首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mezghrani O  Ke X  Bourkaib N  Xu BH 《Die Pharmazie》2011,66(10):754-760
The main purpose of this research work was to design an optimized self micro-emulsifying drug delivery system (SMEDDS) to enhance the bioavailability of the poor water soluble drug, astilbin. The solubility of astilbin was evaluated in various vehicles. Pseudoternary phase diagrams were used to select the components and their ranges by evaluating the micro-emulsification area. Central composite design was applied to optimize the properties of the formulation, including particle size, polydispersity index, drug loading capacity and effective intestinal permeability. The optimized SMEDDS characteristics were investigated including the study of factors influencing particle size and showed the stability of microemulsion when varying the pH and volume of diluents. In vitro drug release profile study was performed using the reverse dialysis method where 95% of the drug was released after 4 h. The developed astilbin SMEDDS was subjected to bioavailability studies in beagle dogs by LC-MS and showed a significant enhancement of bioavailability, indicating the possibility of using SMEDDS as possible drug carrier for astilbin.  相似文献   

2.
The objective of this study was to develop self-microemulsifying drug delivery system (SMEDDS) to enhance the oral bioavailability of the poorly water-soluble drug, oridonin. The influence of the oil, surfactant and co-surfactant types on the drug solubility and their ratios on forming efficient and stable SMEDDS were investigated in detail. The SMEDDS were characterized by morphological observation, droplet size and zeta-potential determination, cloud point measurement and in vitro release study. The optimum formulation consisted of 30% mixture of Maisine 35-1 and Labrafac CC (1:1), 46.7% Cremopher EL, and 23.3% Transcutol P. Invitro release test showed a complete release of oridonin from SMEDDS in an approximately 12h. The absorption of oridonin from SMEDDS showed a 2.2-fold increase in relative bioavailability compared with that of the suspension. Our studies demonstrated the promising use of SMEDDS for the delivery of oridonin by the oral route.  相似文献   

3.
A new self-microemulsifying drug delivery system (SMEDDS) has been developed to increase the solubility, dissolution rate and oral bioavailability of vinpocetine (VIP), a poor water-soluble drug. The formulations of VIP-SMEDDS were optimized by solubility assay, compatibility tests, and pseudo-ternary phase diagrams analysis. The optimal ratio in the formulation of SMEDDS was found to be Labrafac : oleic acid : Cremophor EL : Transcutol P=40 : 10 : 40 : 10 (w/w). The average particle diameter of VIP was less than 50 nm. In vitro dissolution study indicated that the dialysis method in reverse was better than the ultrafiltration method and the dialysis method in simulating the drug in vivo environment. Comparing with VIP crude drug power and commercial tablets, (-)VIP-SMEDDS caused a 3.4- and 2.9-fold increase in the percent of accumulated dissolution at 3 h. Further study on the absorption property of VIP-SMEDDS employing in situ intestine of rats demonstrated that VIP in SMEDDS could be well-absorbed in general intestinal tract without specific absorption sites. In addition, the developed SMEDDS formulations significantly improved the oral bioavailability of VIP in rats. Relative bioavailability of (-)VIP-SMEDDS and (+)VIP-SMEDDS increased by 1.85- and 1.91-fold, respectively, in relative of VIP crude powder suspension. The mechanisms of enhanced bioavailability of VIP might contribute to the improved release, enhanced lymphatic transport, and increased intestinal permeability of the drug.  相似文献   

4.
A self-microemulsifying drug delivery system (SMEDDS) for enhancement of oral absorption of a poor water-soluble drug, alpha-Asarone (ARE), is reported. Solubility of ARE was determined in various vehicles. SMEDDS consisted of a mixture of oils, surfactants, and cosurfactants that were emulsified in an aqueous medium under the gentle agitation and digestive motility. Pseudo-ternary phase diagrams were used to identify the efficient self-emulsification regions. The particle size distribution of the resulting microemulsions was determined using a laser scatter particle size analyzer (LSPSA). The optimized SMEDDS formulations containing Ethyl oleate (20%), Tween 80 (60%), and PEG 400 (20%) were tested for in vitro dissolution. The percentage of ARE released from the SMEDDS was significantly higher than that from the conventional tablets. Oral bioavailability of ARE in the SMEDDS via the hard capsules and the conventional tablets was evaluated in fasted beagle dogs. The bioavailability of ARE formulated in SMEDDS showed approximately 4.8-fold higher bioavailability than that in the conventional tablets. The results indicated that SMEDDS is potentially a good drug delivery system for oral delivery of the hydrophobic compound ARE.  相似文献   

