首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perfluorooctane sulfonate (PFOS), a kind of widely distributed environmentally organic compound, has been found to cause developmental toxicity. Although microRNAs (miRNAs) play an important role in many metabolic tasks, whether and how they are involved in the process of PFOS‐induced toxicity is largely unknown. To address this problem, PFOS‐induced changes in miRNAs and target gene expression in zebrafish embryos, and the potential mechanism of PFOS‐induced toxic action were studied in this research. Zebrafish embryos were exposed to 1 µg ml?1 PFOS or DMSO control from 6 h post‐fertilization (hpf) to 24 or 120 hpf. Subsequently, RNA was isolated from the embryo pool and the expression profiles of 219 known zebrafish miRNAs were analyzed using microarray. Finally, quantitative real‐time polymerase chain reaction was used to validate several miRNAs expression of microarray data. The analysis revealed that PFOS exposure induced significant changes in miRNA expression profiles. A total of 39 and 81 miRNAs showed significantly altered expression patterns after PFOS exposure 24 and 120 hpf. Of the changed miRNAs, 20 were significantly up‐regulated and 19 were significantly down‐regulated (p < 0.01) at 24 hpf, whereas 41 were significantly up‐regulated and 40 were significantly down‐regulated (p < 0.01) at 120 hpf. These miRNAs were involved in development, apoptosis and cell signal pathway, cell cycle progression and proliferation, oncogenesis, adipose metabolism and hormone secretion, whereas there is still little functional information available for 32 miRNAs. Our results demonstrate that PFOS exposure alters the expression of a suite of miRNAs and may induce developmental toxicity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Perfluorooctanesulfonate (PFOS) is a persistent organic pollutant, the potential toxicity of which is causing great concern. In the present study, we employed zebrafish embryos to investigate the developmental toxicity of this compound. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to 0.1, 0.5, 1, 3 and 5 mg/L PFOS. Hatching was delayed and hatching rates as well as larval survivorship were significantly reduced after the embryos were exposed to 1, 3 and 5 mg/L PFOS until 132 hpf. The fry displayed gross developmental malformations, including epiboly deformities, hypopigmentation, yolk sac edema, tail and heart malformations and spinal curvature upon exposure to PFOS concentrations of 1 mg/L or greater. Growth (body length) was significantly reduced in the 3 and 5 mg/L PFOS-treated groups. To test whether developmental malformation was mediated via apoptosis, flow cytometry analysis of DNA content, acridine orange staining and TUNEL assay was used. These techniques indicated that more apoptotic cells were present in the PFOS-treated embryos than in the control embryos. Certain genes related to cell apoptosis, p53 and Bax, were both significantly up-regulated upon exposure to all the concentrations tested. In addition, we investigated the effects of PFOS on marker genes related to early thyroid development (hhex and pax8) and genes regulating the balance of androgens and estrogens (cyp19a and cyp19b). For thyroid development, the expression of hhex was significantly up-regulated at all concentrations tested, whereas pax8 expression was significantly up-regulated only upon exposure to lower concentrations of PFOS (0.1, 0.5, 1 mg/L). The expression of cyp19a and of cyp19b was significantly down-regulated at all exposure concentrations. The overall results indicated that zebrafish embryos constitute a reliable model for testing the developmental toxicity of PFOS, and the gene expression patterns in the embryos were able to reveal some potential mechanisms of developmental toxicity.  相似文献   

