger mammals. We have studied the spatial distribution of SR Ca2+ release in pig ventricular myocytes using a confocal microscopy. In 69 of 107 cells, large inhomogeneities of Ca2+ release were observed along the longitudinal scan line. Areas where the increase of [Ca2+]i was delayed (time to 50% of peak F/F0 [where F indicates fluorescence intensity, and F0 indicates F at rest] was 26+/-1 ms in delayed areas versus 11+/-2 ms in early areas) and smaller (peak F/F0 was 2.27+/-0.10 for delayed areas versus 2.69+/-0.13 for early areas; n=13 cells, P<0.05) could be up to 26 microm wide. The sum of all delayed areas could make up to 55% of the line scan. The spatial pattern was constant during steady-state stimulation and was not altered by enhancing Ca2+ channel opening or SR Ca2+ content (Bay K8644, isoproterenol). Imaging of sarcolemmal membranes revealed several areas devoid of T tubules, but SR Ca2+ release channels were homogeneously distributed. In contrast, compared with pig myocytes, mouse myocytes had a very dense T-tubular network, no large inhomogeneities of release, and a faster rate of rise of [Ca2+]i. In conclusion, in pig ventricular myocytes, areas of delayed release are related to regional absence of T tubules but not ryanodine receptors. This lower number of functional couplons contributes to a slower overall rate of rise of [Ca2+]i.  相似文献   

3.
The mechanisms by which nitric oxide (NO) influences myocardial Ca2+ cycling remain controversial. Because NO synthases (NOS) have specific spatial localization in cardiac myocytes, we hypothesized that neuronal NOS (NOS1) found in cardiac sarcoplasmic reticulum (SR) preferentially regulates SR Ca2+ release and reuptake resulting in potentiation of the cardiac force-frequency response (FFR). Transesophageal pacing (660 to 840 bpm) in intact C57Bl/6 mice (WT) stimulated both contractility (dP/dtmax normalized to end-diastolic volume; dP/dt-EDV) by 51+/-5% (P<0.001) and lusitropy (tau; tau) by 20.3+/-2.0% (P<0.05). These responses were markedly attenuated in mice lacking NOS1 (NOS1-/-) (15+/-2% increase in dP/dt-EDV; P<0.001 versus WT; and no change in tau; P<0.01 versus WT). Isolated myocytes from NOS1-/- (approximately 2 months of age) also exhibited suppressed frequency-dependent sarcomere shortening and Ca2+ transients ([Ca2+]i) compared with WT. SR Ca2+ stores, a primary determinant of the FFR, increased at higher frequencies in WT (caffeine-induced [Ca2+]i at 4 Hz increased 107+/-23% above 1 Hz response) but not in NOS1-/- (13+/-26%; P<0.01 versus WT). In contrast, mice lacking NOS3 (NOS3-/-) had preserved FFR in vivo, as well as in isolated myocytes with parallel increases in sarcomere shortening, [Ca2+]i, and SR Ca2+ stores. NOS1-/- had increased SR Ca2+ ATPase and decreased phospholamban protein abundance, suggesting compensatory increases in SR reuptake mechanisms. Together these data demonstrate that NOS1 selectively regulates the cardiac FFR via influences over SR Ca2+ cycling. Thus, there is NOS isoform-specific regulation of different facets of rate-dependent excitation-contraction coupling; inactivation of NOS1 has the potential to contribute to the pathophysiology of states characterized by diminished frequency-dependent inotropic responses.  相似文献   

4.
To evaluate the effect of sorcin on cardiac excitation-contraction coupling, adult rabbit ventricular myocytes were transfected with a recombinant adenovirus coding for human sorcin (Ad-sorcin). A beta-galactosidase adenovirus (Ad-LacZ) was used as a control. Fractional shortening in response to 1-Hz field stimulation (at 37 degrees C) was significantly reduced in Ad-sorcin-transfected myocytes compared with control myocytes (2.10+/-0.05% [n=311] versus 2.42+/-0.06% [n=312], respectively; P<0.001). Action potential duration (at 20 degrees C) was significantly less in the Ad-sorcin group (458+/-22 ms, n=11) compared with the control group (520+/-19 ms, n=10; P<0.05). In voltage-clamped, fura 2-loaded myocytes (20 degrees C), a reduced peak-systolic and end-diastolic [Ca2+]i was observed after Ad-sorcin transfection. L-type Ca2+ current amplitude and time course were unaffected. Caffeine-induced Ca2+ release from the sarcoplasmic reticulum (SR) and the accompanying inward Na+-Ca2+ exchanger (NCX) current revealed a significantly lower SR Ca2+ content and faster Ca2+-extrusion kinetics in Ad-sorcin-transfected cells. Higher NCX activity after Ad-sorcin transfection was confirmed by measuring the NCX current-voltage relationship. beta-Escin-permeabilized rabbit cardiomyocytes were used to study the effects of sorcin overexpression on Ca2+ sparks imaged with fluo 3 at 145 to 160 nmol/L [Ca2+] using a confocal microscope. Under these conditions, caffeine-mediated SR Ca2+ release was not different between the two groups. Spontaneous spark frequency, duration, width, and amplitude were lower in sorcin-overexpressing myocytes. In summary, sorcin overexpression in rabbit cardiomyocytes decreased Ca2+-transient amplitude predominantly by lowering SR Ca2+ content via increased NCX activity. The effect of sorcin overexpression on Ca2+ sparks indicates an effect on the ryanodine receptor that may also influence excitation-contraction coupling.  相似文献   

