首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthetic antioxidant ethoxyquin (EQ) is a widely used additive in animal feeds, including farmed fish feed. The use of EQ as food additive is prohibited and it is also undesirable in farmed meat and fish products. The possible negative aspects of EQ in fish feeds, such as modulation of hepatic detoxifying enzymes and possible effects through "carry-over" to edible parts of fish are not known. In addition, the subsequent consequences for human consumers have not been previously studied. In the present work, the alteration in gene and protein expression patterns, and catalytic activities of phase I and II hepatic biotransformation enzymes due to prolonged exposure to graded levels of dietary EQ in the range of 11-1800 mg EQ/kg feed were studied. The kinetics of parent EQ and its major metabolite, ethoxyquin dimer (EQDM) was also studied. In general two weeks seem to be the critical point in the entire toxicological response of salmon to dietary consumed EQ. Biotransformation of EQ to EQDM is shown to be a rapid process. However, the decrease in biotransformation rate results in the accumulation of EQ metabolites, high concentration of which was postulated to alter translation and post-translational modification of CYP3A, GST and UDPGT at feeding day 14 and 42, with subsequent decreases in the biotransformation of consumed EQ. Decrease in the biotransformation of consumed EQ produced the retention of un-metabolized EQ rather than metabolites in salmon liver. This may be considered as undesirable effect, since it could lead to the transport and accumulation in other organs and edible tissues. It may also cause a new wave of biotransformation with formation of metabolites inhibiting detoxifying enzymes. In general, these processes may prolong the excretion of dietary EQ from the fish body and produce EQ-derived residues in the ready-to-consume salmon or fish products. These EQ residues may have higher toxicological effects for human consumers than the parent compound and therefore need to be studied in more detail.  相似文献   

2.
The biological fate of the fish feed additive, ethoxyquin (EQ) was examined in the muscle of Atlantic salmon during 12 weeks of feeding followed by a 2 weeks depuration period. Parent EQ (1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline), quinone imine (2,6-dihydro-2,2,4-trimethyl-6-quinolone), de-ethylated EQ (6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline) and EQDM (EQ dimer or 1,8'-di(1,2-dihydro-6-ethoxy-2,2,4-trimethyl-quinoline) were found to be the ubiquitous metabolites of dietary EQ, with EQDM as a main metabolite. A rapid decrease in the level of EQ (2.4 days of half-life) was balanced by an increase in EQDM, giving an unchanged net sum following 2 weeks of depuration. The mandatory 14 days depuration period prior to slaughtering of farmed salmon in Norway was not sufficient for complete elimination of EQ-derived residuals. Post depuration, EQDM accounted for 99% of sum of the two compounds in all treatment groups; possible toxicological effects of EQDM are not known. The individual concentrations of EQ and EQDM and their sum are dependent on EQ level in the feed, consequently, their residual concentrations may be controlled. The theoretical amount of EQ and EQDM consumed in one meal of farmed salmon would be under the recommended ADI, provided that the fish were raised on feed with no more than 150 mg EQ/kg feed, which is the EU maximum limit for EQ in fish feed.  相似文献   

3.
4.
This investigation was designed to determine the ability of St. John's wort (SJW), a readily available antidepressant, to induce various hepatic drug metabolizing enzymes. SJW (140 or 280 mg/kg/day) was administered to male Swiss Webster mice for 1, 2, or 3 weeks. Enzymatic activity was analyzed in hepatic microsomes for all of the following drug metabolizing enzymes: CYP3A, CYP1A, CYP2E1, and UDP-glucuronosyltransferase (UDPGT). The catalytic activity of CYP1A was unchanged from control following any dose or duration of SJW, while both CYP3A and CYP2E1 catalytic activities were increased 2-fold by both SJW concentrations but only following 3 weeks of administration. Results from Western immunoblotting studies supported the changes in catalytic activity, as protein levels for CYP2E1 and CYP3A were increased (2.5-fold and 6-fold, respectively) following 3 weeks of SJW administration. Additionally, the catalytic activity of the conjugation enzyme UDPGT was unchanged from control following all SJW treatments. These results indicate that in the mouse moderate doses of SJW cause an increase in the catalytic activity and polypeptide levels of CYP2E1 and CYP3A but only following 21 days of administration, while the catalytic activity of CYP1A and UDPGT activity remain unaffected.  相似文献   

