首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BACKGROUND: The isolation of CD34+ cells from mobilized peripheral blood is being increasingly used in the setting of allogeneic or autologous hematopoietic cell transplantation. Investigation of variables that may influence the effectiveness of CD34+ cell selection is of interest. STUDY DESIGN AND METHODS: Fifty-one CD34+ cell selections from peripheral blood progenitor cells (PBPCs) (39 allogeneic and 12 autologous) were performed using a magnetic cell separator (Isolex 300i, Baxter), including version 2.0 software. The results obtained were analyzed for different processing variables. The feasibility of transplanting these isolated CD34+ cells was also analyzed. RESULTS: The isolated CD34+ cell fraction had a median purity of 88.9 percent (range, 47.8-98.3). The median recovery of CD34+ cells was 45.1 percent (13.8-76.2), and the median colony-forming unit- granulocyte-macrophage (CFU-GM) content was 17. 2 percent (0.8-58.6). Logarithms of T- and B-cell depletion had median values of 3.7 and 2.8, respectively. The version 2.0 software of the Isolex 300i gave a higher CD34+ cell recovery in the enriched cell fraction (median 57.8%) than did version 1.11 (39.4%) or 1.12 (44.4%) (p = 0.01). The use of recombinant human deoxyribonuclease I during cell processing yielded more CD34+ cells (53% vs. 41%, p = 0. 01) and higher purity (92.8% vs. 87%, p = 0.03). There was a correlation between the percentage of CD34+ cells labeled with the monoclonal antibody 8G12 clone and the percentage of CD34+ cells labeled with the monoclonal antibody used during the processing technique (9C5 clone) in the initial, enriched, and depleted CD34+ cell fractions (R(2) = 0.95; 0.92; 0.78, p< 0.005, respectively). Median times for recovering >0.5 x 10(9) per L of granulocytes and >20 x 10(9) per L of platelets were 13 and 16 days in the allograft patients and 13 and 14 days in the autograft patients. CONCLUSION: CD34+ cells can be highly and effectively isolated from allogeneic and autologous grafts by use of this automated technique, with a high grade of T- and B-cell depletion. These purified CD34+ cell components can engraft normally.  相似文献   

2.
BACKGROUND: Selection of CD34+ cells by specific immunoselection leads to a significant loss of those cells. The factors influencing the yield and purity are not well identified. The results of CD34+ selection from peripheral blood progenitor cells (PBPCs) with high and low platelet contamination that are harvested with two different cell separators are reported. STUDY DESIGN AND METHODS: A progenitor cell concentrator (Ceprate SC, CellPro) was used to select CD34+ cells from 41 PBPC concentrates from 23 consecutive patients with relapsed non-Hodgkin's lymphoma (n = 3), breast cancer (n = 17), and multiple myeloma (n = 3). PBPC collection was performed by using two cell separators (CS3000 Plus, Fenwal: Group A, n = 11; and Spectra, COBE: Group B, n = 9). To reduce platelet contamination in the Spectra PBPC concentrates, an additional low-speed centrifugation was performed before CD34+ cell selection (Group C, n = 3). Leukapheresis components were stored overnight at 4 degrees C and combined with the next day's collection before the CD34+ selection procedure in 19 patients. RESULTS: A median of 1.5 leukapheresis procedures per patient were performed. Pooled PBPC concentrates showed no statistical difference in median numbers of white cells and CD34+ cells in Groups A and B: 3.2 (0.8-9.2) versus 4.4 (1.6-8. 3) x 10(10) white cells per kg and 15.0 (4.7-24.0) versus 12.0 (5. 6-34.0) x 10(6) CD34+ cells per kg. Platelet contamination was significantly higher in Group B: 0.67 (0.15-2.4) versus 2.3 (0.5-7. 1) x 10(11) (p = 0.0273). After the selection process, there was a significantly greater loss of CD34+ cells in Group B than in Group A: 39.1 versus 63.2 percent (p = 0.0070), with a median purity of 78. 0 percent versus 81.0 percent. An additional low-speed centrifugation before CD34+ cell selection seemed to reduce CD34+ cell loss in Group C with 16.9, 31.9, and 37.5 percent, respectively. CONCLUSION: CD34+ cell selection from PBPC concentrates resulted in an increased loss of CD34+ cells in concentrates with a higher platelet content. To improve CD34+ yield, PBPC concentrates with an initially low platelet contamination should be used, or additional low-speed centrifugation should be performed.  相似文献   