5.
To investigate the cellular mechanisms for altered Ca2+ homeostasis and contractility in cardiac hypertrophy, we measured whole-cell L-type Ca2+ currents (ICa,L), whole-cell Ca2+ transients ([Ca2+]i), and Ca2+ sparks in ventricular cells from 6-month-old spontaneously hypertensive rats (SHRs) and from age- and sex-matched Wistar-Kyoto and Sprague-Dawley control rats. By echocardiography, SHR hearts had cardiac hypertrophy and enhanced contractility (increased fractional shortening) and no signs of heart failure. SHR cells had a voltage-dependent increase in peak [Ca2+]i amplitude (at 0 mV, 1330+/-62 nmol/L [SHRs] versus 836+/-48 nmol/L [controls], P<0.05) that was not associated with changes in ICa,L density or kinetics, resting [Ca2+]i, or Ca2+ content of the sarcoplasmic reticulum (SR). SHR cells had increased time of relaxation. Ca2+ sparks from SHR cells had larger average amplitudes (173+/-192 nmol/L [SHRs] versus 109+/-64 nmol/L [control]; P<0.05), which was due to redistribution of Ca2+ sparks to a larger amplitude population. This change in Ca2+ spark amplitude distribution was not associated with any change in the density of ryanodine receptors, calsequestrin, junctin, triadin 1, Ca2+-ATPase, or phospholamban. Therefore, SHRs with cardiac hypertrophy have increased contractility, [Ca2+]i amplitude, time to relaxation, and average Ca2+ spark amplitude ("big sparks"). Importantly, big sparks occurred without alteration in the trigger for SR Ca2+ release (ICa,L), SR Ca2+ content, or the expression of several SR Ca2+-cycling proteins. Thus, cardiac hypertrophy in SHRs is linked with an alteration in the coupling of Ca2+ entry through L-type Ca2+ channels and the release of Ca2+ from the SR, leading to big sparks and enhanced contractility. Alterations in the microdomain between L-type Ca2+ channels and SR Ca2+ release channels may underlie the changes in Ca2+ homeostasis observed in cardiac hypertrophy. Modulation of SR Ca2+ release may provide a new therapeutic strategy for cardiac hypertrophy and for its progression to heart failure and sudden death.  相似文献   

6.
A neuronal isoform of nitric oxide synthase (nNOS) has recently been located to the cardiac sarcoplasmic reticulum (SR). Subcellular localization of a constitutive NOS in the proximity of an activating source of Ca2+ suggests that cardiac nNOS-derived NO may regulate contraction by exerting a highly specific and localized action on ion channels/transporters involved in Ca2+ cycling. To test this hypothesis, we have investigated myocardial Ca2+ handling and contractility in nNOS knockout mice (nNOS-/-) and in control mice (C) after acute nNOS inhibition with 100 micromol/L L-VNIO. nNOS gene disruption or L-VNIO increased basal contraction both in left ventricular (LV) myocytes (steady-state cell shortening 10.3+/-0.6% in nNOS-/- versus 8.1+/-0.5% in C; P<0.05) and in vivo (LV ejection fraction 53.5+/-2.7 in nNOS-/- versus 44.9+/-1.5% in C; P<0.05). nNOS disruption increased ICa density (in pA/pF, at 0 mV, -11.4+/-0.5 in nNOS-/- versus -9.1+/-0.5 in C; P<0.05) and prolonged the slow time constant of inactivation of ICa by 38% (P<0.05), leading to an increased Ca2+ influx and a greater SR load in nNOS-/- myocytes (in pC/pF, 0.78+/-0.04 in nNOS-/- versus 0.64+/-0.03 in C; P<0.05). Consistent with these data, [Ca2+]i transient (indo-1) peak amplitude was greater in nNOS-/- myocytes (410/495 ratio 0.34+/-0.01 in nNOS-/- versus 0.31+/-0.01 in C; P<0.05). These findings have uncovered a novel mechanism by which intracellular Ca2+ is regulated in LV myocytes and indicate that nNOS is an important determinant of basal contractility in the mammalian myocardium. The full text of this article is available at http://www.circresaha.org.  相似文献   

