首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The mechanisms by which androgens regulate fat mass are poorly understood. Although testosterone has been reported to increase lipolysis and inhibit lipid uptake, androgen effects on proliferation and differentiation of human mesenchymal stem cells (hMSCs) and preadipocytes have not been studied. Here, we investigated whether dihydrotestosterone (DHT) regulates proliferation, differentiation, or functional maturation of hMSCs and human preadipocytes from different fat depots. DHT (0-30 nM) dose-dependently inhibited lipid accumulation in adipocytes differentiated from hMSCs and downregulated expression of aP2, PPARgamma, leptin, and C/EBPalpha. Bicalutamide attenuated DHT's inhibitory effects on adipogenic differentiation of hMSCs. Adipocytes differentiated in presence of DHT accumulated smaller oil droplets suggesting reduced extent of maturation. DHT decreased the incorporation of labeled fatty acid into triglyceride, and downregulated acetyl CoA carboxylase and DGAT2 expression in adipocytes derived from hMSCs. DHT also inhibited lipid accumulation and downregulated aP2 and C/EBPalpha in human subcutaneous, mesenteric and omental preadipocytes. DHT stimulated forskolin-stimulated lipolysis in subcutaneous and mesenteric preadipocytes and inhibited incorporation of fatty acid into triglyceride in adipocytes differentiated from preadipocytes from all fat depots. CONCLUSIONS: DHT inhibits adipogenic differentiation of hMSCs and human preadipocytes through an AR-mediated pathway, but it does not affect the proliferation of either hMSCs or preadipocytes. Androgen effects on fat mass represent the combined effect of decreased differentiation of fat cell precursors, increased lipolysis, and reduced lipid accumulation.  相似文献   

3.
4.
We have isolated and characterized a fragment of the gene encoding adipose fatty acid-binding protein (gene 422) from a 3T3-L1 adipocyte genomic library. The 5'-flanking sequence of the 422 gene contains potential regulatory regions for adipose-specific expression. At position -120 there is a fat-specific element that occurs in several genes expressed as preadipocytes differentiate, and at position -393 there is a glucocorticoid regulatory element core sequence. Chimeric constructs were prepared by ligating 858 base pairs or 248 base pairs of 5'-flanking sequence and 22 nucleotides of 5'-untranslated sequence of the 422 gene to the bacterial gene encoding chloramphenicol acetyltransferase (CAT); these constructs (delta 858.CAT and delta 248.CAT) were transfected into 3T3-L1 preadipocytes. When differentiation was initiated by the adipogenic agents methylisobutylxanthine (a cAMP phosphodiesterase inhibitor), dexamethasone, and insulin, expression of both constructs increased, reaching maximal levels within 24 hr. Both constructs were maximally induced 48 hr before appreciable accumulation of the endogenous 422 mRNA. Expression of delta 858.CAT, but not of delta 248.CAT, was induced by dexamethasone, which correlates with deletion of the potential glucocorticoid regulatory element. Expression of both constructs was induced by 8-bromoadenosine 3',5'-cyclic monophosphate, thus implicating the first 248 base pairs of 5'-flanking sequence of the 422 gene in the response to cAMP. Indirect effects by the adipogenic factors on CAT protein or mRNA synthesis and turnover were ruled out, since replacing the 5'-flanking region of the 422 gene constructs with viral promoters abolished the effects of dexamethasone and 8-bromoadenosine 3',5'-cyclic monophosphate on CAT expression. We conclude that the first 858 base pairs of 5'-flanking sequence of the 422 gene contains elements that mediate activation by dexamethasone and cAMP.  相似文献   

5.
目的 研究S100A16基因在3T3-L1前脂肪细胞分化过程中的作用及机制.方法 构建过表达S100A16的慢病毒载体(PLJMI-S100A16-GFP),转染3T3-L1细胞.以Western印迹法检测S100A16正常3T3-L1细胞分化过程中S100A16的表达;采用油红O观察脂滴堆积情况;采用Western印迹和实时定量PCR方法检测前体脂肪细胞分化过程中相关基因的表达变化.免疫共沉淀方法检测S100A16是否与p53相互作用.结果 成功构建S100A16过表达3T3-L1细胞株;随着3T3-L1前脂肪细胞的分化,S100A16蛋白表达水平逐渐升高;高表达S100A16能够促进3T3-L1前脂肪细胞分化,促进甘油三酯在脂肪细胞内聚集(P<0.01),同时上调脂肪细胞分化标志基因PPARy、CCAAT增强子结合蛋白α(C/EBP-α)、脂蛋白脂酶、脂肪细胞脂肪酸结合蛋白(aP2)及脂肪酸合成酶的表达(P<0.05或P<0.01);免疫共沉淀结果提示,S100A16蛋白与p53相互作用.结论 S100A16通过抑制p53活性进而促进3T3-L1前脂肪细胞的分化.  相似文献   