3.
BACKGROUND: To extend allogeneic HPC transplantation to a greater range of patients, the use of partially matched related donors is under development. Because of the inherently higher degree of histoincompatibility in such transplants, there is increased risk of GVHD as well as of graft failure. Ex vivo depletion of donor-derived T-lymphocytes from PBPCs is one of the most effective methods of preventing GVHD. Thus far, individual centers have used custom-developed procedures to deplete the graft of T cells that are responsible for alloreactivity, often employing relatively impure, nonstandardized reagents such as soybean agglutinin and complement. In addition, with improved methods of T-cell depletion, it has been difficult to accurately assess the number of T cells remaining. Because different centers have used different protocols to assay T cells, it has been difficult to reproduce and validate the results between institutions, and this has limited direct comparison of data between centers. STUDY DESIGN AND METHODS: A standardized approach for T-cell depletion was developed by using a Good Manufacturing Practice-manufactured magnetic cell separator (Isolex 300i, Nexell Therapeutics) and commercially available OKT3 antibody. T-cell depletion was performed on PBPCs from six haploidentical donors. RESULTS: CD34+ cell recovery was 47 percent (range, 31-63%) with a median purity of 94 percent (range, 75-99%) and median T-cell log depletion of 4.72 (range, 3.90-5.83). Because this high degree of depletion makes it challenging to accurately quantitate the remaining T cells, two highly sensitive flow cytometric protocols were developed, each of which accurately detects T cells with a sensitivity of 2 per 10,000 (0.02%). The purified CD34+ cells administered to the patients (dose range, 6.13-13.50 x 10(6)/kg) provided rapid neutrophil and platelet engraftment. CONCLUSION: With the Isolex 300i and a MoAb directed against T cells, a high degree of T-cell depletion is obtained. Sensitive, accurate, and reproducible assays have now been developed for T-cell enumeration in these highly purified cell populations.  相似文献   

4.
BACKGROUND: Cord blood is a useful source of HPCs for allogeneic transplantation. HPC ex vivo expansion of a cord blood graft has been proposed as a way to increase the speed of engraftment and thus to reduce the occurrence of transplantation-related complications. OBJECTIVE: The purpose of this study was to optimize a method for CD34+ cell selection of thawed cord blood grafts under clinical grade conditions, intended for application in a static, serum-free expansion culture. MATERIAL AND METHODS: Twelve samples were thawed and washed with dextran, albumin, and rHu-deoxyribo-nuclease I (RHu-DNase) to avoid clumping. CD34+ cells were selected by using a sensitized immunomagnetic bead and 9C5 MoAb complex. A buffer containing rHu-DNase, citrate, albumin, and immunoglobulin in PBS was used during the procedure. CD34+ cells were eluted and detached by using an immunomagnetic cell selection device. Cells from the enriched fraction were cultured for 6 days in serum-free medium supplemented with rHu-SCF, rHu-IL-3, rHu fetal liver tyrosine kinase 3 ligand, and rHu thrombopoietin (50 ng/mL each). Cells were expanded in well plates and in two semipermeable bags. RESULTS: A mean of 1.94 x 10(6) (+/- 1.55) CD34+ cells was obtained, yielding a CD34+ cell recovery of 52 +/- 12 percent. Nonspecific loss of CD34+ cells was 32 +/- 10 percent. CFU-GM and BFU-E/CFU-Mixed recoveries were 33 +/- 15 percent and 27 +/- 12 percent, respectively. CD34+ cells obtained were functionally comparable with fresh CD34+ cells selected for clonogenic potential. The capacity for expansion was not significantly different in the two types of bags studied. HPCs in wells were expanded 33 +/- 14-fold for CD34+ cells and 42 +/- 19-fold for overall colonies. The expansion rates observed in wells were significantly superior to those obtained in bags. CONCLUSION: The feasibility of a clinical-scale cord blood selection procedure based on a direct immunomagnetic method after thawing, followed by an ex vivo expansion culture using semipermeable bags, is shown. After 6 days of expansion, it was possible to generate a 9-fold increase in CD34+ cells, a 6-fold increase in CFU-GM and a 13-fold increase in BFU-E/CFU-Mixed colonies.  相似文献   

5.
Six patients who were to undergo autologous PBSC transplantation with positively selected CD34+ cells were included in this study to compare the efficiency of two devices for clinical grade stem cell selection, the Isolex 300i (Baxter, Munich, Germany) and CEPRATE SC (CellPro, Bothell, WA). PBSC were mobilized by chemotherapy and G-CSF and were collected by leukapheresis on a CS3000 cell separator on 2 consecutive days. The two apheresis products were pooled for CD34 selection. The pooled apheresis products from each patient were divided into two equal portions to be separated on each of the two devices. Cell selection was performed according to the manufacturers' instructions. Enumeration of CD34+ cells was performed by flow cytometry using the HPCA-2 MAb. Purity and yield were significantly better with Isolex than with CEPRATE. Median purity was 93.0% (range 80%-98%) for Isolex and 61.5% (range 27%-72%) for CEPRATE (p = 0.03); median yields for Isolex and for CEPRATE were 48.0% (range 18%-73%) and 23.0% (range 17%-29%), respectively (p = 0.03). The number of CD34+ cells/kg body weight was also significantly higher with Isolex (median 3.8x10(6), range 1.7-5.2) compared with CEPRATE (median 2.35x10(6), range 0.7-4.3) (p = 0.03). Thus, the Isolex 300i device gave products of higher purity and recovered a higher proportion of the CD34+ cells in the harvest before separation. The yield was still poor with both devices, however, and further optimization of the technique for clinical grade stem cell selection is warranted.  相似文献   

