首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In all acrylic bone cement formulations in clinical use today, radiopacity is provided by micron-sized particles (typical mean diameter of between about 1 and 2 microm) of either BaSO(4) or ZrO(2). However, a number of research reports have highlighted the fact that these particles have deleterious effects on various properties of the cured cement. Thus, there is interest in alternative radiopacifiers. The present study focuses on one such alternative. Specifically, a cement that contains covalently bound iodine in the powder (herein designated the I-cement) was compared with a commercially available cement of comparable composition (C-ment3), in which radiopacity is provided by BaSO(4) particles (this cement is herein designated the B-cement), on the basis of the strength (sigma(b)), modulus (E(b)), and work-to-fracture (U(b)), under four-point bending, plane-strain fracture toughness (K(IC)), Weibull mean fatigue life, N(WM) (fatigue conditions: +/-15 MPa; 2 Hz), activation energy (Q), and frequency factor (ln Z) for the cement polymerization process (both determined by using differential scanning calorimetry at heating rates of 5, 10, 15, and 20 K min(-1)), and the diffusion coefficient for the absorption of phosphate-buffered saline at 37 degrees C (D). For the B-cement, the values of sigma(b), E(b), U(b), K(IC), N(WM), Q, ln Z, and D were 53 +/- 3 MPa, 3000 +/- 120 MPa, 108 +/- 15 kJ m(-3), 1.67 +/- 0.02 MPa check mark m, 7197 cycles, 243 +/- 17 kJ mol(-1), 87 +/- 6, and (3.15 +/- 0.94) x 10(-12) m(2) s(-1), respectively. For the I-cement, the corresponding values were 58 +/- 5 MPa, 2790 +/- 140 MPa, 118 +/- 45 kJ m(-3), 1.73 +/- 0.11 MPa check mark m, 5520 cycles, 267 +/- 19 kJ mol(-1), 95 +/- 9, and (3.83 +/- 0.25) x 10(-12) m(2) s(-1). For each of the properties of the fully cured cement, except for the rate constant of the polymerization reaction, at 37 degrees C (k'), as estimated from the Q and ln Z results, there is no statistically significant difference between the two cements. k' for the I-cement was about a third that for the B-cement, suggesting that the former cement has a higher thermal stability. The influence of various characteristics of the starting powder (mean particle size, particle size distribution, and morphology) on the properties of the cured cements appears to be complex. When all the present results are considered, there is a clear indication that the I-cement is a viable candidate cement for use in cemented arthroplasties in place of the B-cement.  相似文献   

2.
The composition and viscosity of an acrylic bone cement have both been identified in the literature as being parameters that affect the mechanical properties of the material and, by extension, the in vivo longevity of cemented arthroplasties. The objective of the present study was to determine the relative influence of these parameters on a key cement mechanical property; namely, its fracture toughness. Two sets of cements were selected purposefully to allow the study objective to be achieved. Thus, one set comprised two cements with very similar compositions but very different viscosities (Cemex RX, a medium-viscosity brand, and Cemex Isoplastic, a high-viscosity brand) while the other set comprised two cements with similar viscosities but with many differences in composition (Cemex Isoplastic and CMW 1). Values of the fracture toughness (as determined using chevron-notched short rod specimens) [K(ISR)] obtained for Cemex RX and Cemex Isoplastic were 1.83 +/- 0.12 and 1.85 +/- 0.12 MPa square root(m), respectively, with the difference not being statistically significant. The K(ISR) values obtained for Cemex Isoplastic and CMW 1 were 1.85 +/- 0.12 and 1.64 +/- 0.18 MPa square root(m), respectively, with the difference being statistically significant. Thus, the influence of cement composition on its K(ISR) is more marked relative to the influence of cement viscosity. Explanations of this finding are offered, together with comments on the implications of the results for the in vivo longevity of cemented arthroplasties.  相似文献   

