首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purification of adult rat sciatic nerve ciliary neuronotrophic factor   总被引:9,自引:0,他引:9  
The ciliary neuronotrophic factor (CNTF), a protein required for the survival of cultured avian embryonic parasympathetic ciliary ganglionic neurons, was recently purified from extracts of selected chick intraocular tissues. Here we report the purification of a mammalian CNTF activity from extracts of adult rat sciatic nerve using a fractionation procedure similar to that employed for isolating chick eye CNTF. About 2 micrograms of CNTF protein can be obtained from each 1.5 g batch of nerve tissue. Like the chick CNTF, the mammalian factor displays trophic activity for dorsal root and sympathetic as well as ciliary ganglionic neurons. The nerve CNTF activity differs from its chick counterpart in molecular weight and chromatographic behavior on ion-exchange columns. Unlike purified nerve growth factor (NGF), nerve CNTF activity is insensitive to anti-NGF antibodies and is unable to support the survival of 8-day chick embryo dorsal root ganglion neurons.  相似文献   

2.
Nerve growth activities in rat sciatic nerves were assayed by recording the neuritic outgrowth from chick embryonic ganglia cultured in collagen gels beside nerve fragments for two days. Living nerve explants released activity that resembled nerve growth factor (NGF) in its effect on sympathetic ganglia and that was almost totally blocked by an antiserum to 2.5 S mouse NGF. Frozen and thawed specimens from normal nerves elicited responses from sympathetic ganglia that were only partially suppressed by anti-NGF and also induced neuritic outgrowth from ciliary ganglia. Thus, from observations on normal nerves, at least two agents promoting axonal extension in vitro were deduced to exist; one substance similar to NGF plus another, non-NGF factor. The level of NGF-like activity was low in killed segments of normal nerves but higher in autologous nerve grafts and degenerating nerves two days after grafting or cutting. However, one or two weeks after nerve transection, distal nerve segments contained little nerve growth activity of either kind. Furthermore, when endoneurial fragments from chronically denervated stumps were cultured, they appeared to have lost some of their capacity to produce NGF-like activity in vitro although the production of activity had, if anything, increased in the perineurial region. In summary, rat peripheral nervous tissue releases two or more soluble substances that stimulate neuritic outgrowth. The level of one or both activities in the endoneurium can be altered by manipulation of nerves in vivo.  相似文献   

3.
The expansor secundariorum is a smooth muscle of the chicken wing which receives a dense noradrenergic innervation and contains high concentrations of trophic activity for sympathetic neurons. Expansor cells were dissociated in trypsin and grown to confluency in standard nutrient medium. Medium that had been conditioned by expansor cells contained trophic activity for chick sympathetic nerves which differed from the activity which is found within the muscle prior to culture, in that it was effective on a different neuronal subpopulation. Furthermore, unlike the factor(s) found in vivo, the trophic activity of the conditioned medium was not enhanced by NGF and could be partially inhibited by mouse NGF antibodies. Both the production of total trophic activity in the conditioned medium and the activity which differed from that in the muscle extract, increased rapidly and to the same extent between 24 and 48 h culture. Greater concentrations of trophic activity were present in medium conditioned by smooth muscle cells than by skin cells. The conditioned medium was able to support more neurons from 11 and 18 day incubated embryos than a saturating dose of NGF. Neither this effect nor the additive effect of conditioned medium with expansor muscle extract could be attributed to the presence of neurite promoting factors. We conclude that the cultured muscle produces neuronotrophic activity that is similar to the activity found in denervated but not innervated muscle.  相似文献   