7.
The predominant cardiac Ca2+/calmodulin-dependent protein kinase (CaMK) is CaMKIIdelta. Here we acutely overexpress CaMKIIdeltaC using adenovirus-mediated gene transfer in adult rabbit ventricular myocytes. This circumvents confounding adaptive effects in CaMKIIdeltaC transgenic mice. CaMKIIdeltaC protein expression and activation state (autophosphorylation) were increased 5- to 6-fold. Basal twitch contraction amplitude and kinetics (1 Hz) were not changed in CaMKIIdeltaC versus LacZ expressing myocytes. However, the contraction-frequency relationship was more negative, frequency-dependent acceleration of relaxation was enhanced (tau(0.5Hz)/tau(3Hz)=2.14+/-0.10 versus 1.87+/-0.10), and peak Ca2+ current (ICa) was increased by 31% (-7.1+/-0.5 versus -5.4+/-0.5 pA/pF, P<0.05). Ca2+ transient amplitude was not significantly reduced (-27%, P=0.22), despite dramatically reduced sarcoplasmic reticulum (SR) Ca2+ content (41%; P<0.05). Thus fractional SR Ca2+ release was increased by 60% (P<0.05). Diastolic SR Ca2+ leak assessed by Ca2+ spark frequency (normalized to SR Ca2+ load) was increased by 88% in CaMKIIdeltaC versus LacZ myocytes (P<0.05; in an multiplicity-of-infection-dependent manner), an effect blocked by CaMKII inhibitors KN-93 and autocamtide-2-related inhibitory peptide. This enhanced SR Ca2+ leak may explain reduced SR Ca2+ content, despite measured levels of SR Ca2+-ATPase and Na+/Ca2+ exchange expression and function being unaltered. Ryanodine receptor (RyR) phosphorylation in CaMKIIdeltaC myocytes was increased at both Ser2809 and Ser2815, but FKBP12.6 coimmunoprecipitation with RyR was unaltered. This shows for the first time that acute CaMKIIdeltaC overexpression alters RyR function, leading to enhanced SR Ca2+ leak and reduced SR Ca2+ content but without reducing twitch contraction and Ca2+ transients. We conclude that this is attributable to concomitant enhancement of fractional SR Ca2+ release in CaMKIIdeltaC myocytes (ie, CaMKII-dependent enhancement of RyR Ca2+ sensitivity during diastole and systole) and increased ICa.  相似文献   

8.
OBJECTIVE: Catecholamines that accompany acute physiological stress are also involved in mediating the development of hypertrophy and failure. However, the cellular mechanisms involved in catecholamine-induced cardiac hypertrophy, particularly Ca2+ handling, are largely unknown. We therefore investigated the effects of cardiac hypertrophy, produced by isoprenaline, on I(Na/Ca) and sarcoplasmic reticulum (SR) function in isolated myocytes. METHODS: I(Na/Ca) was studied in myocytes from Wistar rats, using descending (+80 to -110 mV) voltage ramps under steady state conditions. Myocytes were also loaded with fura-2 and either field stimulated or voltage clamped to assess [Ca2+]i and SR Ca2+ content. RESULTS: Ca2+-dependent, steady state I(Na/Ca) density was increased in hypertrophied myocytes (P<0.05). Ca2+ release from the SR was also increased, whereas resting [Ca2+]i and the rate of decline of [Ca2+]i to control levels were unchanged. SR Ca2+ content, estimated by using 10.0 mmol/l caffeine, was also significantly increased in hypertrophied myocytes, but only when myocytes were held and stimulated from their normal resting potential (-80 mV) but not from -40 mV. However, the rate of decline of caffeine-induced Ca2+ transients or I(Na/Ca) was not significantly different between control and hypertrophied myocytes. Ca2+-dependence of I(Na/Ca), examined by comparing the slope of the descending phase of the hysteresis plots of I(Na/Ca) vs. [Ca2+]i, was also similar in the two groups of cells. CONCLUSION: Data show that SR Ca2+ release and SR Ca2+ content were increased in hypertrophied myocytes, despite an increase in the steady state I(Na/Ca) density. The observation that increased SR function occurred only when myocytes were stimulated from -80 mV suggests that Na+ influx may play a role in altering Ca2+ homeostasis in hypertrophied cardiac muscle, possibly through increased reverse Na+/Ca2+ exchange, particularly at low stimulation frequencies.  相似文献   