6.
7.
8.
9.
10.
11.
12.
OBJECTIVE: Human adipocytes can be obtained in vitro by differentiation of human preadipocytes or mesenchymal stem cells (hMSC). Although functionally similar to freshly isolated cells, no detailed comparison of the different cell types has been performed. The antilipolytic alpha2A-adrenoceptor (AR) and the cAMP-degrading enzyme Phosphodiesterase-3B (PDE3B) have been implicated in the fine-tuning of lipolysis but little is known regarding their role in human adipocytes nor whether their expression and/or function differs in fat cells from different precursors. METHODS: The effects of alpha2A-AR and PDE3B inhibition in mature adipocytes was determined and compared to that in differentiated preadipocytes and hMSC-derived fat cells. Gene expression was determined by real-time PCR and protein expression by Western blot. RESULTS: Noradrenaline (NA) stimulated lipolysis in preadipocytes and mature adipocytes but markedly reduced lipolysis in differentiated hMSC derived-adipocytes. This was due to a potent stimulation of alpha2A-AR since co-incubation with NA and the alpha2-AR-inhibitor yohimbine restored NA-induced lipolysis. The order of Yohimbine response was hMSC>preadipocytes>mature adipocytes. Although alpha2-AR mRNA expression was highest in mature adipocytes there was no difference in alpha2A-AR protein levels between the cell types. In contrast, Galphai2 mRNA and protein expression was significantly higher in MSC-derived adipocytes, suggesting that differences in the response to alpha2A-AR inhibition reside at the postreceptor level. Incubation with the cAMP-analog 8-bromo(8b) cAMP increased lipolysis in hMSC-derived fat cells while co-incubation with the PDE3-specific inhibitor OPC3911 did not alter the lipolytic effect. In contrast, OPC3911 increased 8bcAMP-induced lipolysis significantly in preadipocytes and mature adipocytes. The response to PDE3B inhibition was; mature adipocytes>preadipocytes>hMSC a finding that correlated significantly with both PDE3B mRNA expression and enzymatic activity. CONCLUSION: Although differentiated adipocytes of different origins display similar functional characteristics there are important differences in the regulation of lipolysis with a marked alpha2A-AR and less pronounced PDE3B effect in fat cells from MSCs.  相似文献   

13.
B B Lowell  J S Flier 《Endocrinology》1990,127(6):2898-2906
Adipsin is a serine protease with complement factor D activity that is synthesized by adipocytes and secreted into the blood stream. Expression of adipsin is deficient in models of genetic (ob/ob, db/db) and acquired (monosodium glutamate-lesioned) obesity, but the cellular mechanisms responsible for this deficiency are unknown. Because hyperinsulinemia is frequently associated with obesity, we evaluated the effects of this hormone and insulin-like growth factor 1 (IGF-1) on adipsin secretion and adipsin messenger RNA (mRNA) levels in 3T3-F442A adipocytes. In the present study, we report that in fully differentiated adipocytes (after 11 days post confluence), insulin exposure progressively decreases adipsin secretion by 40%, 67%, and 78% after 2, 4, and 6 days of treatment. The inhibition of adipsin secretion by insulin is the result of a corresponding decrease in adipsin mRNA and is specific since two other differentiation-dependent fat cell mRNAs encoding aP2 (a fatty acid binding protein) and glycerophosphate dehydrogenase (GPD), are unaffected. Insulin suppresses adipsin gene expression via high affinity insulin receptors, because physiological levels of insulin produce this effect, and dose-response curves for insulin stimulation of 2-deoxyglucose uptake and glucose utilization are similar to insulin's effect on adipsin. In contrast, insulin when present during days 1-8 post confluence (during differentiation) markedly increases adipsin secretion and adipsin mRNA levels. This stimulation is due to the ability of insulin to accelerate differentiation as evidenced by corresponding increases in aP2 and GPD mRNAs as well. Insulin and IGF-1 are equipotent in this effect, suggesting that both insulin and IGF-1 receptors can mediate this response. In summary, during the differentiation of 3T3-F442A adipocytes, insulin stimulates adipsin gene expression by accelerating differentiation. As the cells become mature adipocytes, they acquire some differentiation-dependent factor, which couples insulin receptor stimulation to inhibition of adipsin gene expression. This model should aid our search for the molecular links between insulin receptor stimulation and altered gene expression.  相似文献   