3.
The primary aim of this study was to determine if cements based on poly(methyl vinyl ether-maleic acid) (PMVE-Ma) and tetracalcium phosphate resulted in hydroxyapatite formation. In addition, the mechanical strength of this type of polymeric calcium phosphate cement was evaluated. Cements were prepared by mixing, in a powder/liquid mass ratio of 3.0, an aqueous solution of PMVE-Ma (mass fraction = 25%) and tetracalcium phosphate powders ground for various periods of time. The tetracalcium phosphate powders and set cements were characterized by means of X-ray powder diffraction and scanning electron microscopy. Mechanical strengths of the cements were tested 24 h after mixing. Prolonged grinding of tetracalcium phosphate powder decreased particle size and/or crystallite size and increased lattice distortion. This enhanced the reactivity of the tetracalcium phosphate powder and elevated the extent of crosslinking between PMVE-Ma molecules, resulting in improved mechanical strength. Hydroxyapatite formation was detected in the cement prepared with the most finely ground tetracalcium phosphate powder. The conversion of residual tetracalcium phosphate particles to more thermodynamically stable hydroxyapatite crystals will reduce the solubility of the polymeric cement and increase its biocompatibility.  相似文献   

4.
In part I of this study we aim to evaluate and control the characteristics of the powders constituting the solid phase of a vaterite CaCO(3)-dicalcium phosphate dihydrate cement using a co-grinding process and to determine their impact on cement setting ability. An original methodology involving complementary analytical techniques was implemented to thoroughly investigate the grinding mechanism of separated or mixed reactive powders and the effects on solid phase reactivity. We showed that the association of both reactive powders during co-grinding improves the efficiency of this process in terms of the particle size decrease, thus making co-grinding adaptable to industrial development of the cement. For the first time the usefulness of horizontal attenuated total reflection Fourier transform infrared spectroscopy to follow the chemical setting reaction at 37°C in real time has been demonstrated. We point out the antagonist effects that co-grinding can have on cement setting: the setting time is halved; however, progress of the chemical reaction involving dissolution-reprecipitation is delayed by 30 min, probably due to the increased contact area between the reactive powders, limiting their hydration. More generally, we can take advantage of the co-grinding process to control powder mixing, size and reactivity and this original analytical methodology to better understand its effect on the phenomena involved during powder processing and cement setting, which is decisive for the development of multi-component cements.  相似文献   

5.
From our previous study, 3 wt% of ultra-high-molecular-weight polyethylene (UHMWPE) powder surface-modified by various ratios of methyl methacrylate (MMA) and poly(methyl methacrylate) (PMMA) solution was impregnated to improve the poor mechanical and thermal properties of conventional PMMA bone cement. In this study, various amounts of benzoyl peroxide (BPO) and hydroquinone were used for the adhesion reinforcement of UHMWPE powder with PMMA polymerized from MMA monomer (polyMMA) by the mixture of BPO and hydroquinone and ultimately to strengthen the poor mechanical and thermal properties of conventional PMMA bone cement. The tensile strengths of 3 wt% of UHMWPE powders surface-precoated with polyMMA prepared by various amounts of BPO- and hydroquinone-impregnated composite PMMA bone cements were similar to that of conventional PMMA bone cement. In particular, 3 wt% of UHMWPE powder surface precoated with polyMMA prepared with 0.75 wt% of BPO and 300 ppm of hydroquinone impregnated composite PMMA bone cement revealed the maximum tensile strength. However, no obvious significant difference was revealed, although the curing temperatures of the composite PMMA bone cements decreased from 103 degrees C to 91-97 degrees C. From these results, it was determined that the mixture of BPO and hydroquinone plays an important role in improving the poor mechanical properties of conventional PMMA bone cement. However, the thermal properties of the composite PMMA bone cements were not remarkably improved. The mechanical, chemical and thermal properties were individually confirmed using a scanning electron microscope (SEM), universal transverse mercator (UTM), Fourier transform infrared-attenuated total reflectance (FT-IR-ATR) and digital thermometer, respectively.  相似文献   