3.
Lead is a persistent metal and commonly present in our living environment. The present study was aimed to investigate lead-induced embryonic toxicity, behavioral responses, and adult learning/memory deficit in zebrafish. Lead acetate (PbAc) induced malformations such as uninflated swim bladder, bent spine and yolk-sac edema with an EC50 of 0.29 mg/L at 120 h post fertilization (hpf). Spontaneous movement as characterized by tail bend frequency was significantly altered in zebrafish embryos following exposure to PbAc. Behavior assessment demonstrated that lead exposure changed behavioral responses in zebrafish larvae, as hyperactivity was detected within the first minute of light-to-dark transition in the fish exposed to PbAc from 6 to 96 hpf, and a different dose-dependent change was found in swimming speeds in the dark and in the light at 120 hpf following lead exposure. Learning/memory task assay showed that embryos exposed to PbAc from 6 to 120 hpf developed learning/memory deficit at adulthood as exhibited by a significant decrease in accuracy rate to find the food and a significant increase in finding time. Overall, our results suggested that low dose of developmental lead exposure resulted in embryonic toxicity, behavioral alteration, and adult learning/memory deficit in zebrafish.  相似文献   

4.
5.
In this study, we tested the teratogenic/embryotoxic potentials of food colorant, Sunset Yellow (E110) using zebrafish embryos as a model. Laboratory‐raised developing embryos of Danio rerio were exposed to graded concentrations (00, 0.1, 1.0, 2.0, 3.0, 4.0, 5.0, 10, 20, 30, 40, 50 and 100 mm ) of E110 from gastrulation stage (~6 hours post‐fertilization [hpf]) up until hatching. The developmental trajectory of each embryo and post‐hatched larva was traced from 24 to 168 hpf. The no observed effect concentration (NOEC), median effective concentration (EC50), median lethal concentration (LC50) and teratogenic index were determined. In the 0.1 mm E110‐exposed embryos, the development proceeded as in controls (NOEC), while, exposure of embryos to 1‐5 mm of E110 led to a decrease in body size, dry body mass of resultant larvae along with appearance of morphological deformities such as, microphthalmia, pericardial edema, yolk sac edema and spinal curvature. Larvae of 10‐50 mm E110‐exposed embryos exhibited increased cellular apoptosis in the cardiac region with significantly declined heartbeats and elevated mortality rates, in addition to the above‐mentioned abnormalities. In the 100 mm exposure group, all embryos succumbed to death within 24 hpf. The NOEC and LC50 recorded were at 0.1 and 42.57 mm respectively. EC50 (96 hpf) recorded for pericardial edema and yolk sac edema was 19.41 and 39.84 mm with teratogenic index quotient 2.1 and 1.06 respectively The study provides direct evidence for the developmental toxicity/teratogenic potential of E110.  相似文献   

6.
Dioxin‐like PCB126 is a persistent organic pollutant that causes a range of syndromes including developmental toxicity. Dioxins have a high affinity for aryl hydrocarbon receptor (AhR) and induce cytochrome P4501A (CYP1A). However, the role of CYP1A activity in developmental toxicity is less clear. To better understand dioxin induced developmental toxicity, we exposed zebrafish (Danio rerio) embryos to PCB126 at concentrations of 0, 16, 32, 64, and 128 μg L?1 from 3‐h post‐fertilization (hpf) to 168 hpf. The embryonic survival rate decreased at 144 and 168 hpf. The fry at 96 hpf displayed gross developmental malformations, including pericardial and yolk sac edema, spinal curvature, abnormal lower jaw growth, and non‐inflated swim bladder. The pericardial and yolk sac edema rate significantly increased and the heart rate declined from 96 hpf compared with the controls. PCB126 did not alter the hatching rate. To elucidate the mechanism of PCB126‐induced developmental toxicity, we conducted ethoxyresorufin‐O‐deethylase (EROD) in vivo assay to determine CYP1A enzyme activity, and real‐time PCR to study the induction of CYP1A mRNA gene expression in embryo/larval zebrafish at 24, 72, 96, and 132 hpf. In vivo EROD activity was induced by PCB126 at 16 μg L?1 concentration as early as 72 hpf but significant increases were observed only in zebrafish exposed to 64 and 128 μg L?1 doses (p < 0.005) at 72, 96, and 132 hpf. Induction of CYP1A mRNA expression was significantly upregulated in zebrafish exposed to 32 and 64 μg L?1 at 24, 72, 96, and 132 hpf. Overall, the severe pericardial and yolk sac edema and reduced heart rate suggest that heart defects are a sensitive endpoint, and the general trend of dose‐dependent increase in EROD activity and induction of CYP1A mRNA gene expression provide evidence that the developmental toxicity of PCB126 to zebrafish embryos is mediated by activation of AhR. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 201–210, 2016.  相似文献   