9.
Advanced age in rats is accompanied by reduced expression of the sarcoplasmic reticulum (SR) Ca2+ pump (SERCA-2). The amplitudes of intracellular Ca2+ (Ca2+(i)) transients and contractions in ventricular myocytes isolated from old (23-24-months) rats (OR), however, are similar to those of young (4-6-months) rat myocytes (YR). OR myocytes also manifest slowed inactivation of L-type Ca2+ current (I(CaL)) and marked prolongation of action potential (AP) duration. To determine whether and how age-associated AP prolongation preserves the Ca2+(i) transient amplitude in OR myocytes, we employed an AP-clamp technique with simultaneous measurements of I(CaL) (with Na+ current, K+ currents and Ca2+ influx via sarcolemmal Na+-Ca2+ exchanger blocked) and Ca2+(i) transients in OR rat ventricular myocytes dialyzed with the fluorescent Ca2+ probe, indo-1. Myocytes were stimulated with AP-shaped voltage clamp waveforms approximating the configuration of prolonged, i.e. the native, AP of OR cells (AP-L), or with short AP waveforms (AP-S), typical of YR myocytes. Changes in SR Ca2+ load were assessed by rapid, complete SR Ca2+ depletions with caffeine. As expected, during stimulation with AP-S vs AP-L, peak I(CaL) increased, by 21+/-4%, while the I(CaL) integral decreased, by 19+/-3% (P<0.01 for each). Compared to AP-L, stimulation of OR myocytes with AP-S reduced the amplitudes of the Ca2+(i) transient by 31+/-6%, its maximal rate of rise (+dCa2+(i)/dt(max); a sensitive index of SR Ca2+ release flux) by 37+/-4%, and decreased the SR Ca2+ load by 29+/-4% (P<0.01 for each). Intriguingly, AP-S also reduced the maximal rate of the Ca2+(i) transient relaxation and prolonged its time to 50% decline, by 35+/-5% and 33+/-7%, respectively (P<0.01 for each). During stimulation with AP-S, the gain of Ca2+-induced Ca2+ release (CICR), indexed by +dCa2+(i)/dt(max)/I(CaL), was reduced by 46+/-4% vs AP-L (P<0.01). We conclude that the effects of an application of a shorter AP to OR myocytes to reduce +dCa2+(i)/dt(max) and the Ca2+ transient amplitude are attributable to a reduction in SR Ca2+ load, presumably due to a reduced I(CaL) integral and likely also to an increased Ca2+ extrusion via sarcolemmal Na+-Ca2+ exchanger. The decrease in the Ca2+(i) transient relaxation rate in OR cells stimulated with shorter APs may reflect a reduction of Ca2+/calmodulin-kinase II-regulated modulation of Ca2+ uptake via SERCA-2, consequent to a reduced local Ca2+ release in the vicinity of SERCA-2, also attributable to reduced SR Ca2+ load. Thus, the reduction of CICR gain during stimulation with AP-S is the net result of both a diminished SR Ca2+ release and an increased peak I(CaL). These results suggest that ventricular myocytes of old rats utilize AP prolongation to preserve an optimal SR Ca2+ loading, CICR gain and relaxation of Ca2+(i) transients.  相似文献   

10.
We previously reported that cytosolic calcium transiently increases after reversal of the sarcolemmal Na+/Ca2+-exchanger. Calcium released from sarcoplasmic reticulum (SR) constituted the major part of this cytosolic transient. The aim of this study was to test whether reversal of the Na+/Ca2+-exchanger affects SR calcium content, and whether altered SR calcium content is associated with direct triggering of SR calcium release or calcium release secondary to SR calcium overload. To this purpose we studied the change of SR calcium content after reversal of the Na+/Ca2+-exchanger and the dependence on the magnitude of change of its free energy (delta Gexch) in isolated rat ventricular myocytes. The Na+/Ca2+-exchanger was reversed by abrupt reduction of extracellular sodium ([Na+]o). The magnitude of change of deltaGexch was varied with [Na+]o. Cytosolic free calcium ([Ca2+]i) was measured with indo-1 and SR calcium content was estimated from the increase of [Ca2+]i after rapid cooling (RC). SR function was manipulated either by blockade of the SR Ca2+-ATPase with thapsigargin or by blockade of SR calcium release channels with tetracaine. Reversal of the Na+/Ca2+-exchanger caused a transient increase of [Ca2+]i of about 180 s duration with a time to peak of about 30 s. During the first 30 s rapid small amplitude cytosolic calcium fluctuations were superimposed on this transient. The magnitude of the response of [Ca2+]i to RC, during the course of the cytosolic [Ca2+]i transient, also transiently increased from 174 in control myocytes to 480 nmol/l at the time of the peak value. After correction of [Ca2+]i data for the fraction of mitochondrially compartmentalized indo-1 and mitochondrial calcium, total calcium released from SR after RC was calculated with the use of literature data on cytosolic calcium buffer capacity. Contrary to the measured RC-dependent increase of measured [Ca2+]i, after reversal of the Na+/Ca2+-exchanger, calculated total calcium released from SR transiently decreased. The extent of SR calcium depletion after reversal of the Na+/Ca2+-exchanger increased with the magnitude of change of deltaGexch. Restitution of [Na+]o 30 s after reversal of the Na+/Ca2+-exchanger, greatly accelerated both recovery of [Ca2+]i and SR calcium content. Pretreatment of myocytes with thapsigargin caused almost entire depletion of SR and substantial reduction of the cytosolic transient of [Ca2+]i following reversal of the Na+/Ca2+-exchanger. Application of tetracaine hardly affected SR calcium content, but caused an increase of the SR calcium content following reversal of the Na+/Ca2+-exchanger, while the cytosolic transient increase of [Ca2+]i was substantially reduced. We conclude that reversal of the Na+/Ca2+-exchanger directly triggers SR calcium release and decreases SR calcium content in a deltaGexch dependent manner.  相似文献   