6.
BACKGROUND: The collection of peripheral blood stem and progenitor cells (PBPCs) for transplantation can be time-consuming and expensive. Thus, the utility of counting CD34+ cells and white cells (WBCs) in the peripheral blood was evaluated as a predictor of CD34+ cell yield in the apheresis component. STUDY DESIGN AND METHODS: The WBC and CD34+ cell counts in the peripheral blood and the apheresis components from 216 collections were assessed. Sixty-three patients underwent mobilization with chemotherapy plus filgrastim, and 17 patients and 14 allogeneic PBPC donors did so with filgrastim alone. The relationship between the number of WBC and CD34+ cells in the peripheral blood and in the apheresis component was analyzed by using rank correlation and linear regression analysis. RESULTS: The correlation coefficient for CD34+ cells per liter of peripheral blood with CD34+ cell yield (x 10(6)/kg) was 0.87 (n = 216 collections). This correlation existed for many patient and collection variables. However, patients with acute myeloid leukemia had fewer CD34+ cells in the apheresis component at any level of peripheral blood CD34+ cell count. Components collected from patients with CD34+ cell counts below 10 x 10(6) per L in the peripheral blood contained a median of 0.75 x 10(6) CD34+ cells per kg. When the WBC count in the blood was below 5.0 x 10(9) per L, the median number of CD34+ cells in the peripheral blood was 5.6 x 10(6) per L (range, 1.0-15.5 x 10(6)/L). A very poor correlation was found between the WBC count in the blood and the CD34+ cell yield (p = 0.12, n = 158 collections). CONCLUSION: The number of CD34+ cells, but not WBCs, in the peripheral blood can be used as a predictor for timing of apheresis and estimating PBPC yield. This is a robust relationship not affected by a variety of patient and collection factors except the diagnosis of acute myeloid leukemia. Patients who undergo mobilization with chemotherapy and filgrastim also should undergo monitoring of peripheral blood CD34+ cell counts, beginning when the WBC count in the blood exceeds 1.0 to 5.0 x 10(9) per L.  相似文献   

7.
CD3 4 细胞的分离纯化在自体外周血干细胞、异基因骨髓移植 /外周血干细胞移植及干细胞研究中具有重要的应用价值。为了摸索大量分选CD3 4 细胞的方法 ,本研究应用Isolex3 0 0i磁性分选系统富集CD3 4 细胞 ,采用流式细胞术监测分选前后细胞表面标志 ,经CD3 4 细胞体外增殖实验及克隆形成实验验证分选获得的CD3 4 细胞生物学活性。结果显示 ,所完成的 5例次自体外周血富集CD3 4 细胞时 ,先收获单个核细胞约 ( 3 .5 -6.0 )× 10 10 ,CD3 4 细胞占单个核细胞百分率为 ( 0 .5 5 - 1.2 ) % ;收获的CD3 4 阳性细胞总数为 ( 2 - 3 )× 10 8,纯度为 ( 75 - 85 ) % ,回收率为 ( 4 0 - 65 ) %。体外实验表明 ,在SCF IL 3 FL TPO EPO存在下 ,经过 3 - 4天培养 ,可扩增 2 - 3倍 ;经CFU GM、BFU E集落形成实验显示具有形成集落的能力 ,证实分选后细胞具有造血祖细胞生物活性。结论 :应用Isolex3 0 0iCD3 4 细胞分选仪可以高效大量富集CD3 4 细胞 ,适于临床应用。  相似文献   

8.
BACKGROUND: Cord blood from deliveries at term can be used for HPC transplantation. The objective of this study was to determine the amounts of cord blood nucleated cells (NCs) and HPCs that were collectable from preterm deliveries. STUDY DESIGN AND METHODS: Cord blood collected from preterm deliveries between 22 and 36 weeks of gestation was compared with regard to volume, NC count (/mL), CD34+ cell count (/mL), and the NC and CD34+ cell counts per cord blood sample and at different gestational ages. RESULTS: A correlation was found between gestational age and NC count (r = 0.52, p<0.001), and an inverse relation was found between gestational age and CD34+ cell count (r = - 0.68, p<0.001). The CD34+ cell count per cord blood sample was independent of gestational age (r = - 0.13, p = NS), and no significant difference between early (22-32 week) and late (33-36 week) preterm deliveries was found (p = 0.870). Comparison with published data from cord blood transplantations revealed that up to one-third of preterm samples contained at least as many NCs (or CD34+ cells) as the median cell dose transplanted (calculated for the median recipient weight) in the respective study. Furthermore, 77 percent of all preterm samples contained at least 1 x 10(7) NCs (and 42% at least 1 x 10(5) CD34+ cells) per kg for transplantation in a recipient of 20-kg body weight, which corresponds to the lower threshold of cells per kg in the graft recommended by Eurocord. CONCLUSION: Preterm delivery should not be a reason to exclude cord blood collection if allogeneic cord blood transplantation in a sibling is planned.  相似文献   