6.
Gentamicin-loaded acrylic beads are loosely placed in infected bone cavities, whereas gentamicin-loaded acrylic bone cement is used as a mechanical filler in bone to anchor prosthetic components. Both drug delivery systems are used to decrease infection rates by gentamicin release. The objective of this study is to investigate the effects of pulsed ultrasound on gentamicin release from both materials. Gentamicin release from gentamicin-loaded beads (Septopal) and from three commercially-available brands of gentamicin-loaded bone cement (CMW 1, Palacos R-G, and Palamed G) was measured after 18 h of exposure in PBS to an ultrasonic field of 46.5 kHz in a 1:3 duty cycle with an average acoustic intensity of 167 mW/cm(2). Samples not exposed to ultrasound were used as controls. Pulsed ultrasound significantly enhanced gentamicin release from gentamicin-loaded beads, whereas gentamicin release from the gentamicin-loaded bone cements was not significantly enhanced. Mercury intrusion porosimetry revealed an increased distribution of pores between 0.1 and 0.01 microm in beads after gentamicin release, while in bone cements no increase in the number of pores was found. Increased gentamicin release in beads due to ultrasound may be explained by micro-streaming in a porous structure, whereas the absence of changes in pore structure after gentamicin release in bone cement is concurrent with the lack of an enhanced release of the antibiotic by ultrasound. As an effective treatment of infections requires high local concentrations of antibiotic, increased gentamicin release due to ultrasound may be of clinical significance, especially since ultrasound has been demonstrated to increase bacterial killing by antibiotics.  相似文献   

7.
The objective of this study was to investigate the release mechanism and kinetics of the antimicrobial peptide, Dhvar-5, both alone and in combination with gentamicin, from a standard commercial polymethyl methacrylate (PMMA) bone cement. Different amounts of Dhvar-5 were mixed with the bone cement powders of Osteopal and the gentamicin-containing Osteopal G bone cement and their release kinetics from the polymerized cement were investigated. Additionally, the internal structure of the bone cements were analysed by scanning electron microscopy (SEM) of the fracture surfaces. Secondly, porosity was investigated with the mercury intrusion method and related to the observed release profiles. In order to obtain an insight into the mechanical characteristics of the bone cement mixtures, the compressive strength of Osteopal and Osteopal G with Dhvar-5 was also investigated. The total Dhvar-5 release reached 96% in the 100 mg Dhvar-5/g Osteopal cement, whereas total gentamicin release from Osteopal G reached only 18%. Total gentamicin release increased significantly to 67% with the addition of 50mg Dhvar-5/g, but the Dhvar-5 release was not influenced. SEM showed an increase of dissolved gentamicin crystals with the addition of Dhvar-5. The mercury intrusion results suggested an increase of small pores (< 0.1 microm) with the addition of Dhvar-5. Compressive strength of Osteopal was reduced by the addition of Dhvar-5 and gentamicin, but still remained above the limit prescribed by the ISO standard for clinical bone cements. We therefore conclude that the antimicrobial peptide, Dhvar-5, was released in high amounts from PMMA bone cement. When used together with gentamicin sulphate, Dhvar-5 made the gentamicin crystals accessible for the release medium presumably through increased micro-porosity (< 0.1 microm) resulting in a fourfold increase of gentamicin release.  相似文献   

8.
The mechanical characteristics of new bone cements should be assessed before these cements are released on the orthopedic market in great quantities. In this study, we present the deformational response of 3 relatively new, low-curing temperature bone cements (Cemex RX, Cemex System, and Cemex Isoplastic) to a dynamic compressive force in comparison to Simplex P bone cement. For this purpose, dynamic compressive creep tests were performed on cylindrical shaped specimens at a maximal load level of 20 MPa for a period of 250,000 cycles. The results showed that Cemex System and Cemex RX produced creep rates that were higher (20% and 30%, respectively) as compared to Simplex P bone cement. The creep behavior of Cemex Isoplastic was very similar to that of Simplex P. It was concluded that although Cemex RX and Cemex System produced higher creep rates than Simplex P, these differences were not considered excessive. Hence, although other tests are required to assess the safety and efficacy of these new cements, the dynamic creep properties under compression can be considered adequate for clinical use.  相似文献   