5.
One of the factors affecting the pharmacokinetics (PK) of a drug during pregnancy is the activity of hepatic and placental metabolizing enzymes. Recently, we reported on the biotransformation of glyburide by human hepatic and placental microsomes to six metabolites that are structurally identical between the two tissues. Two of the metabolites, 4-trans-(M1) and 3-cis-hydroxycyclohexyl glyburide (M2b), were previously identified in plasma and urine of patients treated with glyburide and are pharmacologically active. The aim of this investigation was to identify the major human hepatic and placental CYP450 isozymes responsible for the formation of each metabolite of glyburide. This was achieved by the use of chemical inhibitors selective for individual CYP isozymes and antibodies raised against them. The identification was confirmed by the kinetic constants for the biotransformation of glyburide by cDNA-expressed enzymes. The data revealed that the major hepatic isozymes responsible for the formation of each metabolite are as follows: CYP3A4 (ethylene-hydroxylated glyburide (M5), 3-trans-(M3) and 2-trans-(M4) cyclohexyl glyburide); CYP2C9 (M1, M2a (4-cis-) and M2b); CYP2C8 (M1 and M2b); and CYP2C19 (M2a). Human placental microsomal CYP19/aromatase was the major isozyme responsible for the biotransformation of glyburide to predominantly M5. The formation of significant amounts of M5 by CYP19 in the placenta could render this metabolite more accessible to the fetal circulation. The multiplicity of enzymes biotransforming glyburide and the metabolites formed underscores the potential for its drug interactions in vivo.  相似文献   

6.
《Biochemical pharmacology》2010,79(12):1483-1490
One of the factors affecting the pharmacokinetics (PK) of a drug during pregnancy is the activity of hepatic and placental metabolizing enzymes. Recently, we reported on the biotransformation of glyburide by human hepatic and placental microsomes to six metabolites that are structurally identical between the two tissues. Two of the metabolites, 4-trans-(M1) and 3-cis-hydroxycyclohexyl glyburide (M2b), were previously identified in plasma and urine of patients treated with glyburide and are pharmacologically active. The aim of this investigation was to identify the major human hepatic and placental CYP450 isozymes responsible for the formation of each metabolite of glyburide. This was achieved by the use of chemical inhibitors selective for individual CYP isozymes and antibodies raised against them. The identification was confirmed by the kinetic constants for the biotransformation of glyburide by cDNA-expressed enzymes. The data revealed that the major hepatic isozymes responsible for the formation of each metabolite are as follows: CYP3A4 (ethylene-hydroxylated glyburide (M5), 3-trans-(M3) and 2-trans-(M4) cyclohexyl glyburide); CYP2C9 (M1, M2a (4-cis-) and M2b); CYP2C8 (M1 and M2b); and CYP2C19 (M2a). Human placental microsomal CYP19/aromatase was the major isozyme responsible for the biotransformation of glyburide to predominantly M5. The formation of significant amounts of M5 by CYP19 in the placenta could render this metabolite more accessible to the fetal circulation. The multiplicity of enzymes biotransforming glyburide and the metabolites formed underscores the potential for its drug interactions in vivo.  相似文献   

7.
Decamethylcyclopentasiloxane (D5) is a cyclic siloxane with a wide range of commercial applications. The present study was designed to investigate the effects of D5 on the expression and activity of selected rat hepatic phase I and phase II metabolizing enzymes. Female Fischer-344 rats were exposed to 160 ppm D5 vapors (6 h/day, 7 days/week, for 28 days) by whole-body inhalation. Changes in the activity and relative abundance of hepatic microsomal cytochromes P450 (CYP1A, CYP2B, CYP3A, and CYP4A), epoxide hydrolase, and UDP-glucuronosyltransferase (UDPGT) were measured. Repeated inhalation exposure of rats to D5 increased liver size by 16% relative to controls by day 28. During a 14-day post-exposure period, liver size in D5-exposed animals showed significant recovery. Exposure to D5 did not change total hepatic P450, but increased the activity of hepatic NADPH-cytochrome c reductase by 1.4-fold. An evaluation of cytochrome P450 (CYP) enzymes in hepatic microsomes prepared from D5-exposed rats revealed a slight (1.8-fold) increase in 7-ethoxyresorufin O-deethylase (EROD) activity, but no change in immunoreactive CYP1A1/2 protein. A moderate increase (4.2-fold) in both 7-pentoxyresorufin O-depentylase (PROD) activity and immunoreactive CYP2B1/2 protein (3.3-fold) was observed. Testosterone 6beta-hydroxylase activity was also increased (2.4-fold) as was CYP3A1/2 immunoreactive protein. Although a small increase in 11- and 12-hydroxylation of lauric acid was detected, no change in immunoreactive CYP4A levels was measured. Liver microsomal epoxide hydrolase activity and immunoreactive protein increased 1.7- and 1.4-fold, respectively, in the D5-exposed group. UDPGT activity toward chloramphenicol was induced 1.8-fold, while no change in UDPGT activity toward 4-nitrophenol was seen. These results suggest that the profile for enzyme induction following inhalation exposure of female Fischer-344 rats to D5 vapors is similar to that reported for phenobarbital, and therefore D5 may be described as a weak "phenobarbital-like" inducer.  相似文献   