9.
BACKGROUND: Malignant cells may contribute to relapse after autologous hematopoietic cell transplantation The effectiveness of a double immunomagnetic purging strategy combining CD34-positive with B-negative cell selection to purge peripheral blood progenitor cells (PBPCs) from patients with chronic lymphoproliferative disorders has been analyzed. STUDY DESIGN AND METHODS: Twenty-two CD34+ cell selections from patients with follicular lymphoma (n = 14), chronic lymphocytic leukemia (n = 6), mantle cell lymphoma (n = 1), and splenic marginal zone lymphoma (n = 1) were performed by use of a magnetic cell selector followed by a negative cell selection step with anti-CD19 monoclonal antibody bound to immunomagnetic beads. RESULTS: The PBPC components contained median CD34+ cells of 1.24 percent (range, 0.38-3.92%) and CD19+ cells of 1.83 percent (range, 0.06-69.7%). After positive selection (n = 22), 49 percent (range, 16-72%) of CD34+ cells were recovered with a purity of 93 percent (range, 24-99%). The double-positive and -negative selections (n = 20) yielded 57.5 percent of CD34+ cells (range, 33.4-79.4%) with a purity of 95 percent (range, 63-99%). Logarithms of B-cell reduction in the CD34+-cell-enriched B-cell-depleted component had a median value of 3.63 (range, 2.74-4.84 log) and CD19+ and CD5+ cells for chronic lymphocytic leukemia patients with more than 4.56 log (>3.6-5.6 log). Of 13 PBPC components that had a tumor-specific clonal signal, 10 became PCR negative after the double-selection procedure. CONCLUSION: Combined positive and negative magnetic cell selection achieves a high grade of tumor cell reduction with up to 77 percent of the grafts being negative for tumor-specific clonal signal by PCR analysis. This technique preserves an adequate recovery of progenitor cells able to engraft.  相似文献   

10.
Tsang KS  Li CK  Wong AP  Leung Y  Lau TT  Li K  Shing MM  Chik KW  Yuen PM 《Transfusion》1999,39(11-12):1212-1219
BACKGROUND: Various open and semi-closed methods are used for red cell (RBC) depletion and hematopoietic progenitor cell (HPC) enrichment of bone marrow (BM) in vitro, but with variable efficacy. A simple, efficient, and safe method using dextran 110k was developed. STUDY DESIGN AND METHODS: An equal volume of 4.5-percent dextran was applied to major ABO-incompatible BM in transfer bags and sedimentation was allowed for 30 minutes. RBCs, nucleated cells (NCs), and mononuclear cells (MNCs) from BM allografts before and after dextran sedimentation (DS) were counted. Flow cytometry, short-term cultures, and long-term cultures were performed to assay the respective recovery of CD34+ cells, colony-forming units (CFUs), and long-term culture-initiating cells (LTC-ICs). RESULTS: Sixteen BM collections were processed.The mean volume was 666 mL (range, 189-1355 mL).The mean +/-1 SD post-DS NC, MNC, CD34+ cell, and CFU counts per kg of the recipient's body weight were 4.11 +/-1.74 x 10(8), 8.98 +/- 3.68 x 10(7), 2.90 +/- 1.95 x 10(6), and 2.03 +/- 2.01 x 10(5), respectively, with the corresponding post-DS recovery being 90.6 percent, 90 percent, 92.4 percent, and 100.8 percent. The numbers of LTC-ICs in cultures (up to 12 weeks) of pre-DS and post-DS samples of five BM allografts were comparable (p = 0.91). Residual RBCs were 5.1 +/- 4.6 (0.1-14) mL with depletion of 96.5 +/- 3.2 percent. There was no significant difference in the mean absolute RBC count in post-DS BM allografts and in four ficoll-treated BM allografts (8.09 x 10(10) vs. 4.9 x 10(9); p = 0.206) and in eight major ABO-incompatible peripheral blood HPC collections (8.09 x 10(10) vs. 9.81 x 10(10); p = 0.87). No posttransplant hemolysis was encountered. Engraftment occurred at 22 +/- 7 days, which is similar to that of four transplants with ficoll-treated BM allografts (22 +/- 9; p = 0.611) and 54 unprocessed BM allografts (19 +/- 6; p = 0.129). CONCLUSION: DS is an efficient method of depleting RBCs in major ABO-incompatible BM allografts without significant loss of HPCs.  相似文献   