9.
Heat-conduction isothermal microcalorimetry was used to measure the exothermic heat flow rate (Q) from the powder of a widely used commercially-available acrylic bone cement, Palacos R, when it interacted with ambient laboratory air, as a function of time, t, in the calorimeter, for up to 200 h. Four variants of the powder were used, these being unsterilized, sterilized using ethylene oxide gas, gamma-irradiated, in ambient air, with a minimum dosage of 2.5 Mrad, and gamma-irradiated, in ambient air, with a minimum dosage of 4.5 Mrad. In each case, the powder variant was tested after being stored on the shelf, under ambient conditions, for 2 days, 3 weeks and 9 months immediately following sterilization. Best-fit correlations between Q and t for each powder variant were determined. Then, this relationship was integrated over the period 14 h< or =t< or =200 h to give an estimate of the "effective" heat flow, Q(eff). For powder variants tested 2 days after being sterilized, the difference in their thermal stabilities (Qeff ranged from 0.19+/-0.01 to 0.62+/-0.03 microJ/g, respectively) was significant in the case of some pairs and not for others. However, for powders tested either 3 weeks or 9 months following sterilization, there was no significant difference between the means of Qeff (they ranged from 0.18+/-0.01 to 0.31+/-0.07 microJ/g) for any pair. These results suggest that an acrylic bone cement in which the powder is EtO-sterilized may be mixed with the liquid monomer for use in cemented arthroplasties after any length of time of shelf storage of the powder, under ambient conditions, whereas, for powders that are gamma-irradiated and then stored under the same conditions, at least 3 weeks should elapse before they are used in these procedures.  相似文献   

10.
Brushite cements differ from apatite-forming compositions by consuming a lot of water in their setting reaction whereas apatite-forming cements consume little or no water at all. Only such cement systems that consume water during setting can theoretically produce near-zero porosity ceramics. This study aimed to produce such a brushite ceramic and investigated whether near elimination of porosity would prevent a burst release profile of incorporated antibiotics that is common to prior calcium phosphate cement delivery matrices. Through adjustment of the powder technological properties of the powder reactants, that is particle size and particle size distribution, and by adjusting citric acid concentration of the liquid phase to 800mM, a relative porosity of as low as 11% of the brushite cement matrix could be achieved (a 60% reduction compared to previous studies), resulting in a wet unprecompacted compressive strength of 52MPa (representing a more than 100% increase to previously reported results) with a workable setting time of 4.5min of the cement paste. Up to 2wt.% of vancomycin and ciprofloxacin could be incorporated into the cement system without loss of wet compressive strength. It was found that drug release rates could be controlled by the adjustable relative porosity of the cement system and burst release could be minimized and an almost linear release achieved, but the solubility of the antibiotic (vancomycin>ciprofloxacin) appeared also to be a crucial factor.  相似文献   

11.
The release of gentamicin as a function of time was measured for Palacos and two-solution bone cements by using a novel pH technique. The pH of an aqueous solution of gentamicin is a function of the gentamicin concentration and it decreases linearly over concentrations of 0.0-0.1 wt %. Therefore, a new, direct, and inexpensive in vitro technique was developed based on continuous readings of the pH in phosphate-buffered saline (PBS) at 37 degrees C to determine the release kinetics of gentamicin from poly(methyl methacrylate) (PMMA)-based bone cement. In addition, this method was used to compare the release profiles of Palacos R-40 bone cement with a two-solution bone cement developed in our laboratory and loaded with two different concentrations of gentamicin sulfate. Finally, the pH-based method was used to track the elution of gentamicin in both mixed and static conditions to determine the effect of mixing on the diffusion of gentamicin out of the cement. It was found that Palacos R-40 released 4.95 +/- 0.22 wt % of its gentamicin after 24 h in PBS solution. This data compares favorably with previously reported values of gentamicin elution from Palacos R-40, which ranged from 3 to 8 wt % of the total amount of incorporated gentamicin, depending on the size and the surface area of the samples. The results show that Palacos samples released 4.84 +/- 0.27 mg after 24 h, a two-solution cement loaded with an equivalent concentration of gentamicin sulfate released 3.81 +/- 0.52 mg, and two-solution cement loaded with twice the concentration of Palacos released 5.53 +/- 0.26 mg of gentamicin. A higher percentage of release was recorded from Palacos than from the two-solution bone cement, and the effect of PBS mixing conditions on the release kinetics was only significant in the early stages of release and not at 24 h. It was concluded that monitoring the pH is an effective technique to measure gentamicin release from PMMA-based bone cements in PBS solution.  相似文献   