7.
目的研究核酸染料Goodview、Gelred和Gelsafe对斑马鱼胚胎发育的影响。方法将受精后时间(hpf)为3hpf的斑马鱼胚胎随机分组,分别加入0、0.01%、0.02%、0.04%、0.08%、0.16%和0.32%浓度的Goodview、Gelred和Gelsafe 3种核酸染料,观察3种核酸染料对斑马鱼胚胎发育的影响,记录胚胎48 hpf心率,计算72和96 hpf孵化率,96 hpf死亡率及畸形率;同时观察了4、24和48 hpf 3种染料穿透胚胎膜的情况。结果 Goodview、Gelred和Gelsafe 3种核酸染料半数致死浓度(LC50)分别为0.037%、0.092%和0.130%。3种核酸染料0.04%~0.32%浓度组的胚胎48 hpf心率、72和96 hpf孵化率、96hpf死亡率和畸形率与对照组相比都存在显著差异,3种核酸染料96 hpf死亡率、72和96 hpf孵化率还存在剂量-效应关系。Gelsafe 0.08%~0.32%浓度组部分幼鱼出现心囊水肿和脊柱弯曲,0.32%Gelred组染毒后还出现眼点发育不全,Goodview0.04~0.16%浓度组部分幼鱼除心囊水肿和脊柱弯曲外,还出现尾部发育不全等畸形表征。0.01%Goodview 4 hpf能穿透胚胎膜进入胚胎内,随着浓度和时间增加,胚胎内荧光增强。而Gelred和Gelsafe 0.32%浓度下4 hpf未发现明显荧光蓄积点,24hpf和48 hpf仍未发现。结论 3种核酸染料对斑马鱼胚胎发育有毒性,随着使用浓度的增加毒性增加。  相似文献   

8.
ABSTRACT

Due to their unique electronic and optical features, gold nanoparticles (AuNP) have received a great deal of attention for application in different fields such as catalysis, electronics, and biomedicine. The large-volume manufacturing predicted for future decades and the inevitable release of these substances into the environment necessitated an assessment of potential adverse human and ecological risks due to exposure to AuNP. Accordingly, this study aimed to examine the acute and developmental toxicity attributed to a commercial suspension of Au nanorods stabilized with cetyltrimethylammonium bromide (CTAB-AuNR) using early embryonic stages of zebrafish (Danio rerio), a well-established model in ecotoxicology. Zebrafish embryos were exposed to CTAB-AuNR (0–150 µg/L) to determine for developmental assessment until 96 hr post fertilization (hpf) and lethality. Uptake of CTAB-AuNR by embryos and nanoparticles potential to induce DNA damage was also measured at 48 and 96 hpf. Analysis of the concentration-response curves with cumulative mortality at 96 hpf revealed a median lethal concentration (LC50,96h) of 110.2 μg/L. At sublethal concentrations, CTAB-AuNR suspensions were found to produce developmental abnormalities such as tail deformities, pericardial edema, decreased body length, and delayed eye, head, and tail elongation development. Further, less than 1% of the initial concentration of CTAB-AuNR present in the exposure media was internalized by zebrafish embryos prior to (48 hpf) and after hatching (96 hpf). In addition, no marked DNA damage was detected in embryos after exposure to CTAB-AuNR. Overall, CTAB-AuNR suspensions produced lethal and sublethal effects on zebrafish embryos with possible repercussions in fitness of adult stages. However, these results foresee a low risk for fish since the observed effects occurred at concentrations above the levels expected to find in the aquatic environment.  相似文献   