11.
Depressed contractility is a central feature of the failing human heart and has been attributed to altered [Ca2+]i. This study examined the respective roles of the L-type Ca2+ current (ICa), SR Ca2+ uptake, storage and release, Ca2+ transport via the Na+-Ca2+ exchanger (NCX), and Ca2+ buffering in the altered Ca2+ transients of failing human ventricular myocytes. Electrophysiological techniques were used to measure and control V(m) and measure I(m), respectively, and Fluo-3 was used to measure [Ca2+]i in myocytes from nonfailing (NF) and failing (F) human hearts. Ca2+ transients from F myocytes were significantly smaller and decayed more slowly than those from NF hearts. Ca2+ uptake rates by the SR and the amount of Ca2+ stored in the SR were significantly reduced in F myocytes. There were no significant changes in the rate of Ca2+ removal from F myocytes by the NCX, in the density of NCX current as a function of [Ca2+]i, ICa density, or cellular Ca2+ buffering. However, Ca2+ influx during the late portions of the action potential seems able to elevate [Ca2+]i in F but not in NF myocytes. A reduction in the rate of net Ca2+ uptake by the SR slows the decay of the Ca2+ transient and reduces SR Ca2+ stores. This leads to reduced SR Ca2+ release, which induces additional Ca2+ influx during the plateau phase of the action potential, further slowing the decay of the Ca2+ transient. These changes can explain the defective Ca2+ transients of the failing human ventricular myocyte.  相似文献   

12.
Increased diastolic SR Ca2+ leak (J(leak)) could depress contractility in heart failure, but there are conflicting reports regarding the J(leak) magnitude even in normal, intact myocytes. We have developed a novel approach to measure SR Ca2+ leak in intact, isolated ventricular myocytes. After stimulation, myocytes were exposed to 0 Na+, 0 Ca2+ solution +/-1 mmol/L tetracaine (to block resting leak). Total cell [Ca2+] does not change under these conditions with Na+-Ca2+ exchange inhibited. Resting [Ca2+]i declined 25% after tetracaine addition (126+/-6 versus 94+/-6 nmol/L; P<0.05). At the same time, SR [Ca2+] ([Ca2+](SRT)) increased 20% (93+/-8 versus 108+/-6 micromol/L). From this Ca2+ shift, we calculate J(leak) to be 12 micromol/L per second or 30% of the SR diastolic efflux. The remaining 70% is SR pump unidirectional reverse flux (backflux). The sum of these Ca2+ effluxes is counterbalanced by unidirectional forward Ca2+ pump flux. J(leak) also increased nonlinearly with [Ca2+](SRT) with a steeper increase at higher load. We conclude that J(leak) is 4 to 15 micromol/L cytosol per second at physiological [Ca2+](SRT). The data suggest that the leak is steeply [Ca2+](SRT)-dependent, perhaps because of increased [Ca2+]i sensitivity of the ryanodine receptor at higher [Ca2+](SRT). Key factors that determine [Ca2+](SRT) in intact ventricular myocytes include (1) the thermodynamically limited Ca2+ gradient that the SR can develop (which depends on forward flux and backflux through the SR Ca2+ ATPase) and (2) diastolic SR Ca2+ leak (ryanodine receptor mediated).  相似文献   