11.
Tsang KS  Li K  Huang DP  Wong AP  Leung Y  Lau TT  Chang AM  Li CK  Fok TF  Yuen PM 《Transfusion》2001,41(3):344-352
BACKGROUND: The results of current processing procedures for reducing volume and recovering HPCs from umbilical cord blood (UCB) before cryopreservation vary. STUDY DESIGN AND METHODS: Dextran was added to bags containing UCB, followed by sedimentation for 30 minutes. The processed UCB was then frozen. RBCs, nucleated cells, MNCs, CD34+ cells, CFUs and long-term culture-initiating cells (LTC-ICs), viability, and sterility were evaluated. Fractionations in ficoll-hypaque and hydroxyethyl starch (HES) were also run in parallel for comparison. RESULTS: The nucleated cell (NC) recovery and RBC depletion were 86.1 percent and 94.3 percent, respectively (n = 50). Sedimentation with dextran also enabled the recovery of 80.7 percent MNCs and 82.6 percent CD34+ cells (n = 30). Postsedimentation samples displayed no impairment of CFU growth (n = 42, 108.7% CFU-C, 104.6% CFU-GEMM, 107% CFU-GM, and 95.7% BFU-E). Long-term cultures on five paired samples before and after sedimentation generated similar numbers of CFU-C each week (p = 0.88). Limiting dilution analysis of 12 paired pre/postsedimentation samples showed comparable median proportions of LTC-ICs (1/6494 vs. 1/5236; p = 0.18). The cell viability of 24 samples of thawed UCB after sedimentation was 90.3 percent (77.5-96%) and the recovery of CFU-C, CFU-GEMM, CFU-GM, and BFU-E of 11 postsedimentation samples was 93.4 percent, 84.9 percent, 92.3 percent, and 83.4 percent, respectively. NC recovery was significantly higher after treatment with dextran than with ficoll-hypaque (n = 30; 88.5% vs. 29.1%; p<0.005) and HES treatment (n = 21; 88.5% vs. 76.4%; p = 0.004). However, MNCs, CD34+ cells, CFUs, LTC-ICs, and RBCs were comparable. Two cycles of dextran sedimentation recovered 93.9 percent of NCs with cell viability of 98.6 percent (96.5-100%), whereas 11.7 percent of RBCs were retained (n = 20). The final yield volume was 33.5 (28-41) mL. CONCLUSION: In a semi-closed system, dextran sedimentation enabled volume reduction of UCB without significant quantitative and qualitative losses of HPCs.  相似文献   

12.
A total of 201 patients with breast cancer, ovarian cancer, or hematological malignancies underwent mobilization of peripheral blood stem cells (PBSC) using chemotherapy and granulocyte-colony stimulating factor (G-CSF). Stem cell products were collected using the Baxter CS3000 pheresis machine. The Baxter Isolex 300i was used to perform 240 CD34(+) cell separations on the apheresis products. Factors affecting yield and purity of the CD34(+) cells were analyzed. Overall yield was 55% and overall purity was 91.7%. T cell contamination was limited to 0.43% of total cells. Variables including red blood cells (RBC) concentration, platelet concentration, CD34(+) cell concentration, total WBCs selected, and time until processing had little effect on yields and purities. Installation of version 2.5 of the software in the Isolex 300i showed a modest improvement in yield and purity. Patients were reinfused with the cryopreserved CD34(+) selected cells following high-dose chemotherapy. No infusion-related side effects were noted. Analysis of engraftment data using the CD34(+)-selected cells revealed an increased risk of delayed or failed platelet engraftment when <5.0 x 10(6) CD34(+) cells per kilogram were transplanted. The Baxter Isolex 300i provides reproducible CD34(+) cell purification over a wide range of starting conditions. To provide prompt engraftment, >5.0 x 10(6) CD34(+) cells per kilogram should be infused for transplantation.  相似文献   