8.
Species difference in the induction of hepatic cytochrome P450 CYP1A subfamily enzymes by 2-methoxy-4-nitroaniline (2-MeO-4-NA) was investigated among male F344 rats, C57BL/6 Cr mice, and Hartley guinea pigs. All species of animals were treated with a single ip injection of 2-MeO-4-NA (0.44 mmol/kg body weight), and changes in levels of the mRNA and protein of hepatic cytochrome P4501A (CYP1A) subfamily enzymes were examined by the methods of RT-PCR and Western blot, respectively. In addition, hepatic microsomal enzyme activities were measured using methoxyresorufin and ethoxyresorufin as substrates of CYP1A2 and CYP1A1, respectively. The overall results of the RT-PCR, Western blot, and measurement of the enzyme activity indicated that 2-MeO-4-NA-mediated induction of hepatic CYP1A subfamily enzymes, especially CYP1A2, occurred only in rats but not any other species of animals examined and that the species difference in the CYP1A induction was not necessarily correlated with that in pharmacokinetics of 2-MeO-4-NA. Furthermore, a luciferase reporter gene assay for screening of the ligands of arylhydrocarbon receptor (AhR) using a rat hepatic cell line suggested that 2-MeO-4-NA is not an AhR ligand. The present findings demonstrate for the first time the species difference in the 2-MeO-4-NA-mediated induction of hepatic CYP1A subfamily enzymes between rats and other rodents, mice and guinea pigs, and further propose an AhR-independent pathway for 2-MeO-4-NA-mediated induction in rats.  相似文献   

9.
Pharmaceuticals are ubiquitous pollutants in the aquatic environment where their potential effects on non-target species like fish has only recently become subject of systematic investigations. In the present study, experiments were undertaken to examine the effects of a synthetic pharmaceutical endocrine disruptor, ethynylestradiol (EE2), given in water at 5 or 50 ng/L and sampled at days 0 (control), 3 and 7 after exposure, on hepatic phase I and II biotransformation and hormonal pathways of juvenile salmon using quantitative (real-time) polymerase chain reaction (qPCR), Vtg ELISA and 7-ethoxyresorufin O-deethylase (EROD) catalytic activity. Our data show that EE2 produced time- and concentration-specific modulation of estrogen receptor isoforms (ERalpha, ERbeta) and androgen receptor-beta (ARbeta). EE2 produced a concentration-specific induction of vitellogenin (Vtg) and zona radiata protein (Zr-protein) at day 3 after exposure. At day 7, Vtg and Zr-protein mRNA (and plasma Vtg protein) expression were significantly decreased in the group given 5 ng EE2/L, compared to dimethyl sulfoxide (DMSO) control group. In the xenobiotic biotransformation pathway, EE2 produced a significant increase of aryl hydrocarbon receptor-alpha (AhRalpha) at day 3 in the group given 5 ng EE2/L and AhRbeta was decreased at the same concentration at day 7. While CYP3A was not significantly affected by EE2 exposure, the CYP1A1, AhR nuclear translocator (Arnt) and AhR repressor (AhRR) mRNA showed an apparent EE2 concentration and time-dependent decrease. The expression of uridine diphosphoglucuronosyl transferase (UGT) and glutathione S-transferase class pi-like (GSTpi-like) mRNA were decreased after exposure to 50ng EE2/L at both day 3 and 7 after exposure. The effect of EE2 on the CYP1A1 gene expressions paralleled effect on EROD and AhRR mRNA, suggesting a direct role of EE2 in controlling cellular detoxification machinery. Interestingly, the carrier vehicle, DMSO produced significant time-dependent induction of estrogenic (ERalpha, Vtg and Zr-protein) responses, compared with blank (i.e. without DMSO) controls at day 7 post-exposure. The effect of DMSO totally underscored the observed EE2 effect at day 7 after exposure. In general, these findings support previous reports on the endocrine effects of EE2, in addition to effects on hepatic biotransformation system. In view of the data presented here and our recent studies, the use of DMSO as carrier vehicle in endocrine toxicological experimental studies should be re-evaluated.  相似文献   