13.
alpha-Adrenergic stimulation is known to enhance myocardial contractility. Adult rat left ventricular myocytes bathed in 1 mM [Ca2+] (Ca0) and electrically stimulated at 0.2 Hz responded to alpha-adrenergic stimulation with 50 microM phenylephrine and 1 microM propranolol with an increase in twitch amplitude to 177.1 +/- 25.6% of control (mean +/- SEM). In contrast, when cell Ca2+ loading was increased by bathing cells in 5 mM Ca0, alpha-adrenergic stimulation decreased twitch amplitude to 68.6 +/- 8.2% of control. Time-averaged cytosolic [Ca2+] of cells in 1.0 mM Ca0 is enhanced via an increase in the frequency of electrical stimulation. When myocytes were stimulated at 2 Hz in 1 mM Ca0, alpha-adrenergic stimulation did not increase twitch amplitude (103.8 +/- 12.4% of control). In myocytes loaded with the Ca2+ probe into-1, alpha-adrenergic effects during stimulation at 0.2 Hz (an increase in twitch amplitude in 1 mM Ca0 and a decrease in twitch amplitude in 5 mM Ca0) were associated with similar changes in the indo-1 transient. In 5 mM Ca0, spontaneous Ca2+ releases from the sarcoplasmic reticulum (SR) occurred in the diastolic interval between twitches (2.9 +/- 1.4 spontaneous SR Ca2+ oscillations/min; n = 7); alpha-adrenergic stimulation abolished these oscillations in six of seven cells. Thus, an increase in the frequency of spontaneous diastolic SR Ca2+ release (i.e., Ca2+ overload) is not the mechanism for the negative inotropic effect of alpha-adrenergic stimulation in 5 mM Ca0. In experiments with unstimulated myocytes, we determined whether the effect of alpha-adrenergic stimulation on cell Ca2+ homeostasis and oscillatory SR Ca2+ release observed in 5 mM Ca0 occurs only during electrical stimulation, when voltage-dependent currents are operative, or also at rest. Unstimulated rat ventricular myocytes in 5 mM Cao exhibit oscillatory SR Ca2+ release; alpha-adrenergic stimulation decreased the frequency of these oscillations to 53.9 +/- 8.9% of control, and this effect was blocked by 1 microM prazosin. In unstimulated indo-1-loaded myocytes alpha-adrenergic stimulation decreased the resting indo-1 fluorescence ratio in 5 mM Ca0, whereas it had no effect in 1 mM Ca0. Additional experiments were aimed at defining a role for Ca(2+)-activated, phospholipid-dependent protein kinase C (PKC) for the negative inotropic effect of alpha-adrenergic stimulation in 5 mM Ca0. Short-term preexposure to 0.1 microM 4 beta-phrobol 12-myristate 13-acetate (PMA) has been shown to maximally activate PKC.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
OBJECTIVE: Persistent supraventricular tachycardia leads to the development of a dilated cardiomyopathy with impairment of excitation-contraction (EC) coupling. Since the initial trigger for EC coupling in ventricular muscle is the influx of Ca(2+) through L-type Ca(2+) channels (I(Ca)) in the transverse tubules (T-tubules), we determined if the density of the T-tubule system and L-type Ca(2+) channels change in canine tachycardia pacing-induced cardiomyopathy. METHODS: Confocal imaging of isolated ventricular myocytes stained with the membrane dye Di-8-ANEPPS was used to image the T-tubule system, and standard whole-cell patch clamp techniques were used to measure I(Ca) and intramembrane charge movement. RESULTS: A complex staining pattern of interconnected tubules including prominent transverse components spaced every approximately 1.6 microm was present in control ventricular myocytes, but failing cells demonstrated a far less regular T-tubule system with a relative loss of T-tubules. In confocal optical slices, the average % of the total cell area staining for T-tubules decreased from 11.5+/-0.4 in control to 8.7+/-0.4% in failing cells (P<0.001). Whole-cell patch clamp studies revealed that I(Ca) density was unchanged. Since whole-cell I(Ca) is due to both the number of channels as well as the functional properties of those channels, we measured intramembrane charge movement as an assay for changes in channel number. The saturating amount of charge that moves due to gating of L-type Ca(2+) channels, Q(on,max), was decreased from 6.5+/-0.6 in control to 2.8+/-0.3 fC/pF in failing myocytes (P<0.001). CONCLUSIONS: Cellular remodeling in heart failure results in decreased density of T-tubules and L-type Ca(2+) channels, which contribute to abnormal EC coupling.  相似文献   

15.
OBJECTIVE: Heart failure is associated with reduced function of sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a) but increased function of sarcolemmal Na+/Ca2+ exchanger (NCX), leading to decreased SR Ca2+ content and loss of frequency-potentiation of contractile force. We reported that SERCA2a-overexpression in transgenic rat hearts (TG) results in improved contractility. However, it was not clear whether TG have improved contractility due to frequency-dependent improved SR Ca2+ handling. METHODS: Therefore, we characterized TG (n=35) vs. wild-type (WT) control rats (n=39) under physiological conditions (37 degrees C, stimulation rate <8 Hz). Twitch force, intracellular Ca2+ transients ([Ca2+]i), and SR Ca2+ content were measured in isolated muscles. The contribution of transsarcolemmal Ca2+ influx (I(Ca)) through L-type Ca2+ channels (LTCC) and reverse mode NCX (I(Na/Ca)) to Ca2+ cycling were studied in isolated myocytes. RESULTS: With increasing frequency, force increased in TG muscles by 168+/-35% (8 Hz; P<0.05) and SR Ca2+ content increased by maximally 118+/-31% (4 Hz; P<0.05). In WT, there was a flat force-frequency response without changes in SR Ca2+ content. Relaxation parameters of force and [Ca2+]i decay were accelerated at each frequency in TG vs. WT by approximately 10%. At prolonged rest intervals (<240 s), force and SR Ca2+ content increased significantly more in TG. Consequently, absolute SR Ca2+ content measured in myocytes was increased approximately 2-fold in TG. Transsarcolemmal Ca2+ fluxes estimated by I(Ca) (at 0 mV -10.2+/-1.1 vs. -16.9+/-1.3 pA/pF) and I(Na/Ca) (0.17+/-0.02 vs. 0.46+/-0.05 pA/pF) were decreased in TG vs. WT (P<0.05), whereas NCX and LTCC protein expression was only slightly reduced (P=n.s.). CONCLUSION: In summary, SERCA2a-overexpression improved contractility in a frequency-dependent way due to increased SR Ca2+ loading whereas transsarcolemmal Ca2+ fluxes were decreased.  相似文献   