12.
The aim of this work was to determine an array of mechanical, physical, and thermal properties of three pairs of commercially available acrylic bone cement brands, with the brands in each pair having the same compositions except that one contains 4.22 wt/wt% gentamicin sulfate blended with the powder by the manufacturer and the other one does not. The difference between the pairs was in the viscosity of the curing cement dough, with one pair of 'low-viscosity', one pair of 'medium-viscosity', and one pair of 'high-viscosity' brands being used. Thus, the brands studied cover the range of those used in anchoring some total joint replacements (TJRs). The properties determined were the strength, modulus, and work-to-fracture (all under four-point bending), plane-strain fracture toughness, Weibull mean fatigue life (fatigue conditions: 15 MPa; 2 Hz), activation energy and frequency factor for the cement polymerization process (both determined, using differential scanning calorimetry, at heating rates of 5, 10, 15, and 20 K min (1)), and the diffusion coefficient for the absorption of phosphate-buffered saline at 37 C by the cured cement. For each property determined, there was no significant difference in the mean values for the brands in each of the pairs. These results indicate that over the range of cement brands that are widely used in the anchoring of cemented TJRs, the addition of gentamicin sulfate powder does not degrade the properties of the cement, and, hence, may not adversely affect the in vivo longevity of the replacement.  相似文献   

13.
Graft copolymers of methyl methacrylate and biodegradable, biocompatible bacterial poly([R]-3-hydroxybutyrate) (PHB) blocks were synthesized and evaluated as possible constituents in acrylic bone cements for use in orthopaedic applications. The copolymers were produced by conventional free radical copolymerization and incorporated in one commercially available acrylic bone cement brand, Antibiotic Simplex (AKZ). Cements with formulations containing 6.7 and 13.5 wt % of PMMA-graft-PHB were prepared. The morphology of the graft copolymer particles was suggested to influence the ability of the modified cement to be processed. Formulations containing more than about 20 wt % of the graft copolymer resulted in cement doughs that, both after first preparation and several hours later, were either sandy or soft spongy in texture and, thus, would be unacceptable for use in orthopaedic applications. The morphologies of the powders and the volumetric porosity (p) and ultimate compressive strength (UCS) of the cured cements were determined. Micro computed tomography showed that the cements presented average porosities of 13.5-16.9%. It was found that, while the powder particle shape and size for the experimental cements were markedly different from those of AKZ, there was no significant difference in either p or UCS for these cements. The latter was determined to be about 85 MPa for the modified cements and 84 MPa for Antibiotic Simplex. Furthermore, the UCS of all the cements exceeded the minimum level for acrylic bone cements, as stipulated by ASTM F-451.  相似文献   

14.
In our previous study, we manufactured a reinforced poly(methylmethacrylate) (PMMA) bone cement with 3 wt% of the surface-modified ultra high molecular weight polyethylene (UHMWPE) powder to improve its poor mechanical and thermal properties resulting from unreacted methylmethacrylate (MMA), the generation of bubble and shrinkage, and high curing temperature. In the present study, the effect of ratios of MMA and N,N'-dimethyl-p-toluidine (DMPT) solutions in redox polymerization system was investigated for the surface modification of UHMWPE powder. We characterized physical and chemical properties of surface-modified UHMWPE powder and reinforced bone cements by a scanning electron microscope, ultimate tensile strength (UTS) and curing temperature (Tmax). It was found that UTSs (41.3-51.3 MPa) of the reinforced PMMA bone cements were similar to those (44.5 MPa) of conventional PMMA bone cement (control), as well as significantly higher (P < 0.05) than those (33.8 MPa) of 3 wt% unmodified UHMWPE powder-impregnated bone cement. In particular, the UTS of redox polymerization system using MMA/DMPT solution was better than that of radical system using MMA/xylene solution. Also, Tmax of the reinforced PMMA bone cements decreased from 103 to 72-84 degrees C. From these results, we confirmed that the surface-modified UHMWPE powder can be used as reinforcing agent to improve the mechanical and thermal properties of conventional PMMA bone cement.  相似文献   