10.
Aryl hydrocarbon receptor (AhR) plays important roles in the regulation and induction of xenobiotic-metabolizing enzymes including the cytochromes P450 1 family (CYP1) and UDP-glucuronosyltransferases 1A (UGT1As) by polycyclic aromatic hydrocarbons as well as chlorinated aromatic hydrocarbons. To determine whether pyrene-induced xenobiotic-metabolizing enzymes are regulated by AhR, male AhR (+/+) and (-/-) mice were used. Both genotyped mice were exposed to 0, 205, 300 or 410 mg/(kgday pyrene), once daily, for four consecutive days by gavage. Exposure to pyrene did not influence hepatic CYP1A1-mRNA in mice of both genotypes, whereas it induced hepatic CYP1A2 protein and mRNA expression and associated 7-ethoxyresorufin O-deethylase and pyrene 1-hydroxylation activities in both AhR (+/+) and (-/-) mice. Similar effects were also found with sulfotransferase 1A1 expression and the associated 1-hydroxypyrene sulfation activity. In contrast, pyrene exposure increased expression of the UGT1A1 and 1A6, and glucuronidation activities associated with 1-hydroxypyrene and 1-naphthol in the liver only in AhR (-/-) mice, although pyrene treatment dose-dependently decreased the latter activity. Pyrene exposure did not increase AhR-mRNA expression in AhR (+/+) mice. In contrast, pyrene-induced expression of the hepatic constitutive androstane receptor (CAR) and one of its target genes, CYP2B10, in both AhR (+/+) and (-/-) mice. These results strongly suggest that pyrene-induced CYP1A2 and SULT1A1 are regulated by CAR, not by AhR. However, the mechanisms of UGT1A1 and 1A6 induction by pyrene were not elucidated in this study.  相似文献   

11.
Increasing evidence implicates dietary factors in the progression of diseases, including certain cancers, diabetes and obesity. Diet also regulates the expression and function of CYP genes, which impacts on drug elimination and may also significantly affect disease pathogenesis. Upregulation of CYPs 2E1 and 4A occurs after feeding of experimental diets that are high in fats or carbohydrates; these diets also promote hepatic lipid infiltration, which is a component of the metabolic syndrome that characterises obesity. Increased availability of lipid substrates for CYPs can enhance free radical production and exacerbate tissue injury. Similar processes may also occur in other models of experimental disease states that exhibit a component of altered nutrient utilization. Food-derived chemicals, including constituents of cruciferous vegetables and fruits, modulate CYP expression and the expression of genes that encode cytoprotective phase II enzymes. Certain dietary indoles and flavonoids activate CYP1A expression either by direct ligand interaction with the aryl hydrocarbon receptor (AhR) or by augmenting the interaction of the AhR with xenobiotic response elements in CYP1A1 and other target genes. Other dietary chemicals, including methylenedioxyphenyl (MDP) compounds and isothiocyanates also modulate CYP gene expression. Apart from altered CYP regulation, a number of dietary agents also inhibit CYP enzyme activity, leading to pharmacokinetic interactions with coadministered drugs. A well described example is that of grapefruit juice, which contains psoralens and possibly other chemicals, that inactivate intestinal CYP3A4. Decreased presystemic oxidation by this CYP increases the systemic bioavailability of drug substrates and the likelihood of drug toxicity. Dietary interactions may complicate drug therapy but inhibition of certain CYP reactions may also protect the individual against toxic metabolites and free radicals generated by CYPs. Chemicals in teas and cruciferous vegetables may also inhibit human CYP enzymes that have been implicated in the bioactivation of chemical carcinogens. Thus, food constituents modulate CYP expression and function by a range of mechanisms, with the potential for both deleterious and beneficial outcomes.  相似文献   