16.
Smaller Ca2+ transients and systolic dysfunction in heart failure (HF) can be largely explained by reduced total sarcoplasmic reticulum (SR) Ca2+ content ([Ca]SRT). However, it is unknown whether low [Ca]SRT is manifest as reduced: (1) intra-SR free [Ca2+] ([Ca2+]SR), (2) intra-SR Ca2+ buffering, or (3) SR volume (as percentage of cell volume). Here we assess these possibilities in a well-characterized rabbit model of nonischemic HF. In HF versus control myocytes, diastolic [Ca2+]SR is similar at 0.1-Hz stimulation, but the increase in both [Ca2+]SR and [Ca]SRT as frequency increases to 1 Hz is blunted in HF. Direct measurement of intra-SR Ca2+ buffering (by simultaneous [Ca2+]SR and [Ca]SRT measurement) showed no change in HF. Diastolic [Ca]SRT changes paralleled [Ca2+]SR, suggesting that SR volume is not appreciably altered in HF. Thus, reduced [Ca]SRT in HF is associated with comparably reduced [Ca2+]SR. Fractional [Ca2+]SR depletion increased progressively with stimulation frequency in control but was blunted in HF (consistent with the blunted force-frequency relationship in HF). By studying a range of [Ca2+]SR, analysis showed that for a given [Ca]SR, fractional SR Ca2+ release was actually higher in HF. For both control and HF myocytes, SR Ca2+ release terminated when [Ca2+]SR dropped to 0.3 to 0.5 mmol/L during systole, consistent with a role for declining [Ca2+]SR in the dynamic shutoff of SR Ca2+ release. We conclude that low total SR Ca2+ content in HF, and reduced SR Ca2+ release, is attributable to reduced [Ca2+]SR, not to alterations in SR volume or Ca2+ buffering capacity.  相似文献   

17.
S M Krause  D Rozanski 《Circulation》1991,84(3):1378-1383
BACKGROUND. Myocardial stunning has been associated with a greater than twofold increase in intracellular free [Mg2+] from 0.6 to 1.5 mM. The effect of this increase in free [Mg2+] on the function of the sarcoplasmic reticulum (SR) Ca2+ pump was assessed in SR isolated from Langendorff perfused, isovolumic rabbit hearts after 15 minutes of global ischemia. METHODS AND RESULTS. Our results indicate that myocardial stunning results in a shift in the Ca2+ sensitivity of oxalate-supported, Ca2+ transport over the entire range of free [Ca2+] associated with the cardiac cycle. Using 0.6 mM free Mg2+ as control, maximal rates of Ca2+ transport occurred at 1 microM free Ca2+ (control, 519 +/- 32; stunned, 337 +/- 37 nmol Ca2+.min-1.mg-1). At 0.56 microM free Ca2+, SR Ca2+ transport was reduced from a control of 351 +/- 49 to 263 +/- 12 nmol Ca2+.min-1.mg-1 at 0.6 mM free [Mg2+]. Moreover, an increase in the free [Mg2+] from 0.6 to 1.5 mM results in a greater shift in the Ca2+ activation curve with no change in the level of maximal activation. Ca2+ transport at 0.56 microM free Ca2+ was shifted in the stunned SR from 263 +/- 12 to 138 +/- 29 nmol Ca2+.min-1.mg-1 at 0.6 and 1.5 mM free Mg2+, respectively. CONCLUSIONS. These results indicate that an increase in free [Mg2+] after stunning in combination with the inherent defect in the SR Ca2+ ATPase may reduce the ability of the cell to regulate Ca2+ to a greater extent than previously observed. This impairment in Ca2+ regulatory function may contribute directly to the increase in diastolic tone and indirectly to the reduced systolic function characteristic of the stunned myocardium.  相似文献   

18.
SERCA2a is the cardiac-specific isoform of Ca2+-ATPase of the sarcoplasmic reticulum (SR). A reduction of SERCA2a has been implicated in the contractile dysfunction of heart failure, and partial knockout of the SERCA2 gene (Atp2a2+/- mice) reiterated many of the features of heart failure. Yet, mice with a mutation of Atp2a2, resulting in full suppression of the SERCA2a isoform and expression of the SERCA2b isoform only (SERCA2b/b), showed only moderate functional impairment, despite a reduction by 40% of the SERCA2 protein levels. We examined in more detail the Ca2+ handling in isolated cardiac myocytes from SERCA2b/b. At 0.25 Hz stimulation, the amplitude of the [Ca2+]i transients, SR Ca2+ content, diastolic [Ca2+]i, and density of ICaL were comparable between WT and SERCA2b/b. However, the decline of [Ca2+]i was slower (t1/2 154+/-7 versus 131+/-5 ms; P<0.05). Reducing the amplitude of the [Ca2+]i transient (eg, SR depletion), removed the differences in [Ca2+]i decline. In contrast, increasing the Ca2+ load revealed pronounced reduction of SR Ca2+ uptake at high [Ca2+]i. There was no increase in Na+-Ca2+ exchange protein or function. Theoretical modeling indicated that in the SERCA2b/b mouse, the higher Ca2+ affinity of SERCA2b partially compensates for the 40% reduction of SERCA expression. The lack of SR depletion in the SERCA2b/b may also be related to the absence of upregulation of Na+-Ca2+ exchange. We conclude that for SERCA isoforms with increased affinity for Ca2+, a reduced expression level is better tolerated as Ca2+ uptake and storage are impaired only at higher Ca2+ loads.  相似文献   