9.
10.
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that affect embryonic development. The purpose of this study was to examine the effects of embryonic exposure to PCBs on early retinal development in zebrafish, Danio rerio. Zebrafish embryos were immediately exposed to different concentrations (0, 0.125, 0.25, 0.5, 1.0 and 2.0 mg) of PCBs per liter of medium at 28.5 °C. Embryos were assessed at 30, 48, 72 and 96 h post‐fertilization (hpf) for changes in embryonic survival rate, development, larval retinal morphology and ultrastructure of the retina. The results show that PCB exposure decreased the survival rate of embryos in a time‐ and dose‐dependent manner. Embryos exposed to the higher concentrations of PCBs (0.5, 1.0 and 2.0 mg l?1) displayed obvious gross morphological deformities. At 72 hpf, the retinal layer development of zebrafish was delayed at higher PCB concentrations (1.0 mg l?1). At 96 hpf, irregularity of photoreceptor cells arrangement and thickening of photoreceptor and ganglionic layers were observed in PCB‐treated larvae at concentrations of 0.25–1 mg l?1. Ultrastructural examination showed signs of growth inhibition of the photoreceptor outer segment at 0.25–1 mg l?1 PCB exposure at 72 hpf, as well as the appearance of massive vacuoles and holes inside the outer segments in the PCB exposure group at 96 hpf. These results suggest that embryonic exposure to moderate and high levels of PCBs induced developmental deficits in zebrafish retinas, particularly in photoreceptor cells. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Zirconia oxide nanoparticles (ZrO2NPs) are known to be one of the neutral bioceramic metal compounds that has been widely used for their beneficial applications in many biomedical areas, in dental implants, bone joint replacements, drug delivery vehicles, and in various industrial applications. To study the effects of ZrO2NPs on zebrafish model, we used early life stages of the zebrafish (Danio rerio) to examine such effects on embryonic development in this species. ZrO2NPs were synthesized by the sol-gel method, size about 15–20?nm and characterized by SEM, EDX, XRD, FTIR, UV-Vis Spectra. In this study, zebrafish embryos were treated with ZrO2NPs 0.5, 1, 2, 3, 4, or 5?μg of nanoparticles/ml during 24–96?hour post fertilization (hpf). The results showed that ≥0.5–1?μg/ml of ZrO2NPs instigated developmental acute toxicity in these embryos, causing mortality, hatching delay, and malformation. ZrO2NPs exposure induced axis bent, tail bent, spinal cord curvature, yolk-sac, and pericardial edema. A typical phenotype was observed as an unhatched dead embryo at ≥1?μg/ml of ZrO2NPs exposure. This study is one of the first reports on developmental toxicity of zebrafish embryos caused by zirconium oxide nanoparticles in aquatic environments. Our results show that exposure of zirconium oxide nanoparticles is more toxic to embryonic zebrafish at lower concentrations. The results will contribute to the current understanding of the potential biomedical toxicological effects of nanoparticles and support the safety evaluation and synthesis of Zirconia oxide nanoparticles.  相似文献   

13.
Zebrafish embryos are increasingly used for developmental toxicity screening of candidate drugs and are occasionally co-incubated with a metabolic activation system at 32 °C for 1, 2 or 4 h, depending on their developmental stage. As this temperature is higher than the optimal temperature for zebrafish embryonic development (26–28.5 °C), we investigated whether continuous incubation of zebrafish embryos from 2.5 until 96 h post fertilization (hpf) at high temperatures (30.5–36.5 °C) causes malformations. At 32.5 °C tail malformations were observed as early as 24 hpf, and these became even more prominent at 34.5 and 36.5 °C. Cardiovascular and head malformations, edema and blood accumulations throughout the body were present at 36.5 °C. Finally, temperatures higher than 28.5 °C accelerated embryonic development except for 36.5 °C, at which a lower hatching rate and hatching enzyme activity were observed. In conclusion, incubation of zebrafish embryos at 32.5 °C and above from 2.5 until 96 hpf causes malformations as early as 24 hpf.  相似文献   