14.
15.
16.
Thiazolidinediones (TZDs) are antidiabetic insulin-sensitizing agents that bind to peroxisome proliferator-activated receptor gamma (PPARgamma) and have potent adipogenic effects on 3T3-L1 preadipocytes. In fully differentiated 3T3-L1 adipocytes, TZDs markedly decreased PPARgamma mRNA levels without reducing the expression of genes that are positively regulated by PPARgamma, such as adipocyte lipid-binding protein 2 (aP2) or lipoprotein lipase-(LPL). PPARgamma mRNA levels were also downregulated by tumor necrosis factor alpha (TNFalpha), an antiadipogenic cytokine. We propose that the downregulation of PPARgamma is not the common denominator of the metabolic effects of TZDs and TNFalpha on mature adipocytes.  相似文献   

17.
Tumor necrosis factor (TNF) inhibits and reverses differentiation of mouse adipogenic TA1 cells. We have found that TNF induces c-myc in a sustained manner in both preadipocytes and adipocytes; in contrast, serum induces c-myc transiently and only in preadipocytes. This TNF-mediated c-myc induction is not coupled with cell proliferation but is correlated with TNF-mediated inhibition of adipocyte differentiation. We prepared an inducible c-myc transformant of TA1 cells by transfection of the mouse c-myc gene under the control of the metallothionein-I promoter. These cells are unable to differentiate to adipocytes in the presence of Zn2+/Cd2+, and in differentiated TA1 cells, Zn2+/Cd2+ causes reduction of adipocyte-specific gene expression as does TNF. Lastly, exposure of TA1 cells to antisense c-myc oligonucleotide partially blocked the TNF-mediated reduction of adipocyte-specific gene expression. Thus, TNF-mediated c-myc expression is distinct in character from that involved in mitogenic responses but appears to play an important role in inhibition and reversal of adipocyte differentiation.  相似文献   

18.
Long-chain fatty acids (FA) have been shown to regulate expression of the gene for the adipocyte FA-binding protein aP2. We examined whether this effect was exerted by FA themselves or by a FA metabolite. The alpha-bromo derivative of palmitate, an inhibitor of FA oxidation, was synthesized in the radioactive form, and its metabolism was investigated and correlated with its ability to induce aP2 in Ob1771 preadipocytes. alpha-Bromopalmitate was not utilized by preadipocytes. It was not cleared from the medium over a 24-hr period and was not incorporated into cellular lipids. Short incubations indicated that alpha-bromopalmitate exchanged across the preadipocyte membrane but remained in the free form inside the cell. In line with this, preadipocyte homogenates did not activate alpha-bromopalmitate to the acyl form. However, although it was not metabolized, bromopalmitate was much more potent than native FA in inducing aP2 gene expression. Induction exhibited the characteristics previously described for native FA, indicating that a similar if not identical mechanism was involved. The data indicated that induction of aP2 was exerted by unprocessed FA. Finally, in contrast to preadipocytes, adipocytes metabolized bromopalmitate. This reflected increased activity with cell differentiation of a palmitoyl-CoA synthase that could activate palmitate and bromopalmitate at about one-fifth the rate for palmitate. In preadipocytes, the predominant fatty-acyl-CoA synthase, arachidonyl-CoA synthase, had very low affinity for both FA. Increased activity of the palmitoyl-CoA synthase, which has a wider substrate range, is likely to be important for initiation of lipid deposition.  相似文献   

19.
20.
The major prostaglandins (PGs) locally produced in adipose tissue both in rodent and man are PGE2 and prostacyclin (PGI2). We have recently described PGI2 as an autocrine promoter and/or amplifier of terminal differentiation of cultured preadipocytes in several species. The effectiveness and specificity of PGI2 as an adipogenic agent are related to its ability to induce in preadipocytes intracellular increases of both cAMP and free calcium. Moreover, PGs of the E series are well known to exert an antilipolytic effect in mature adipocytes. These observations have prompted us to address two questions of physiological interest: 1) Is PGI2 still able to increase cAMP in differentiated adipocytes, behaving thus as a lipolytic agent, and 2) Is PGE2 able to negatively modulate cAMP production in adipose precursor cells, behaving thus as a counteracting effector of PGI2 action? Our results, with respect to cAMP production and/or lipolysis and antilipolysis, demonstrate clearly that in adipose tissue of both rat and man, PGI2 exclusively affects adipose precursor cells whereas PGE2 exclusively affects adipocytes. We propose a model of concerted action for both PGs in the development of adipose tissue mass, PGI2 behaving as an adipogenic-hyperplastic effector and PGE2 as an antilipolytic-hypertrophic effector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号