5.
Formulation and biopharmaceutical evaluation of silymarin using SMEDDS   总被引:1,自引:0,他引:1  
Silymarin has been used to treat hepatobiliary diseases. However, it has a low bioavailability after being administered orally on account of its low solubility in water. In order to improve the dissolution rate, silymarin was formulated in the form of a self-microemulsifying drug delivery system (SMEDDS). The optimum formulation of SMEDDS containing silymarin was obtained based on the study of pseudo-ternary phase diagram. The SMEDDS consisted of 15% silymarin, 10% glyceryl monooleate as the oil phase, a mixture of polysorbate 20 and HCO-50 (1:1) as the surfactant, Transcutol as the cosurfactant with a surfactant/cosurfactant ratio of 1. The mean droplet size of the oil phase in the microemulsion formed from the SMEDDS was 67 nm. The % release of silybin from the SMEDDS after 6 hours was 2.5 times higher than that from the reference capsule. After its oral administration to rats, the bioavailability of the drug from the SMEDDS was 3.6 times higher than the reference capsule.  相似文献   

6.
Objectives Albendazole's (ABZ) poor aqueous solubility is a major determinant of its variable therapeutic response (20–50%). The purpose of this study was to develop and optimize the composition of a self‐microemulsifying drug delivery system (SMEDDS) of ABZ and assess its oral pharmacokinetics in rabbits. Methods A D‐optimal mixture design of experiments was used to select the levels of constraints of the formulation variables. The predicted composition was optimized using four responses: dispersion performance, droplet sizes, dissolution efficiency (DE) and time for 85% drug release (t85%). Key findings The optimal composition of the ABZ‐SMEDDS formulation, with approximately 5 mg/g drug loading of ABZ, was predicted to be Cremophor EL (30% w/w), Tween 80 (15% w/w), Capmul PG‐8 (10% w/w) and acidified PEG 400 (45% w/w). An increase of 63% in the relative bioavailability compared with the commercial suspension was obtained with ABZ‐SMEDDS as measured by albendazole sulfoxide (ABZSO) plasma levels. The area under the curve (AUC0→24h) and the peak plasma concentration (Cmax) of ABZ‐SMEDDS was higher than those obtained with the commercial suspension by 56% and 52%, respectively. Conclusions This study demonstrates a strategy for the development of a supersaturated SMEDDS formulation of a drug with low aqueous solubility.  相似文献   

7.
Guo F  Zhong H  He J  Xie B  Liu F  Xu H  Liu M  Xu C 《Archives of pharmacal research》2011,34(7):1113-1123
Dipyridamole shows poor and variable bioavailability after oral administration due to pHdependent solubility, low biomembrane permeability as well as being a substrate of P-glycoprotein. In order to improve the oral absorption of dipyridamole, a self-microemulsifying drug delivery system (SMEDDS) for dipyridamole was prepared and evaluated in vitro and in vivo. The optimum formulation was 18% oleic acid, 12% Labrafac lipophile WL 1349, 42% Solutol HS 15 and 28% isopropyl alcohol. It was found that the performance of self-microemulsification with the combination of oleic acid and Labrafac lipophile WL 1349 increased compared with just one oil. The results obtained from an in vitro dissolution assay indicated that dipyridamole in SMEDDS dissolved rapidly and completely in pH 6.8 aqueous media, while the commercial drug tablet was less soluble. An oral bioavailability study in rats showed that dipyridamole in the SMEDDS formulation had a 2.06-fold increased absorption compared with the simple drug suspension. It was evident that SMEDDS may be an effective approach to improve the oral absorption for drugs having pH-dependent solubility.  相似文献   

8.
The objective of this study was to optimize and characterize an oridonin self-microemulsifying drug delivery system (SMEDDS) formulation. A central composite design (CCD) was used to investigate the influence of factors (oil percentage and surfactant to co-surfactant ratio (Sur/Co-s ratio)) on the responses including droplet size, polydispersity, equilibrium solubility and in situ intestine absorption rate. Furthermore, the desirability function approach was applied to obtain the best compromise among the multiple responses. It was found that oil percentage played a significant role on the droplet size and polydispersity. The drug equilibrium solubility was mainly contributed to oil percentage and less to Sur/Co-s ratio. The in situ intestinal absorption was influenced by both of the two factors, whereas the oil percentage played a more important role in absorption. The practical response values under the optimized formulation were in good accordance with the predicted values. Our results demonstrate CCD is of value in optimizing the SMEDDS formulation and understanding the effects of formulation compositions on SMEDDS properties.  相似文献   