13.
Xu R  Reems JA 《Transfusion》2001,41(2):213-218
BACKGROUND: Because of the limitation of cell numbers associated with cord blood harvests, there is a need to determine the efficacy of using ex vivo-expanded cord blood cells in a transplantation setting. In this study, limiting-dilution analysis was used in nonobese diabetic mice with severe combined immunodeficiency (NOD/SCID) to compare the engraftment potential of progeny cells expressing the CD34+ phenotype after expansion with that of uncultured CD34+ cells. STUDY DESIGN AND METHODS: Cord blood CD34+ cells were cultured in Iscove's modified Dulbecco medium supplemented with 10-percent fetal calf serum (FCS) and IL-6, SCF, megakaryocyte growth and development factor, and Flt3 ligand. The resulting ex vivo-expanded products were assessed for total numbers of nucleated cells, CD34+ cells, and CFUs and long-term culture-initiating cell activity. The engraftment potentials of cultured progeny CD34+ cells and uncultured CD34+ cells were determined by using NOD/SCID mice. RESULTS: After 14 days of culture, total nucleated cell counts increased over input values by 180 +/- 59-fold, CD34+ cell numbers by 44 +/- 13-fold, CFU activity by 23 +/- 5-fold, and long-term culture-initiating cell activity by 20 +/- 6-fold (mean +/- SD; n = 6). The frequency of SCID-repopulating cells (SRC) in mice transplanted with uncultured products was 1 per 20,000 CD34+ cells (95% CI, 1:10,000-1:38,000) and that in mice receiving ex vivo-expanded products was 1 per 418,000 progeny CD34+ cells (95% CI, 1:158,000-1:1,100,000). Taken together, these data indicated that, after 2 weeks of culture, there was a modest twofold increase in the total number of SRCs. However, the levels of human CD45 cell engraftment in NOD/SCID recipients of progeny CD34+ cells were significantly lower than those in mice receiving equivalent numbers of uncultured CD34+ cells (p<0.05). CONCLUSION: Umbilical cord blood progeny cells retaining a CD34+ phenotype after ex vivo expansion have less engraftment potential than do unexpanded CD34+ cells.  相似文献   

14.
BACKGROUND: Immunomodulatory effects of UV light have increasingly become a focus in transfusion medicine, BMT and transplantation immunology. In the transplant setting, the use of UVB radiation may reduce or abolish T-cell activation without compromising either bone marrow (BM) engraftment or graft-versus-leukemia effect. In this study, BM and apheresis-derived peripheral blood HPCs were used to investigate the effects of UVB on colony-forming ability, CD34+ cell viability, and growth potential, as well as on the secretion of MNC cytokines and the expression of cell surface markers and adhesion molecules. STUDY DESIGN AND METHODS: After UVB radiation, enriched populations of T cells and antigen-presenting cells (APCs) were treated with PHA, and the MNC response was measured, as was colony-forming ability. CD34+ cells were quantified and their growth potential was determined in culture. Next, T-cell activation status, cell adhesion molecule and cell surface activation marker expression, and cytokine profiles were evaluated, and cytokine mRNA was quantitated. Parallel studies were done in unirradiated control cell populations. RESULTS: Low-dose (10 mJ/cm(2)) UVB mitigates MNC proliferative responses by 94 percent while maintaining 60 and 80 percent of colony-forming ability in peripheral blood HPC and BM preparations, respectively, and >50 percent of colony-forming ability in CD34+ cell-enriched samples. Low-dose UVB radiation also significantly reduces T-cell production of TNFalpha, TNFalpha mRNA, TNFbeta, IL-2, and IL-6 and downregulates T-cell expression of CD28, CD25, CD69, and intercellular adhesion molecule 1. CONCLUSION: These findings have shown that a "window" of low-dose UVB radiation (10 mJ/cm(2)) exists, at which BM- and peripheral blood-derived MNC proliferation is inactivated, while the HPCs are relatively spared. UVB light selectively affects T cells, while APCs are resistant to low doses of UVB. UVB radiation also alters the expression of some cell surface markers and cytokines that are important in T-cell activation pathways. Reduction of T-cell activation without cytocidal effect may allow UVB radiation to become an immunomodulating agent in BM or HPC transplantation.  相似文献   

15.
BACKGROUND: The purpose of this study was to analyze the CD34 cell collection efficiency (CE) of automated leukapheresis protocols of two blood cell separators (Spectra, COBE [AutoPBSC protocol] and AS104, Fresenius [PBSC-Lym, protocol]) for peripheral blood progenitor cell (PBPC) harvest in patients with malignant diseases. STUDY DESIGN AND METHODS: PBPCs were collected by the Spectra AutoPBSC protocol in 95 patients (123 collections) and the AS104 PBSC-Lym protocol in 87 patients (115 harvests). Patients underwent a median of one (range, 1-4) conventional-volume apheresis procedure of 10.8 L (9.0-13.9) to obtain a target cell dose of > or =2.5 x 10(6) CD34+ cells per kg. RESULTS: The median overall CD34 CE was significantly better on the AS104 than on the Spectra: 55.8 percent versus 42.4 percent (p = 0.000). This was also true below (59.2% vs. 50.1%; p = 0.022) and above (51.2% vs. 41.3%; p = 0.001) the preleukapheresis threshold of 40 CD34+ cells per microL needed to collect a single-apheresis autograft. However, at > or =40 circulating CD34+ cells per microL, both cell separators achieved the target of > or =2.5 x 10(6) CD34+ cells per kg. The CD34 CE dropped significantly, from 59.2 percent at <40 cells per microL to 51.2 percent at > or =40 cells per microL on the AS104 (p = 0.017) and from 50.1 percent to 41.3 percent on the Spectra (p = 0.033). CONCLUSION: Whereas the CD34 CE was significantly different with the AS104 and the Spectra, the CD34 CE of both machines correlated inversely with peripheral blood CD34+ cell counts, showing a significant decline with increasing numbers of circulating CD34+ cells. Nevertheless, at > or 40 preapheresis CD34+ cells per microL, sufficient hematopoietic autografts of > or =2.5 x 10(6) CD34+ cells per kg were harvested by a single conventional-volume (11 L) leukapheresis on both cell separators.  相似文献   