12.
The constitutive and inducible expression of aryl hydrocarbon receptor (AhR) and of the AhR-regulated genes coding for CYP1A1, CYP1A2, CYP1B1, CYP2S1, and Nrf2 was investigated by real-time or traditional PCR in cerebral areas (cortex, cerebellum, midbrain, and hippocampus), blood–brain interfaces (meninges and brain microvessels) and liver obtained from control pigs and from pigs treated with β-naphthoflavone (βNF), a potent AhR agonist. The enzymatic activities of ethoxyresorufin-O-deethylase (EROD), and methoxyresorufin-O-deethylase (MEROD), marker for CYP1A1 and CYP1A2, the GST and various antioxidant enzymes (catalase, superoxide dismutase, GSSG-reductase, and GSH-peroxidase) were also determined in the same CNS regions. The AhR, CYP1A1, CYP1A2, CYP1B1, Nrf2 mRNAs were detected, although at different extent, in all the CNS regions, while CYP2S1 mRNA was detected only in midbrain. In the blood–brain interfaces, the constitutive basal expression of AhR and CYP1A1 was comparable to the hepatic one and even higher for CYP1B1 and Nrf2. The treatment with βNF determined the induction of CYP1A1 and 1B1 (but not of AhR, CYP1A2, and Nrf2) mRNA levels in various CNS areas; notably, CYP1A1 mRNA was increased to about 300-fold in the microvessels. The analysis of enzymatic activities revealed that EROD, but not MEROD, was induced in microsomes but not in mitochondria of all the CNS areas. However, the mitochondrial EROD activities were comparable (in midbrain, meninges) or higher (in cortex, cerebellum, hippocampus) than the microsomal ones, suggesting an important metabolic function of CYP1A1 in this subcellular localization. The activities of GST and antioxidant enzymes were detected in all CNS tissues, with levels lower than the hepatic ones, but found quite evenly distributed and marginally affected by βNF treatment. The high expression of metabolic enzymes found in blood–brain interfaces could represent a very important defence toward toxins of CNS.  相似文献   

13.
14.
15.
Hydroxylated polybrominated diphenyl ethers (PBDEs) have been found in human serum, suggesting that they are formed by in vivo oxidative metabolism of PBDEs. However, the biotransformation of 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), a major PBDE detected in human tissue and environmental samples, is poorly understood. In the present study, the oxidative metabolism of BDE-99 was assessed using pooled and single-donor human liver microsomes, a panel of human recombinant cytochrome P450 (CYP) enzymes, and CYP-specific antibodies. Hydroxylated metabolites were quantified using a liquid chromatography/tandem mass spectrometry-based method. In total, 10 hydroxylated metabolites of BDE-99 were produced by human liver microsomes. Six metabolites were identified as 2,4,5-tribromophenol (2,4,5-TBP), 4-OH-BDE-90, 5'-OH-BDE-99, 6'-OH-BDE-99, 4'-OH-BDE-101, and 2-OH-BDE-123 using authentic standards. Three monohydroxy- and one dihydroxy-pentabrominated metabolites were unidentified. Rates of formation of the three major metabolites (2,4,5-TBP, 5'-OH-BDE-99, and 4'-OH-BDE-101) by human liver microsomes ranged from 24.4 to 44.8 pmol/min/mg protein. Additional experiments demonstrated that the dihydroxylated metabolite was a primary metabolite of BDE-99 and was not produced by hydroxylation of a monohydroxy metabolite. Among the panel of recombinant CYP enzymes tested, formation of all 10 hydroxylated metabolites was catalyzed solely by CYP2B6. A combined approach using antibodies to CYP2B6 and single-donor liver microsomes expressing a wide range of CYP2B6 levels confirmed that CYP2B6 was responsible for the biotransformation of BDE-99. Collectively, the results show that the oxidative metabolism of BDE-99 by human liver microsomes is catalyzed solely by CYP2B6 and is an important determinant of the toxicity and bioaccumulation of BDE-99 in humans.  相似文献   