9.
索拉非尼(Sorafenib)是一种新型抗肿瘤药物,但其在水中难溶,生物利用度低。为了增加索拉非尼的生物利用度,本研究制备了索拉非尼自微乳化给药系统,并以大鼠为实验动物测定了该给药系统的口服相对生物利用度。该给药系统以油酸乙酯(20%,w/w)为油相,聚氧乙烯蓖麻油(48%,w/w)为主要乳化剂,聚乙二醇400(16%,w/w)和乙醇(16%,w/w)为助乳化剂,索拉非尼的终浓度为20 mg/mL。该制剂自微乳化后粒径为20-25 nm。与索拉非尼混悬液相比,自微乳化给药系统可以显著增加索拉非尼的AUC,C_(max)和MRT,降低清除率,T_(max)没有明显变化。尤其是与口服混悬液相比,其相对生物利用度提高近25倍,说明索拉非尼自微乳化给药系统有望开发成为增加其口服吸收的药物制剂。  相似文献   

10.
To develop a novel flurbiprofen-loaded solid self-microemulsifying drug delivery system (solid SMEDDS) with improved oral bioavailability using gelatin as a solid carrier, the solid SMEDDS formulation was prepared by spray-drying the solutions containing liquid SMEDDS and gelatin. The liquid SMEDDS, composed of Labrafil M 1944 CS/Labrasol/Transcutol HP (12.5/80/7.5%) with 2% w/v flurbiprofen, gave a z-average diameter of about 100?nm. The flurbiprofen-loaded solid SMEDDS formulation gave a larger emulsion droplet size compared to liquid SMEDDS. Unlike conventional solid SMEDDS, it produced a kind of microcapsule in which liquid SMEDDS was not absorbed onto the surfaces of carrier but formed together with carrier in it. However, the drug was in an amorphous state in it like conventional solid SMEDDS. It greatly improved the oral bioavailability of flurbiprofen in rats. Thus, gelatin could be used as a carrier in the development of solid SMEDDS with improved oral bioavailability of poorly water-soluble drug.  相似文献   

11.
吡罗昔康自微乳化药物传递系统的处方筛选与体外评价   总被引:1,自引:0,他引:1  
筛选吡罗昔康自微乳化药物传递系统(SMEDDS)的处方并进行体外评价。考察了吡罗昔康在不同油相和表面活性剂中的溶解度;对不同油相和表面活性剂进行初步配伍研究;通过绘制三元相图研究处方中不同油相、表面活性剂和辅助表面活性剂形成微乳的能力和区域;对制剂粒径及溶出度进行考察。处方选用肉桂醇作为吡罗昔康的溶剂,以Labrafil M 1944CS为油相,Cremophor EL为表面活性剂,Transcotol P为辅助表面活性剂。所得3个处方乳化后的粒径及分布分别为(32.2±5.0)、(40.1±6.4)、(81.9±12.2)nm。制剂溶出速度快。通过处方研究确定了最优处方,研制了吡罗昔康SMEDDS。  相似文献   

12.
Olmesartan medoxomil (OLM) is an antihypertensive angiotensin II receptor blocker. OLM has a low bioavailability (BA), approximately 26% in humans, due to its low water solubility and efflux by drug resistance pumps in the gastrointestinal tract. Self-microemulsifying drug delivery system (SMEDDS), which is easily emulsified in aqueous media under gentle agitation and digestive motility, was formulated to increase the oral BA of OLM. Among the surfactants and oils studied, Capryol 90, Tween 20, and Tetraglycol were chosen and combined at a volume ratio of 1:6:3 on the basis of equilibrium solubility and phase diagram experiments. The mean droplet size of SMEDDS was 15 nm. In an oral absorption study in rats, SMEDDS formulation brought faster absorption compared to suspension, showing a T max value of 0.2 hr. The C max and AUC values of SMEDDS formulation were significantly higher than those of suspension, revealing a relative BA of about 170%. Our study demonstrated the potential usefulness of SMEDDS for the oral delivery of poorly absorbable compounds, including OLM.  相似文献   