4.
The presence of neuronotrophic factors (NTFs) in noninjured sciatic nerve extract and the course of their accumulation from 3 h to 30 days after nerve transection was examined. Rat sciatic nerves were transected and their proximal and distal stumps sutured into the openings of cylindrical silicone chambers leaving a 10-mm interstump gap. Previous studies had shown that regeneration occurs in chambers containing both stumps but is absent in chambers lacking the distal stump. Chambers became completely filled with fluid 10 to 12 h after implantation. Fluid from chambers without nerve stumps (open-ended) implanted adjacent to nerve-containing chambers had markedly lower trophic activities than those containing one or both stumps. In fluid collected from chambers containing both proximal and distal nerve stumps, the highest titers of NTFs directed to sensory neurons were measured at 3 h posttransection whereas the highest titers of NTFs directed to sympathetic and spinal cord neurons were detected at 1 and 3 days, respectively. Chambers containing only the proximal or only the distal stumps showed similar temporal dynamics for sensory and sympathetic NTFs. Sensory and sympathetic neuronotrophic activity in extracts of proximal and distal stumps followed a similar temporal course to those in chamber fluid. Extracts of nonlesion nerve segments 5 mm from the transection site contained higher sensory and lower sympathetic trophic activity than extracts including the transection site. Spinal cord activity was undetectable in all extracts. Antiserum to nerve growth factor had no effect on fluid or extracts containing high sensory or sympathetic activities. These observations suggested that (i) some NTFs may be present in normal nerves and others may be synthesized or accumulated in response to nerve injury, (ii) sensory, sympathetic, and spinal cord NTFs are separate agents and immunochemically distinct from nerve growth factor, (iii) NTFs predominantly originate from nerve stumps rather than from surrounding fluid, and (iv) proximal and distal nerve stumps accumulate and release NTFs at similar rates.  相似文献   

5.
Nerve growth factor in medium conditioned by embryonic chicken heart cells   总被引:1,自引:0,他引:1  
The present report demonstrates that embryonic chicken heart cells in culture release different nerve growth promoting factors to their culture medium, one which is biologically and immunologically similar to mouse gland beta NGF. Serum-free heart cell conditioned medium thus promoted neurite outgrowth from sympathetic and ciliary ganglia and supported survival of dissociated ciliary neurons. The addition of affinity purified antibodies against mouse beta NGF does substantially but not completely inhibit the fibre outgrowth from sympathetic ganglia, but does not to any extent diminish the effects on the parasympathetic neurons. The chicken NGF recovered from polyacrylamide gels after electrophoresis greatly enhanced sympathetic fibre outgrowth, an activity completely suppressive by anti-beta NGF antibodies. We conclude that a chicken NGF is being produced by the embryonic heart cells in culture, and that this factor may be produced also in the embryo to fulfill a role in heart innervation.  相似文献   

6.
Rat sciatic nerves can be transected and their proximal and distal stumps sutured into the openings of cylindrical silicone chambers. Anatomical regeneration has been demonstrated across 10 mm long chambers containing both stumps, although little or no axonal outgrowth occurs in chambers omitting the distal stump or exceeding the 10 mm length. We have previously shown that chambers containing both proximal and distal stumps accumulate within days of implantation a clear fluid containing neuronotrophic factors (NTFs) directed to neurons from neonatal mouse dorsal root ganglia. We report here that these chamber fluids also have considerable neuronotrophic activity for chick embryo neurons from embryologic day 4 (E4) lumbar spinal cord, E12 sympathetic ganglia, E12 (but not E8) dorsal root ganglia and E8 ciliary ganglia. Thus, the neuronal types supported by trophic factors of these fluids include all those which contribute axons to the sciatic nerve, namely sensory, spinal motor, and sympathetic. In fluid collected 1 week after implantation, NTF levels directed to different neurons varied independently from one another in chambers with different nerve insertions, suggesting that these activities reside in separate factors. Fluid collected from chamber arrangements allowing little proximal fiber regrowth did not always contain correspondingly lower titers of NTFs. However, generally higher titers of all NTFs were found in chambers containing either or both nerve stumps that in nerve-free chambers. Fluids collected from nerve-containing chambers were subjected to heat, dialysis or trypsin treatments. The behavior of their neuronotrophic activities suggests their association with proteins.  相似文献   

7.
High concentrations of trophic factor for sympathetic neurones were found in the discrete nerve which innervates the expansor secundariorum muscle of the chicken wing. Mouse nerve growth factor (NGF) was additive with nerve extract in allowing survival of sympathetic neurones. Antiserum to NGF, while inhibiting outgrowth in response to NGF, only partially blocked survival promoted by the nerve extract. In these characteristics, the nerve extract resembled the previously characterized activity of its target organ. However, after surgical removal of the muscle there was no decrease in the concentration of trophic factors in the nerve 7 days later. Likewise sectioning, crushing or removing a piece of nerve 1 cm from the muscle had little effect on trophic levels after muscle removal. Retrograde transport of the activity occurred in the nerve even in the absence of the muscle. Distal to ligatures placed on the nerve stump 24 h earlier, 60% of the trophic activity was inhibited by an antiserum to mouse NGF suggesting that a chicken form of the molecule is present and transported. In culture, cells of the nerve sheath produced trophic factors, and the rate of production increased greatly during the first 24 h of incubation. Two conclusions are made: the major source of trophic activity in the nerve is Schwann cells and at least two molecules are present, one of which is a chicken form of NGF.  相似文献   