14.
15.
Caffeine is white crystalline xanthine alkaloid that is naturally found in some plants and can be produced synthetically. It has various biological effects, especially during pregnancy and lactation. We studied the effect of caffeine on heartbeat, survival and the expression of cell damage related genes, including oxidative stress (HSP70), mitochondrial metabolism (Cyclin G1) and apoptosis (Bax and Bcl2), at early developmental stages of zebrafish embryos. We used 100 µm concentration based on the absence of locomotor effects. Neither significant mortality nor morphological changes were detected. We monitored hatching at 48 h post‐fertilization (hpf) to 96 hpf. At 60 and 72 hpf, hatching decreased significantly (P < 0.05); however, the overall hatching rate at 96 hpf was 94% in control and 93% in caffeine treatment with no significant difference (P > 0.05). Heartbeats per minute were 110, 110 and 112 in control at 48, 72 and 96 hpf, respectively. Caffeine significantly increased heartbeat – 122 and 136 at 72 and 96 hpf, respectively. Quantitative RT‐PCR showed significant up‐regulation after caffeine exposure in HSP70 at 72 hpf; in Cyclin G1 at 24, 48 and 72 hpf; and in Bax at 48 and 72 hpf. Significant down‐regulation was found in Bcl2 at 48 and 72 hpf. The Bax/Bcl2 ratio increased significantly at 48 and 72 hpf. We conclude that increasing exposure time to caffeine stimulates oxidative stress and may trigger apoptosis via a mitochondrial‐dependent pathway. Also caffeine increases heartbeat from early phases of development without affecting the morphology and survival but delays hatching. Use of caffeine during pregnancy and lactation may harm the fetus by affecting the expression of cell‐damage related genes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Currently, neurotoxicity testing defined by OECD and FDA is based solely on in vivo experiments, using large numbers of animals, being expensive, time-consuming and unsuitable for screening numerous chemicals. The great demand for thousands of chemicals yet to be evaluated, urges the development of alternative test methods which are cheaper, faster and highly predictive for developmental neurotoxicity. In this study, we developed a new method to assess locomotor activity in early life stage of zebrafish at 24 h post fertilization (hpf), in comparison to locomotor activity of zebrafish larvae at 96 to 192 hpf. We hypothesized that this endpoint at early life stages could be used to predict the developmental neurotoxic potential of chemicals and performed exposure studies with chlorpyrifos to demonstrate this. Furthermore, the case study with chlorpyrifos was used to critically evaluate behavioral data analysis and improve method sensitivity. The approach for data analysis using distribution plots for parameters on locomotor activity, next to mean values allowed to obtain more accurate information from the same set of behavioral data, both for embryos and larvae. Embryos exposed to chlorpyrifos, within the range 0.039 to 10 mg/l, exhibited a significant concentration-dependent increase in the frequency and total duration of their spontaneous tail coilings at 24–26 hpf. Larvae exhibited altered swimming activity, as evidenced by a significant decrease in the total duration of movement and an increase in mean turn angle in the range 0.18 to 0.75 mg/l chlorpyrifos. Methodological evaluation showed that locomotor effects in larvae were most pronounced and reproducible at 96 hpf, compared to older individuals (120, 144, 168 and 192 hpf). These new methods based on locomotor activity at early life stages of zebrafish allowed to classify chlorpyrifos as a developmental neurotoxicant. Further research to judge the validity of these alternative methods is currently performed with an extended set of expected positive or negative chemicals for developmental neurotoxicity.  相似文献   