16.
BACKGROUND: Selection of CD34+ PBPCs has been applied as a method of reducing graft contamination from neoplastic cells. This procedure seems to delay lymphocyte recovery, while myeloid engraftment is no different from that with unselected PBPC transplants. STUDY DESIGN AND METHODS: Lymphocyte recovery was studied in two groups of patients who underwent autologous CD34+ PBPC transplant with two different technologies (Ceprate SC, Cellpro [n = 17]; CliniMACS, Miltenyi Biotech [n = 13]). The median number of CD34+ cells transfused was 3.88 x 10(6) per kg and 3.32 x 10(6) per kg, respectively. Residual CD3 cells x 10(6) per kg were 4.97 and 0.58, respectively (p = 0.041). Residual CD19 cells x 10(6) per kg were 1.33 and 0.73, respectively (NS). RESULTS: No differences were found between the two groups in total lymphocyte recovery to >0.5 x 10(9) per L, which achieved a stable count by Day 30. During the study period, the CD4+ cell count remained below 0.2 x 10(9) per L, and the B-cell subset showed a trend toward normalization. CD3/HLA-DR+ and CD16/56 increased markedly in both groups by Day 30. An increase in CMV (13%) and adenovirus (17.4%) infection was found in both groups. CONCLUSION: Both CD34+ cell selection technologies used here determined an excellent CD34+ cell purity and an optimal depletion of T cells. The high rate of viral complications is probably due to the inability of residual T cells left from the CD34+ cell selection to generate, immediately after transplant, an adequate number of virus-specific lymphocytes.  相似文献   

17.
BACKGROUND: A new automated apheresis system has recently been reported as useful in improving peripheral blood HPC collection in adults. The aim of this study has been to verify the utility of this system (AutoPBSC, COBE BCT) for standard leukapheresis and for LVL in the pediatric setting. STUDY DESIGN AND METHODS: A prospective study was set up in 29 leukapheresis procedures carried out in 26 children with malignant diseases and body weight under 40 kg who had undergone mobilization with G-CSF or with G-CSF and chemotherapy. Leukapheresis procedures were performed under two protocols, depending on the total blood volume processed: standard leukapheresis (< or=3) and LVL (>3). The need to prime the tubing set with blood was determined, and the inlet flow rate, collection time, recruitment of CD34+ cells, CD34+ cell collection efficiency, component volume, leukapheresis cell composition, and preapheresis and postapheresis peripheral blood counts were measured. Paired t test, Spearman's correlation coefficient, and the Mann-Whitney U test were employed for statistical analysis. RESULTS: Because of the low extracorporeal volume (167 mL) of the tubing set of the automated blood processor, priming was necessary in only 2 of 26 patients, both weighing under 10 kg. LVL showed better CD34+ cell yield (7.5 vs. 2.3 x 10(6)/kg; p = 0.047), higher recruitment (2.1 vs. 0.9; p = 0.002), and greater collection efficiency (50% vs. 33%; p = 0.005) than standard leukapheresis. No significant differences were found between groups in collection time. In LVL procedures, CD34+ cell collection efficiency and recruitment were not significantly influenced by the inlet flow rate. CONCLUSION: The AutoPBSC is a reliable system for peripheral blood HPC collection in children mainly when used in combination with LVL. The major advantage of this software is a reduced need for priming. LVL allows better CD34+ cell collection efficiency, enhanced recruitment, and improved CD34+ cell yield.  相似文献   