8.
We have studied the effects of ciliary neuronotrophic factor (CNTF) and nerve growth factor (NGF) on cultures of E14 rat spinal cord cells maintained for 7 days. The trophic factors were supplied at the day of seeding and every other day thereafter. Treatments with CNTF (human recombinant or purified from rat sciatic nerve, 100 TU/ml) resulted after 7 days in an increase, relative to control cultures, of: (i) the total number of neurons (identified by neurofilament protein and neuron-specific enolase immunostaining) that were not stained with choline, acetyltransferase (ChAT) and low affinity nerve growth factor receptor (LNGFR) antibodies; (ii) the number of motoneurons (0.5% of the neuronal population) as identified by size (greater than 25 microns), morphology and immunostaining for ChAT and LNGFR; and (iii) a population of small- to medium-sized (less than 25 microns), ChAT- and LNGFR-positive neurons, representing 5-10% of the total neuronal population. NGF treatments (mouse submaxillary beta NGF; 10-3000 TU/ml) were without effect on all 3 neuronal populations. Experiments in which CNTF administration was delayed revealed that the population of ChAT- and LNGFR-negative neurons and the population of motoneurons, were both dependent on CNTF for their survival. The third population, small ChAT and LNGFR-positive neurons, was not dependent on CNTF for survival but was induced by CNTF to express its two markers. These observations indicate that CNTF is a neuronotrophic factor for motoneurons, but that the effect of CNTF is not restricted to that cell population. In addition to its survival promoting effect, CNTF has also a regulatory role on the expression of ChAT and LNGFR for some spinal cord neurons.  相似文献   

9.
Explants of adult or 10-day-old rat sciatic and optic nerves were implanted as "bridges" through a silicon grease seal in a three-compartment chamber culture system, leading from a narrow center chamber to two adjacent side chambers. Dissociated newborn rat sympathetic or sensory neurons were plated into the center chamber and grown in the presence of optimal concentrations of nerve growth factor (NGF). By light microscopy, nerve fibers were seen to grow out of the sciatic nerve explants in the side chambers after 2 to 3 weeks. Electron microscopy showed large numbers of axons present inside the sciatic nerves, irrespective of the presence and number of living Schwann cells. Besides their tendency to fasciculate, axons grew with high preference on Schwann cell membranes and the Schwann cell side of the basal lamina, a situation identical to in vivo regeneration. In contrast to the sciatic nerves, no axons could be found under any condition in the optic nerves. This result points to the existence of extremely poor, non-permissive substrate conditions in the differentiated optic nerves which cannot be overcome by the strong fiber outgrowth-promoting effects of NGF.  相似文献   

10.
Selective sympathetic nerve dysfunction occurs during aging and in certain disease states. Here, we review findings concerning the effects of chronic sympathetic denervation on parasympathetic innervation to orbital target tissues in the adult rat. Long-term sympathetic denervation was induced by excising the ipsilateral superior cervical ganglion for 5-6 weeks prior to analyses. Following sympathectomy, pterygopalatine ganglion parasympathetic neurons show reduced nitric oxide synthase protein in their somata and projections to vascular targets. Laser Doppler measurements of ocular blood flow indicate that sympathectomy is also accompanied by reduced nitrergic vasodilatation. In the superior tarsal muscle of the eyelid, parasympathetic varicosities, normally, are distant to smooth muscle cells but make axo-axonal contacts with sympathetic nerves, consistent with physiological evidence showing only prejunctional inhibitory effects on sympathetically mediated smooth muscle contraction. Following sympathectomy, parasympathetic varicosities proliferate and closely appose smooth muscle cells, and this is accompanied by establishment of parasympathetic-smooth muscle excitatory neurotransmission. Many pterygopalatine parasympathetic neurons normally contain nerve growth factor (NGF) protein and express NGF mRNA. However, following chronic sympathectomy or elimination of sympathetic impulse activity, NGF mRNA and protein are markedly reduced, indicating that sympathetic neurotransmission enhances NGF expression in parasympathetic neurons. Together, these findings portray a striking dependency of parasympathetic neurons on sympathetic nerves to maintain normal phenotype and function. Sympathetic influences on parasympathetic neurons may be mediated, in part, through axo-axonal synapses. NGF synthesis and release by parasympathetic neurons may represent a molecular basis underlying the formation of these synapses, and up-regulation of NGF synthesis by sympathetic nerve activity may act to reinforce these associations.  相似文献   