16.
17.
20(S)‐Protopanaxadiol (aPPD), a ginseng sapogenin, has been shown to be a promising anti‐cancer compound and anti‐depressant agent. Although the bacterial biotransformation of ginsenosides has been studied thoroughly, few have reported on the cytochrome P450 (P450) mediated metabolism of aPPD. Taken orally, aPPD must first undergo absorption and metabolism in the intestine before further metabolism in the liver. The present study investigated the comparative biotransformation profile of aPPD in human intestinal microsomes (HIM) and human liver microsomes (HLM) and characterized the human P450 enzymes involved in aPPD metabolism. Three major monooxygenated metabolites and five minor dioxygenated metabolites were identified as the predominant products in aPPD incubations with HIM and HLM using liquid chromatography–mass spectrometry. Reaction phenotyping studies were performed with a panel of specific P450 chemical inhibitors, antibody inhibition and human recombinant P450 enzymes. Ketoconazole, a CYP3A inhibitor, blocked the formation of oxygenated metabolites of aPPD in both HIM and HLM in a concentration dependent manner. Among the human recombinant P450 enzymes assayed, CYP3A4 exhibited the highest activity towards aPPD oxidative metabolite formation, followed by CYP3A5. In summary, the results have shown that aPPD is extensively metabolized by HIM and the metabolite profile following in vitro incubations is similar in HIM and HLM. CYP3A4 and CYP3A5 isoforms are the predominant enzymes responsible for oxygenation of aPPD in HIM and HLM. The characterization of aPPD as a CYP3A substrate may facilitate better prediction of drug–herb interactions when aPPD is taken concomitantly with other therapeutic agents. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
19.
SP600125, a specific inhibitor of c-Jun-N-Terminal kinase (JNK), was reported as a ligand and antagonist of aryl hydrocarbon receptor (AhR) [Joiakim A, Mathieu PA, Palermo C, Gasiewicz TA, Reiners Jr JJ. The Jun N terminal kinase inhibitor SP600125 is a ligand and antagonist of the aryl hydrocarbon receptor. Drug Metab Dispos 2003;31(11):1279-82]. Here we show that SP600125 is not an antagonist but a partial agonist of human AhR. SP600125 significantly induced CYP1A1 and CYP1A2 mRNAs in primary human hepatocytes and CYP1A1 mRNA in human hepatoma cells HepG2. This effect was abolished by resveratrol, an antagonist of AhR. Consistent with the recent report, SP600125 dose-dependently inhibited CYP1A1 and CYP1A2 genes induction by a prototype AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in human hepatocytes. Moreover, SP600125 displayed typical behavior of a partial agonist in HepG2 cells transiently transfected with a reporter plasmid containing two inverted repeats of the dioxin responsive element or with a plasmid containing 5'-flanking region of human CYP1A1 gene. SP600125 transactivated the reporter plasmids with EC(50) of 0.005 and 1.89 microM, respectively. On the other hand, TCDD-dependent transactivation of the reporter plasmids was inhibited by SP600125 with IC(50) values of 1.54 and 2.63 microM, respectively. We also tested, whether the effects of SP600125 are due to metabolism. Using liquid chromatography/mass spectrometry approach, we observed formation of two minor monohydroxylated metabolites of SP600125 in human hepatocytes, human liver microsomes but not in HepG2 cells. These data imply that biotransformation is not responsible for the effects of SP600125 on AhR signaling. In conclusion, we demonstrate that SP600125 is a partial agonist of human AhR, which induces CYP1A genes.  相似文献   

20.
Cytochromes P450 (CYP) belong to the most important biotransformation enzymes, therefore, their inhibition may lead to serious pharmacological and toxicological consequences. Albendazole (ABZ) is a benzimidazole anthelmintic widely used in human and veterinary medicine. The effects of ABZ on CYP were investigated on the rat (Rattus norvergicus) and mouflon (Ovis musimon) hepatic microsomes. Besides ABZ, its two main metabolites (albendazole sulfoxide, ABZSO, and albendazole sulfone, ABZSOO) were tested to clarify which compound is responsible for the inhibitory effect. After preincubation of microsomes with the benzimidazoles (1, 5 and 25 microM), CYP activities, ethoxyresorufin O-deethylase (EROD) and benzyloxyresorufin O-dearylase activities were measured. The results showed that both ABZ and ABZSO, but not ABZSOO, exhibited significant potency to inhibit CYP activities measured in both tested species. Since ABZ as well as ABZSO are known inducers of EROD activity, our results clearly demonstrate that the drug can act as inducer and also as inhibitor of the same enzyme. In in vitro studies the CYP inhibition may mask the CYP induction. The extent of inhibition observed in mouflon was significantly higher than in rat. This finding emphasizes the importance of performance of inhibition studies in target animal species. Possible consequences of CYP inhibition should be taken into account during the anthelmintic therapy of mouflons with ABZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号