13.
Fenofibrate is indicated in hypercholesterolemia and hypertriglyceridemia alone or combined (types IIa, IIb, III, IV, and V dyslipidemias). However, due to its low solubility in water, it has low bioavailability after oral administration. In order to improve the dissolution rate, fenofibrate was formulated into a self-microemulsifying drug delivery system (SMEDDS). We used pseudoternary phase diagrams to evaluate the area of microemulsification, and an in vitro dissolution test was used to investigate the dissolution rate of fenofibrate. The optimized formulation for in vitro dissolution and bioavailability assessment consisted of propylene glycol laurate (Lauroglycol FCC) (60 %), macrogol-15-hydroxystearate (Solutol HS 15) (27 %), and diethylene glycol monoethyl ether (Transcutol-P) (13 %). The mean droplet size of the oil phase in the microemulsion formed by the SMEDDS was 131.1 nm. The dissolution rate of fenofibrate from SMEDDS was significantly higher than that of the reference tablet. In vivo pharmacokinetics study of fenofibrate in beagles administered SMEDDS-A form resulted in a 3.7-fold increase in bioavailability as compared with the reference drug. Our studies suggested that the fenofibrate containing SMEDDS composition can effectively increase the solubility and oral bioavailability of poorly water-soluble drugs.  相似文献   

14.
Oral bioavailability of a poorly water-soluble drug was greatly enhanced by using its solid dispersion in a surface-active carrier. The weakly basic drug (pK(a) approximately 5.5) had the highest solubility of 0.1mg/ml at pH 1.5, < 1 microg/ml aqueous solubility between pH 3.5 and 5.5 at 24+/-1 degrees C, and no detectable solubility (< 0.02 microg/ml) at pH greater than 5.5. Two solid dispersion formulations of the drug, one in Gelucire 44/14 and another one in a mixture of polyethylene glycol 3350 (PEG 3350) with polysorbate 80, were prepared by dissolving the drug in the molten carrier (65 degrees C) and filling the melt in hard gelatin capsules. From the two solid dispersion formulations, the PEG 3350-polysorbate 80 was selected for further development. The oral bioavailability of this formulation in dogs was compared with that of a capsule containing micronized drug blended with lactose and microcrystalline cellulose and a liquid solution in a mixture of PEG 400, polysorbate 80 and water. For intravenous administration, a solution in a mixture of propylene glycol, polysorbate 80 and water was used. Absolute oral bioavailability values from the capsule containing micronized drug, the capsule containing solid dispersion and the oral liquid were 1.7+/-1.0%, 35.8+/-5.2% and 59.6+/-21.4%, respectively. Thus, the solid dispersion provided a 21-fold increase in bioavailability of the drug as compared to the capsule containing micronized drug. A capsule formulation containing 25 mg of drug with a total fill weight of 600 mg was subsequently selected for further development. The selected solid dispersion formulation was physically and chemically stable under accelerated storage conditions for at least 6 months. It is hypothesized that polysorbate 80 ensures complete release of drug in a metastable finely dispersed state having a large surface area, which facilitates further solubilization by bile acids in the GI tract and the absorption into the enterocytes. Thus, the bioavailability of this poorly water-soluble drug was greatly enhanced by formulation as a solid dispersion in a surface-active carrier.  相似文献   

15.
Self-microemulsifying drug delivery systems (SMEDDS) represent a possible alternative to traditional oral formulations of lipophilic compounds. This study was designed to compare the oral bioavailability and food-effect of SMEDDS of itraconazole (ITRA-GSMP capsule containing 50mg itraconazole) to that of the currently marketed formulation (Sporanox capsule containing 100mg itraconazole). Eight healthy volunteers received Sporanox or ITRA-GSMP capsule in the fasted state or after a high-fat diet on four separate dosing occasions with a 2-week washout period. Blood samples were collected and analyzed. After administration of the ITRA-GSMP capsule, AUC0-24 and Cmax were 1.9- and 2.5-fold higher in the fasted state and 1.5- and 1.3-fold higher in the fed state, respectively, than those of the Sporanox capsule. Moreover, ITRA-GSMP capsules yielded more reproducible blood-time profiles than Sporanox capsules. Food had a marked effect on itraconazole absorption from the Sporanox capsule, whereas the influence was less pronounced for the ITRA-GSMP capsule. Collectively, our data suggest that a new self-microemulsifying formulation may provide an alternative oral formulation for itraconazole with improved oral bioavailability and reduced food-effect.  相似文献   

16.
UC-781 is highly selective and potent against HIV-1. However, its hydrophobic nature (log P 5.1) and lack of aqueous solubility have limited its development as a HIV microbicide. Self-microemulsifying drug delivery systems (SMEDDSs) have been developed to enhance the water solubility and bioavailability of hydrophobic drugs, such as UC781. In this study, we show the development of UC781-loaded SMEDDS and their enhanced release of UC781 from hard gelatine capsules, when compared to UC781 powder only. The majority of antiretrovirals being evaluated as potential HIV microbicides are hydrophobic. Therefore, a SMEDDS formulation offers an alternative approach to enhancing the vaginal absorption of these microbicidal candidates.  相似文献   