18.
BACKGROUND: Protocols for the expansion of human umbilical cord blood (UCB) progenitors begin with the selection of CD34+ cells from stored frozen and thawed units. Use of an immunomagnetic selection procedure within a closed blood bag system for volume-reduced UCB transplants was evaluated, and the influence of CD34 cell selection on in vivo engraftment potential was studied. STUDY DESIGN AND METHODS: Eleven thawed buffy coat-processed UCB units were processed within a standard blood bag with a washing solution. In six independent experiments, the same dosage of 2 x 104 CD34+ cells from paired selected and nonselected samples was transplanted into NOD-SCID mice. In two experiments, cells from the negative fraction were also transplanted. RESULTS: The purity of CD34+ cells after selection was correlated with the removal of supernatant after the first washing step and therefore with adequate removal of damaged or dead cells (r=0.86, p < 0.01). Mice transplanted with unselected UCB cells had more human cells within their marrow than animals transplanted with selected cells (8.6 +/- 5.9% selected group vs. 19.8 +/- 14.2% unselected group; p=0.04), whereas no engraftment could be observed transplanting cells from the two negative fractions. A higher percentage of human CD45+ cells in the unselected group were found to be positive for CD38, CD14, CD33, and CD19, indicating a higher potential for these unselected progenitors to differentiate into myeloid cells and B cells. CONCLUSIONS: Processing of volume-reduced and thawed UCB transplants within a closed-bag system before immunomagnetic CD34+ cell selection allows for the preparation of CD34+ cells of significant purity at technically useful cell recoveries. However, these experiments indicate a potential impairment of engraftment capacity for the CD34+ cell-enriched fraction.  相似文献   

19.
Donor age-related differences in PBPC mobilization with rHuG-CSF   总被引:1,自引:0,他引:1  
BACKGROUND: Data on the administration of rHuG-CSF to normal donors <18 years old are very limited. STUDY DESIGN AND METHODS: The results of rHuG-CSF administration to 61 donors <18 years old (Group A) were retrospectively evaluated and compared with results from 353 donors > or = 18 years old (Group B) who are included in the Spanish National Donor Registry. The mean age (range) in Group A and B was 14 (1-17) and 38 (18-71) years, respectively (p<0.001). The mean dose of rHuG-CSF was 10 microg per kg per day (range, 9-16) during a mean of 5 days (range, 4-6). Central venous access was placed more frequently in younger donors (25% vs. 6%; p<0.001). RESULTS: The mean number of CD34+ cells collected was 7.6 and 6.9 x 10(6) per kg of donor's body weight in Group A and B, respectively. Fifty-six percent of Group A donors needed only one apheresis to achieve > or = 4 x 10(6) CD34+ cells per kg versus 39 percent of Group B donors (p = 0.01). Side effects were more common in Group B (71% vs. 41%; p<0.001). CONCLUSION: The administration of rHuG-CSF to donors <18 years old leads to CD34+ cell mobilization in a pattern similar to that observed in adults. Greater age was associated with a more frequent requirement for more than one apheresis to achieve a similar number of CD34+ cells.  相似文献   

20.
BACKGROUND: Mobilization with chemotherapy and G-CSF may result in poor peripheral blood HPC collection, yielding <2 x 10(6) CD34+ cells per kg or <10 x 10(4) CFU-GM per kg in leukapheresis procedures. The best mobilization strategy for oncology patients remains unclear. STUDY DESIGN AND METHODS: In 27 patients who met either the CD34 (n = 3) or CFU-GM (n = 2) criteria or both (n = 22), the results obtained with two successive strategies-that is, chemotherapy and G-CSF at 10 microg per kg (Group 1, n = 7) and G-CSF at 10 microg per kg alone (Group 2, n = 20) used for a second mobilization course-were retrospectively analyzed. The patients had non-Hodgkin's lymphoma (5), Hodgkin's disease (3), multiple myeloma (5), chronic myeloid leukemia (1), acute myeloid leukemia (1), breast cancer (6), or other solid tumors (6). Previous therapy consisted of 10 (1-31) cycles of chemotherapy with additional chlorambucil (n = 3), interferon (n = 3), and radiotherapy (n = 7). RESULTS: The second collection was undertaken a median of 35 days after the first one. In Group 1, the results of the two mobilizations were identical. In Group 2, the number of CD34+ cells per kg per apheresis (0.17 [0.02-0.45] vs. 0.44 [0.11-0.45], p = 0. 00002), as well as the number of CFU-GM (0.88 [0.00-13.37] vs. 4.19 [0.96-21.61], p = 0.00003), BFU-E (0.83 [0.00-12.72] vs. 8.81 [1. 38-32.51], p = 0.00001), and CFU-MIX (0.10 [0.00-1.70] vs. 0.56 [0. 00-2.64], p = 0.001134) were significantly higher in the second peripheral blood HPC collection. However, yields per apheresis during the second collection did not significantly differ in the two groups. Six patients in Group 1 and 18 in Group 2 underwent transplantation, and all but one achieved engraftment, with a median of 15 versus 12 days to 1,000 neutrophils (NS), 22 versus 16 days to 1 percent reticulocytes (NS), and 26 versus 26 days to 20,000 platelets (NS), respectively. However, platelet engraftment was particularly delayed in many patients. CONCLUSION: G-CSF at 10 microg per kg alone may constitute a valid alternative to chemotherapy and G-CSF to obtain adequate numbers of peripheral blood HPCs in patients who previously failed to achieve mobilization with chemotherapy and G-CSF. This strategy should be tested in prospective randomized trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号