11.
The present experiments were designed to determine whether the cells of the distal portion of a sectioned peripheral nerve release diffusible factors that exert a trophic influence on isolated adult motoneurons in vitro, whether the release of those factors increased with time following nerve section, and to characterize the neurotrophic influences. In defined medium, motoneurons started to extend processes only after 1 day. However, when co-cultured with a length of sciatic nerve, denervated one week prior to being placed in the co-cultures, the motoneurons began to extend processes within one day, and by four days the average process length was 10 times longer than that of control neurons. While control neurons extended 4 processes, the co-cultured neurons extended only a single process, and the processes were thinner and straighter than those of the control neurons, and they lacked lamellipodia, typical of control neurons. Although one-week predenervated peripheral nerve initially had a greater influence on motoneuron process outgrowth than a freshly isolated piece of sciatic nerve--after three days the processes were 33% longer--, this difference decreased with time, so that by seven days this difference was only 7%. Thus time was required for the release of the neurotrophic factor following nerve section. Both predenervated and freshly sectioned sciatic nerves had the same influences on the number and morphology of processes of the co-cultured motoneurons. The neurotrophic influence of medium conditioned for seven days by a piece of sciatic nerve was the same as that seen when the cells of the peripheral nerve were in the medium. Nerve growth factor did not induce process elongation from the motoneurons. In addition, antibodies against nerve growth factor, known to block its bioactivity, did not diminish the neurotrophic influence of the sciatic nerve conditioned medium on the motoneurons. These results indicate that factors released from the cells of a sectioned peripheral nerve have a potent neurotrophic influence on adult motoneurons, the release of these factors increases with time following nerve section, and that the factor does not appear to be nerve growth factor. These observations suggest that the cells of the denervated distal nerve play an important physiological role in vivo, in releasing diffusible factors that act on motoneurons to promote significant process outgrowth, regulate the number of processes extended, and modify the morphology of the processes, leading to reinnervation of the distal nerve stump.  相似文献   

12.
Two rabbit polyclonal antibodies were raised against synthetic peptides corresponding to residue numbers 45-59 and 181-200 of rat ciliary neuronotrophic factor (CNTF). The resulting antibodies were purified by affinity chromatography and both purified antibodies reacted by enzyme-linked immunoassay (ELISA) and immunoblotting with rat sciatic nerve CNTF. The anti-CNTF peptide antibodies were used to immunostain sections of adult rat sciatic nerve, previously known as the richest tissue source of CNTF. By light microscopy both antibodies appeared to stain exclusively Schwann cells and axons and both did so with the same pattern of specific staining. Immunostaining was eliminated by absorption of the anti-peptide antibodies with either their corresponding peptide or with purified rat nerve CNTF or by using purified nonspecific IgG. Schwann cells were stained and in semi-thin sections this staining appeared to be in the Schwann cell cytoplasm. Axons could be stained in addition to Schwann cells providing higher concentrations of antibodies were used. Epineurial, endoneurial and endothelial cells appeared unstained. Since all Schwann cells and axons appear to contain CNTF and since CNTF is known to act in vitro to support sensory and sympathetic ganglionic and motor neurons, we suggest that Schwann cells may normally provide CNTF to those neurons contributing axons to the peripheral nerve.  相似文献   