17.
PURPOSE: The objective of this study was to evaluate the pharmacokinetics of paclitaxel in a novel self-microemulsifying drug delivery system (SMEDDS) for improved oral administration with or without P-glycoprotein (P-gp) inhibitors. METHODS: Paclitaxel SMEDDS formulation was optimized, in terms of droplet size and lack of drug precipitation following aqueous dilution, using a ternary phase diagram. Physicochemical properties of paclitaxel SMEDDS and its resulting microemulsions were evaluated. The plasma concentrations of paclitaxel were determined using a HPLC method following paclitaxel microemulsion administrations at various doses in rats. RESULTS: Following 1:10 aqueous dilution of optimal paclitaxel SMEDDS, the droplet size of resulting microemulsions was 2.0 +/- 0.4 nm, and the zeta potential was -45.5 +/- 0.5 mV. Compared to Taxol, the oral bioavailability of paclitaxel SMEDDS increased by 28.6% to 52.7% at various doses. There was a significant improvement in area under the curve (AUC) and time above therapeutic level (0.1 microM) of paclitaxel SMEDDS as compared to those of Taxol following coadministration of both formulations with 40 mg cyclosporin A (CsA)/kg. The oral absorption of paclitaxel SMEDDS slightly enhanced following coadministration of tacrolimus and etoposide, but plasma drug concentrations did not reach the therapeutic level. The nonlinear pharmacokinetic trend was not modified after paclitaxel was formulated in SMEDDS. CONCLUSIONS: The results indicate that SMEDDS is a promising novel formulation to enhance the oral bioavailability of paclitaxel, especially when coadministered with a suitable P-gp inhibitor, such as CsA.  相似文献   

18.
The aims of this study were to formulate a self-microemulsifying drug delivery system (SMEDDS) by a rational formulation approach using mixture experimental design and to derive general concepts that make the development of such systems more feasible. Various types of oils and surfactants were systematically combined and the phase behaviour upon dilution with simulated gastric fluid examined by construction of phase diagrams. The systems solubilising the highest amount of simulated gastric fluid in the continuous microemulsion area were selected for investigation and optimisation of drug solubility. Simvastatin was added as a poorly water-soluble, lipophilic model drug. Two different mixture experimental designs using D-optimal design were set up and used to investigate the solubility of simvastatin in the SMEDDS before and after dilution with simulated gastric fluid respectively. The solubility in each mixture region was analysed by fitting quadratic models using partial least squares analysis. The established models revealed the influence of mixture components on phase behaviour and drug solubility and gave the rationale for formulation optimisation. This study demonstrated that the development of complex self-emulsifying formulations with sufficient solubilisation capacity for poorly water-soluble drugs upon oral administration can be more feasible when using experimental design.  相似文献   

19.
A novel solid particle system with a nanomatrix structure and without surfactant for the oral delivery of insoluble drugs was prepared. This used a combination of pH-sensitive polymethylacrylate and nano-porous silica, in order to improve the drug absorption using only pharmaceutical excipients and a relative simple process. The in vitro drug dissolution and in vivo oral bioavailability of this formulation, using fenofibrate as the model drug, were compared with other reference formulations such as a suspension, micronized formulation or self microemulsion drug delivery system (SMEDDS). The supersaturation stabilizing effect of different polymers was evaluated and the physicochemical characterization of the optimal formulation was conducted by SEM, TEM, surface area analysis, DSC, and XRD. The optimized formulation prepared with polymethylacrylate (Eudragit®L100-55) and silica (Sylysia®350) markedly improved the drug dissolution compared with other reference preparations and displayed a comparative oral bioavailability to the SMEDDS. Fenofibrate existed in a molecular or amorphous state in the nanomatrix, and this state was maintained for up to 1 year, without obvious changes in drug release and absorption. In conclusion, the nanomatrix formulation described here is a promising system to enhance the oral bioavailability of water-insoluble drugs.  相似文献   

20.
通过萘哌地尔在不同辅料中的平衡溶解度和伪三元相图筛选了空白自微乳化释药系统(SMEDDS)的组分,并继续用正交设计和单因素试验优化载萘哌地尔SMEDDS的处方。所得优化处方中萘哌地尔的溶解度显著高于水中溶解度,稀释后能形成平均粒径约23 nm的微小乳滴。体外释放试验表明,萘哌地尔SMEDDS及其混悬液在pH 6.8磷酸盐缓冲液中8 h累积释放率均低于20%;但在0.1 mol/L盐酸中,前者释放较快且完全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号