15.
In all but one of the acrylic bone cement brands used in cemented arthroplasties, N,N-dimethyl-4-toluidine (DMPT) serves as the activator of the polymerization reaction. However, many concerns have been raised about this activator, all related to its toxicity. Thus, various workers have assessed a number of alternative activators, with two examples being N,N-dimethylamino-4-benzyl laurate (DMAL) and N,N-dimethylamino-4-benzyl oleate (DMAO). The results of limited characterization of cements that contain DMAL or DMAO have been reported in the literature. The present work is a comprehensive comparison of cements that contain one of these three activators, in which the values of a large array of their properties were determined. These properties range from the setting time and maximum exotherm temperature of the curing cement to the variation of the loss elastic modulus of the cured cement with frequency of the applied indenting force in dynamic nanoindentation tests. The present results, taken in conjunction with those presented in previous reports by the present authors and co-workers on other properties of these cements, indicate that both DMAL and DMPT are suitable alternatives to DMPT.  相似文献   

16.
Two methods used for determining the elastic modulus (E) and hardness (H) of a material--the original version of the well-known Oliver-Pharr Method, OOPM, and a variant of it called the Modified Slopes Method, MSM--were critically compared. The nanoindentation test results, of indenter load-versus-indenter displacement, were recorded for six series of specimens, three of commercially-available acrylic bone cements (Palacos R and Cemex XL) and three of bones (human, bovine, and mouse). In the first series, the specimens were prepared from Palacos R cement mantles retrieved from cemented total hip joint replacements after 11 months, 11 years, and 21 years in vivo. In the second and third series, the specimens were fabricated from hand- and vacuum-mixed dough of Cemex XL cement, respectively. In the fourth, fifth, and sixth series, the specimens were prepared from fresh frozen cortical bone of human tibia, plexiform bone from fresh bovine tibia, and femora from inbred mice, respectively. It was found that, for a given material, the values of E or H computed using OOPM and MSM are not significantly different. However, the recommendation is that MSM is preferable because it is straightforward-only the nanoindentation measurements and values of constants that depend on the geometry of the indenter used are needed. In contrast, when the OOPM is used, there is a critical input (the indenter tip area function), whose computation is problematic. The article also includes a succinct discussion of factors that affect the values of material properties computed from nanoindentation measurements, such as the loading rate and the surface roughness of the test specimen.  相似文献   

17.
The fact that bisphenol-a-glycidyl methacrylate (bis-GMA)-based cements contain an uncured surface is believed to play an important role when determining the surface curing properties of the cements. Therefore, in the present study, the bone-bonding strength of cement plates having an uncured surface on one side and a cured surface on the other side has been evaluated. These cement plates were composites of a bis-GMA-based resin with either an apatite- and wollastonite-containing glass-ceramic (AW-GC) powder or a hydroxyapatite (HA) powder, respectively designated AWC and HAC. The amount of each of these powders in a composite cement was 70 wt %. We formulate the hypothesis that the uncured surface of a cement plate is bioactive having bone-bonding properties. The goal of the present study was to indicate the bone-bonding strength of the uncured surfaces of AWC and HAC and compare the strength with the respective cured surfaces by a detaching in vivo test, as well as to histologically examine the bone-cement interface. Each plate has been implanted into the tibiae of male Japanese white rabbits, taking care to retain the surface properties, and the so-called "failure load has been measured using a detaching test followed 8 weeks after implantation. The failure load for AWC-plates at the uncured surface (2.05 +/- 1.11 kgf, n = 8) was significantly higher than AWC at its cured surface side (0.28 +/- 0.64 kgf, n = 8). The failure load for HAC-plates at the uncured surfaces (1.40 +/- 0.68 kgf, n = 8) was significantly higher than HAC at its cured surface (0.00 +/- 0.00 kgf, n = 8). Failure loads for AWC at its uncured and cured surfaces were both higher than for HAC, although not significantly. Direct bone formation has been observed histologically for both AWC and HAC on the uncured surfaces, and a Ca-P-rich layer was observed only at the uncured surface of AWC. These findings strongly suggest that uncured surfaces are useful for exposing a bioactive filler on a surface of composites, being very effective in inducing bone bonding.  相似文献   