17.
Toxicological effects of butylparaben (BuP) and ethylparaben (EtP) on zebrafish (Danio rerio) early-life stages are not well established. The present study evaluated, using zebrafish embryos and larvae, the toxicity of BuP and EtP through benchmark dose (BMD) approach. BuP was more toxic than EtP to zebrafish larvae. In fact, Lethal Concentration 50 (LC50) values at 96 h post-fertilization (hpf) for BuP and EtP were 2.34 mg/L and 20.86 mg/L, respectively. Indeed, BMD confidence interval (lower bound (BMDL) - upper bound (BMDU) was 0.91–1.92 mg/L for BuP and 10.8–17.4 mg/L for EtP. Zebrafish embryos exposed to 1 mg/L, 2.5 mg/L of BuP and 5 mg/L, 10 mg/L, 20 mg/L, 30 mg/L of EtP showed several developmental abnormalities and teratological effects compared to negative control. Exposed zebrafish developed reduced heartbeat, reduction in blood circulation, blood stasis, pericardial edema, deformed notochord and misshaped yolk sac. Embryos exposed to the highest concentrations of the chemicals (2.5 mg/L of BuP, 10 mg/L, 20 mg/L and 30 mg/L of EtP) showed the developmental abnormalities at 48 hpf while those treated with 1 mg/L of BuP and 10 mg/L of EtP reported behavioral changes at 72 hpf, including trembling of head, pectoral fins and spinal cord. This research identified the lethal and sublethal effects of BuP and EtP in zebrafish early-life stages and could be helpful to elucidate the developmental pathways of toxicity of parabens.  相似文献   

18.
Although many drugs and environmental chemicals are teratogenic, the mechanisms by which most toxicants disrupt embryonic development are not well understood. MicroRNAs, single-stranded RNA molecules of ~ 22 nt that regulate protein expression by inhibiting mRNA translation and promoting mRNA sequestration or degradation, are important regulators of a variety of cellular processes including embryonic development and cellular differentiation. Recent studies have demonstrated that exposure to xenobiotics can alter microRNA expression and contribute to the mechanisms by which environmental chemicals disrupt embryonic development. In this study we tested the hypothesis that developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a well-known teratogen, alters microRNA expression during zebrafish development. We exposed zebrafish embryos to DMSO (0.1%) or TCDD (5 nM) for 1 h at 30 hours post fertilization (hpf) and measured microRNA expression using several methods at 36 and 60 hpf. TCDD caused strong induction of CYP1A at 36 hpf (62-fold) and 60 hpf (135-fold) as determined by real-time RT-PCR, verifying the effectiveness of the exposure. MicroRNA expression profiles were determined using microarrays (Agilent and Exiqon), next-generation sequencing (SOLiD), and real-time RT-PCR. The two microarray platforms yielded results that were similar but not identical; both showed significant changes in expression of miR-451, 23a, 23b, 24 and 27e at 60 hpf. Multiple analyses were performed on the SOLiD sequences yielding a total of 16 microRNAs as differentially expressed by TCDD in zebrafish embryos. However, miR-27e was the only microRNA to be identified as differentially expressed by all three methods (both microarrays, SOLiD sequencing, and real-time RT-PCR). These results suggest that TCDD exposure causes modest changes in expression of microRNAs, including some (miR-451, 23a, 23b, 24 and 27e) that are critical for hematopoiesis and cardiovascular development.  相似文献   

19.
目的:通过研究瑞舒伐他汀钙对斑马鱼血管发育的影响,探讨瑞舒伐他汀钙抑制血管的作用机制。方法:将瑞舒伐他汀钙处理的斑马鱼胚胎作为实验组,以0.5%二甲亚砜处理的胚胎作为对照组。从受精卵形成后0.5h开始刺激,受精后24h观察药物对斑马鱼血管发育的影响。使用荧光显微镜观察新生血管状态,记录血管缺失数目,分别从受精后0、6、12和24h药物处理后的斑马鱼胚胎中提取总的RNAs,采用实时定量逆转录聚合酶链反应(RT-PCR)检测血管内皮生长因子A(vascular endothelial growth factor A,VEGF-A)的表达变化。结果:瑞舒伐他汀钙可明显抑制斑马鱼血管发育,且在0.01~0.08nmol/L浓度范围内抑制作用与药物浓度成正比。实验组较对照组VEGF-A表达量降低,在药物作用的24h具有显著性差异(P<0.05)。结论:瑞舒伐他汀钙可通过减少VEGF-A的表达抑制斑马鱼血管发育。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号