13.
In recent years evidence has indicated that, like the PNS, the development of the CNS is influenced by neuronotrophic polypeptide factors. In the present study, cultures of dissociated retinal neurons from 8-d-old chicken embryos were used to investigate the role of neuronotrophic factors (NTF) in the development of the neural retina. CAT, which in vivo is located in amacrine cells of the retina, served as a marker for studying the in vitro development of cholinergic retinal neurons. Differentiation of cholinergic cells under control conditions was indicated by a 10-fold increase of enzyme activity during a 7-d culture period. Addition of media conditioned by high-density retinal cultures resulted in a further stimulation of CAT activity by 100-400%. The CAT-stimulating activity was associated with a high-molecular-weight component of the retina conditioned medium (RCM) and was sensitive to protease treatment, but was not affected by other hydrolytic enzymes. The putative cholinergic factor was secreted by retinal cultures virtually free of neurons, suggesting that it is mainly produced by Müller cells. CAT-stimulating activity was also present in extracts from embryonic chicken retinae and medium conditioned by rat retinal cultures. NGF, anti-NGF antiserum, extracts from chicken brain tissues, and a number of other extracts and conditioned media, all known to contain neuronotrophic activities, were found to have no influence on cholinergic development in chicken retinal cultures. An extract from non-retinal eye tissue containing ciliary neuronotrophic factor (CNTF) stimulated CAT activity to the same extent as did RCM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We have developed and tested the biological activity and specificity of a novel fluorescent dextran-Texas Red–nerve growth factor (DTR–NGF) conjugate. DTR–NGF was found to promote survival and neurite outgrowth in cultured dissociated sympathetic neurons similarly to native NGF. The conjugate was taken up and transported retrogradely by terminal sympathetic nerves innervating the iris to neurons in the ipsilateral superior cervical ganglion (SCG) of young adult rats. Uptake and transport was assessed by counting numbers of labelled neurons and by measuring intensity of neuronal labelling using confocal microscopy and image analysis. DTR–NGF labelling in SCG neurons was shown to be dose-dependent with an EC50 of 75 ng. Similar concentrations of unconjugated DTR resulted in no neuronal labelling. DTR–NGF uptake was competed off using a 50-fold excess of native NGF, resulting in a 73% reduction in numbers of labelled neurons. Pretreatment of nerve terminals with function-blocking antibodies against the low (p75) and high (TrkA) affinity NGF receptors resulted in a large (85–93%) reduction in numbers of DTR–NGF labelled neurons. Anti-p75 and anti-TrkA antibodies had comparable effects which were concentration-dependent. These findings indicate that both receptors are required for uptake of NGF in adult rat sympathetic neurons. In particular, the results provide strong evidence that the p75 receptor plays a more active role in transducing the NGF signal than has been proposed.  相似文献   

15.
Axotomy of sciatic nerve fibers in adult rats induces expression of NGF receptor in the entire population of Schwann cells located distal to the injury (Taniuchi et al., 1986b). In the present study we have used immunocytochemistry, with a monoclonal antibody directed against the rat NGF receptor, to examine axotomized peripheral nerves by light and electron microscopy. We have found that (1) the NGF receptor molecules were localized to the cell surface of Schwann cells forming bands of Bungner; (2) axonal regeneration into the distal portion of sciatic nerve coincided temporally and spatially with a decrease in Schwann cell expression of NGF receptor; (3) Schwann cell NGF receptor could be induced by axotomy of NGF-independent neurons, such as motoneurons and parasympathetic neurons; and (4) the presence of axon-Schwann cell contact was inversely related to expression of Schwann cell NGF receptor. Using biochemical assays we have found that, in striking contrast to peripheral nerves, there was no detectable induction of NGF receptor in the spinal cord and brain after axotomy of NGF receptor-bearing fibers. Filtration assays of 125I-NGF binding to the induced NGF receptors of Schwann cells measured a Kd of 1.5 nM and a fast dissociation rate, both characteristics of class II receptor sites. We conclude that Wallerian degeneration induces Schwann cells, but not central neuroglia, to produce and position upon their plasmalemmal surface the class II NGF receptor molecules. The induction is ubiquitous among Schwann cells, irrespective of the type of axon they originally ensheathed. Expression of Schwann cell NGF receptor is negatively regulated by axonal contact, being induced when axons degenerate and suppressed when regenerating axons grow out along the Schwann cell surface. We propose that the induced NGF receptors function to bind NGF molecules upon the Schwann cell surface and thereby provide a substratum laden with trophic support and chemotactic guidance for regenerating sensory and sympathetic neurons.  相似文献   