19.
Prolongation of the Ca2+ transient and action potential (AP) durations are two characteristic changes in myocyte physiology in the failing human heart. The hypothesis of this study is that Ca2+ influx via reverse mode Na+/Ca2+ exchanger (NCX) or via L-type Ca2+ channels directly activates contraction in failing human myocytes while in normal myocytes this Ca2+ is transported into the sarcoplasmic reticulum (SR) to regulate SR Ca2+ stores. METHODS: Myocytes were isolated from failing human (n=6), nonfailing human (n=3) and normal feline hearts (n=9) and whole cell current and voltage clamp techniques were used to evoke and increase the duration of APs (0.5 Hz, 37 degrees C). Cyclopiazonic acid (CPA 10(-6) M), nifedipine (NIF;10(-6) M) and KB-R 7943 (KB-R; 3x10(-6) M) were used to reduce SR Ca2+ uptake, Ca2+ influx via the L-type Ca2+ current and reverse mode NCX, respectively. [Na+)i was changed by dialyzing myocytes with 0, 10 and 20 mM Na(+) pipette solutions. RESULTS: Prolongation of the AP duration caused an immediate prolongation of contraction and Ca2+ transient durations in failing myocytes. The first beat after the prolonged AP was potentiated by 21+/-5 and 27+/-5% in nonfailing human and normal feline myocytes, respectively (P<0.05), but there was no significant effect in failing human myocytes (+5+/-4% vs. steady state). CPA blunted the potentiation of the first beat after AP prolongation in normal feline and nonfailing human myocytes, mimicking the failing phenotype. NIF reduced steady state contraction in feline myocytes but the potentiation of the first beat after AP prolongation was unaltered (21+/-3% vs. base, P<0.05). KB-R reduced basal contractility and abolished the potentiation of the first beat after AP prolongation (2+/-1% vs. steady state). Increasing [Na+]i shortened AP, Ca2+ transient and contraction durations and increased steady state and post AP prolongation contractions. Dialysis with 0 Na+ eliminated these effects. CONCLUSIONS: Ca2+ enters both normal and failing cardiac myocytes during the late portion of the AP plateau via reverse mode NCX. In (normal) myocytes with good SR function, this Ca(2+) influx helps maintain and regulate SR Ca2+ load. In (failing) human myocytes with poor SR function this Ca2+ influx directly contributes to contraction. These studies suggest that the Ca2+ transient of the failing human ventricular myocytes has a higher than normal reliance on Ca2+ influx via the reverse mode of the NCX during the terminal phases of the AP.  相似文献   

20.
Despite extensive research, the mechanisms responsible for the graded nature and early termination of Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) in cardiac muscle remain poorly understood. Suggested mechanisms include cytosolic Ca2+-dependent inactivation/adaptation and luminal Ca2+-dependent deactivation of the SR Ca2+ release channels/ryanodine receptors (RyRs). To explore the importance of cytosolic versus luminal Ca2+ regulatory mechanisms in controlling CICR, we assessed the impact of intra-SR Ca2+ buffering on global and local Ca2+ release properties of patch-clamped or permeabilized rat ventricular myocytes. Exogenous, low-affinity Ca2+ buffers (5 to 20 mmol/L ADA, citrate or maleate) were introduced into the SR by exposing the cells to "internal" solutions containing the buffers. Enhanced Ca2+ buffering in the SR was confirmed by an increase in the total SR Ca2+ content, as revealed by application of caffeine. At the whole-cell level, intra-SR [Ca2+] buffering dramatically increased the magnitude of Ca2+ transients induced by I(Ca) and deranged the smoothly graded I(Ca)-SR Ca2+ release relationship. The amplitude and time-to-peak of local Ca2+ release events, Ca2+ sparks, as well as the duration of local Ca2+ release fluxes underlying sparks were increased up to 2- to 3-fold. The exogenous Ca2+ buffers in the SR also reduced the frequency of repetitive activity observed at individual release sites in the presence of the RyR activator Imperatoxin A. We conclude that regulation of RyR openings by local intra-SR [Ca2+] is responsible for termination of CICR and for the subsequent restitution behavior of Ca2+ release sites in cardiac muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号