18.
Implant heating has been advocated as a means to alter the porosity of the bone cement/implant interface; however, little is known about the influence on cement properties. This study investigates the mechanical properties and pore distribution of 10 commercially available cements cured in molds at 20, 37, 40 and 50 °C. Although each cement reacted differently to the curing environments, the most prevalent trend was increased mechanical properties when cured at 50 °C vs. room temperature. Pores were shown to gather near the surface of cooler molds and near the center in warmer molds for all cement brands. Pore size was also influenced. Small pores were more often present in cements cured at cooler temperatures, with higher-temperature molds producing more large pores. The mechanical properties of all cements were above the minimum regulatory standards. This work shows the influence of curing temperature on cement properties and porosity characteristics, and supports the practice of heating cemented implants to influence interfacial porosity.  相似文献   

19.
魏波  王宸  李贺 《中国组织工程研究》2012,16(25):4581-4585
背景:在人工关节置换中,骨水泥与何种抗生素配伍能起到有效预防和治疗置换后感染目前还存在争议。 目的:观察抗生素骨水泥中不同抗生素及不同混合方法对动物体内抗生素释放特性以及骨水泥力学性能的影响。 方法:36只大白兔随机抽签法分为6组,3个实验组在骨水泥固相与液相混合后分别加入2 g硫酸庆大霉素、1 g万古霉素、1.5 g头孢呋辛钠,制成负载抗生素的骨水泥,置于实验兔体内。3个对照组分别在40 g骨水泥固相与液相混合前加入2 g硫酸庆大霉素粉剂、1 g万古霉素粉剂、1.5 g头孢呋辛钠。 结果与结论:3种抗生素在兔体内持续平均释放时间均在31 d以上,骨水泥固相与液相混合后加入抗生素的3组抗生素洗提总量分别高于混合前加入抗生素的3组(P < 0.05),混合后加入万古霉素组的洗提总量高于其他各组(P < 0.05)。各组抗生素骨水泥的力学性能均优于ISO 5833国际标准,组间差异无显著性意义。提示抗生素能有效从骨水泥中释放,骨水泥中加入1.0~2.0 g抗生素不影响骨水泥的机械强度;万古霉素的洗提效果较好;骨水泥固相与液相混合后加入抗生素的混合方法更有利于抗生素的释出。  相似文献   

20.
The formation of staphylococcal biofilms on experimental bone cements, loaded with 0.5 or 1.0 g of active gentamicin and an additional equivalent amount of gentamicin, clindamycin, or fusidic acid was investigated. The biofilms were formed in a modified Robbins device over a 3-day time span and the influence of the additional antibiotics was quantified by expressing the number of colony forming units relative to the corresponding bone cement containing only gentamicin. Combinations of gentamicin with either fusidic acid or clindamycin reduced growth of clinical isolates of both gentamicin-sensitive Staphylococcus aureus and gentamicin-resistant coagulase-negative staphylococci to approximately 28%. To determine whether adding a second antibiotic has influence on the gentamicin release, cement blocks were placed in phosphate buffer and aliquots were taken at designated sampling intervals. The influence of the additional antibiotics was quantified by expressing the percentage released of the total amount of antibiotic incorporated in the different bone cements. After 3 days, all bone cements had released similar percentages of gentamicin, whereas more clindamycin and fusidic acid were released after doubling their concentration in the bone cements. In conclusion, bone cements loaded with combinations of gentamicin and clindamycin or fusidic acid are more effective in preventing biofilm formation than bone cements with gentamicin as a single drug. In addition, the presence of clindamycin or fusidic acid in gentamicin-loaded bone cement has no influence on the total gentamicin release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号