16.
The expansor secundariorum is a unique smooth muscle of the avian wing that receives a dense sympathetic innervation and contains high concentrations of survival factors for sympathetic neurons. In the present study it has been possible to simultaneously examine the appearance of the neuronotrophic activity and the arrival of nerve fibres during the period of innervation. The results show that catecholamine containing nerve fibres can first be detected within the muscle on the fourteenth day of incubation (stage 40) followed by a rapid increase in the density of fibres during the next few days until the adult pattern is reached shortly before hatch. Biochemical estimation of the innervation process by measurement of dopamine beta-hydroxylase activity was supported by the histochemical findings. Estimation of neuronotrophic activity revealed that muscle from stage 40 embryos contains only low levels of activity which increases rapidly as innervation proceeds and further, that this increase in neuronotrophic activity was directly correlated with the dopamine beta-hydroxylase activities. Possible mechanisms regulating this dramatic increase in the specific activity of trophic factors are discussed.  相似文献   

17.
18.
Neuronotrophic activity accumulates in a wound cavity created in the entorhinal/occipital cortex of developing rats. These trophic factors support the survival of neurons in monolayer cultures of chick embryo spinal cord, ciliary ganglion, sympathetic ganglion and dorsal root ganglion, as well as of mouse dorsal root ganglion. Trophic activity was very low both in non-injured brain tissue and in the wound cavity 1 day post-lesion, but it increased 15- to 300-fold during the subsequent 2-5 days. Together with the trophic activity in the wound fluid were other substances which interfered with the survival of spinal cord neurons. The neuronotrophic factors appeared to be proteins immunologically distinct from mouse submaxillary nerve growth factor. Fragments of rat embryo corpus striatum placed in the cortical wound cavity immediately after its formation showed very poor subsequent survival and no innervation of the host hippocampus. However, if implantation was delayed by 3 or 6 days with respect to the time at which the receiving cavity was made, the survival was greatly improved and innervation of the host took place. The time course for the accumulation of the trophic factors in the cavity paralleled the delay leading to increased survival of brain grafts. It is suggested that the neuronotrophic activity accumulating in the wound cavity during the delay period may be responsible for the increased survival of the implants.  相似文献   

19.
Nerve growth factor (NGF) is a well-established trophic factor of sympathetic and sensory neurons during development. NGF is, however, little known to be required for the maintenance or regulation of differentiated phenotypes of matured peripheral neurons. Since trophic factors, including NGF, are currently known to be secreted by non-neuronal cells, like Schwann cells and fibroblasts, a highly pure-neuron culture is required to assess the direct action of trophic factors on neurons. We have developed a single-neuron culture from neonatal and adult rat dorsal root ganglia in serum-free conditions, and estimated the primary effect of NGF on the morphological geometry of sensory neurons. We found that NGF promoted the neurite length of neonatal sensory neurons, rather than promoting arborization (branching of neurites), while in adult matured neurons NGF significantly enhanced neurite arborizations, rather than the maximal neurite extension, distance from the cell soma to the maximum margin of the territory of neurite extension. Total neurite length, the summed length of all neurites per neuron was significantly increased by NGF in both neonatal and adult neurons. NGF also increased the size of neuronal soma independent of neuronal maturation. Neonatal sensory neurons tended to die in 1 week despite the presence of NGF. In contrast, some adult sensory neurons were alive for more than 2 weeks in the absence of NGF. These results indicate that NGF more than simply accelerates a pre-existing developmental program in the matured stage, and that the promotion of neurite arborization by NGF in adult sensory neurons suggests that NGF may have some role in peripheral nerve regeneration via promotion of axonal sprouting.  相似文献   

20.
S D Skaper  S Varon 《Brain research》1986,389(1-2):39-46
Chick embryo dorsal root ganglion (DRG) neurons can be supported in vitro by nerve growth factor (NGF) and ciliary neuronotrophic factor (CNTF). Pyruvate is also required for survival of neurons from embryonic day 8 (E8) chick ciliary ganglia and from several chick and rat embryonic central nervous system sources. Here we have examined the survival requirements of chick DRG neurons between E6.5 and E15. These DRG neurons, initially dependent only on NGF, become dependent also on CNTF and later on increasingly independent from both factors. Pyruvate nearly doubles neuronal survival at all ages under all conditions. The pyruvate concentration permitting this additional survival was reduced two-fold with serine present. In the presence of polyornithine-bound laminins, nearly all seeded neurons were rescued by pyruvate plus NGF (E8 on), or pyruvate plus CNTF (E10 on), or pyruvate without trophic factors (E15). The same maximal survival was achieved without pyruvate by supplying E10 or older neurons with both NGF and CNTF. Unmodified polyornithine substrata yielded about one-half this number of surviving neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号