首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Focused ultrasound (FUS) is hereby shown to noninvasively and selectively deliver compounds at pharmacologically relevant molecular weights through the opened blood-brain barrier (BBB). A complete examination on the size of the FUS-induced BBB opening, the spatial distribution of the delivered agents and its dependence on the agent's molecular weight were imaged and quantified using fluorescence microscopy. BBB opening in mice (n=13) was achieved in vivo after systemic administration of microbubbles and subsequent application of pulsed FUS (frequency: 1.525MHz, peak-rarefactional pressure in situ: 570 kPa) to the left murine hippocampus through the intact skin and skull. BBB-impermeant, fluorescent-tagged dextrans at three distinct molecular weights spanning over several orders of magnitude were systemically administered and acted as model therapeutic compounds. First, dextrans of 3 and 70 kDa were delivered trans-BBB while 2000 kDa dextran was not. Second, compared with 70 kDa dextran, a higher concentration of 3 kDa dextran was delivered through the opened BBB. Third, the 3 and 70 kDa dextrans were both diffusely distributed throughout the targeted brain region. However, high concentrations of 70 kDa dextran appeared more punctated throughout the targeted region. In conclusion, FUS combined with microbubbles opened the BBB sufficiently to allow passage of compounds of at least 70 kDa, but not greater than 2000 kDa into the brain parenchyma. This noninvasive and localized BBB opening technique could, thus, provide a unique means for the delivery of compounds of several magnitudes of kDa that include agents with shown therapeutic promise in vitro but whose in vivo translation has been hampered by their associated BBB impermeability. (E-mail: ek2191@columbia.edu)  相似文献   

2.
RNAi represents a new alternative for treatment of chronic myeloid leukemia (CML) to overcome the difficulties of current drug treatments such as the acquired resistance. However, potent carriers that can overcome delivery barriers to RNAi agents and have therapeutic efficacy especially in difficult-to-transfect CML cells are needed. Here, we explored the use of lipid-modified polyethylenimines (PEI) of low molecular weights (0.6, 1.2 and 2.0 kDa) in K562 cells and showed that the delivery efficiency was dependent on the type of lipid used for polymer modification, degree of lipid substitution and polymer molecular weight. Among the lipid-substituted polymers investigated, palmitic acid (PA)-substituted 1.2 kDa PEI (~ 2 lipids/PEI) has proven to be highly efficient in delivering siRNA and silencing of the reporter gene green fluorescent protein (GFP). The silencing efficacy achieved with this polymer was found to be higher than the 25 kDa PEI and is similar to commercial reagent Lipofectamine™ 2000. Moreover, when BCR-ABL protein was targeted in K562 cells, a reduction in the corresponding mRNA levels was observed, as well as an induction of early and late stage apoptosis. The results of this study demonstrated that PA-substitutions on low MW polymers could be useful for siRNA delivery in CML cells for therapeutic purposes.  相似文献   

3.
Ultrasound-mediated drug delivery is a field of research with promising results, although the exact mechanisms underlying intracellular delivery of therapeutic compounds remain to be elucidated. Many studies use drug carriers and cavitation to enhance drug uptake into tumor cells. However, cavitation could induce cell lysis and remain difficult to control and predict in vivo. In this study, low-intensity ultrasound was delivered using two transducers working at 2.9 and 1.3 MHz. The maximal peak negative pressure was 0.29 MPa to avoid cavitation. Low-intensity ultrasound induced clathrin-mediated endocytosis and forced the penetration of a bisphosphonate (zoledronic acid) into MCF-7 human breast cancer cells potentially as a result of mechanical stresses. When sonication parameters were adjusted to create mild hyperthermia in addition to the mechanical stress, further significant accumulation of ZOL was observed. These results provide better insight into the role of acoustic parameters in drug uptake.  相似文献   

4.
Recent developments in the field of ultrasound (US) contrast agents have demonstrated that these encapsulated microbubbles can not only be used for diagnostic imaging but may also be employed as therapeutic carriers for localized, targeted drug or gene delivery. The exact mechanisms behind increased uptake of therapeutic compounds by US-exposed microbubbles are still not fully understood. Therefore, we studied the effects of stably oscillating SonoVue microbubbles on relevant parameters of cellular and intercellular permeability, i.e., reactive oxygen species (ROS) homeostasis, calcium permeability, F-actin cytoskeleton, monolayer integrity and cell viability using live-cell fluorescence microscopy. US was applied at 1-MHz, 0.1 MPa peak-negative pressure, 0.2% duty cycle and 20 Hz pulse repetition frequency to primary endothelial cells. We demonstrated increased membrane permeability for calcium ions, with an important role for H2O2. Catalase, an extracellular H2O2 scavenger, significantly blocked the influx of calcium ions. Further changes in ROS homeostasis involved an increase in intracellular H2O2 levels, protein nitrosylation and a decrease in total endogenous glutathione levels. In addition, an increase in the number of F-actin stress fibers and F-actin cytoskeletal rearrangement were observed. Furthermore, US-exposed microbubbles significantly affected endothelial monolayer integrity, but importantly, disrupted cell-cell interactions were restored within 30 min. Finally, cell viability was not affected. In conclusion, these data provide more insight in the interactions between US, microbubbles and endothelial cells, which is important for understanding the mechanisms behind US and microbubble-enhanced uptake of drugs or genes. (E-mail: ljm.juffermans@vumc.nl)  相似文献   

5.
The work demonstrated the successful delivery of gene to mouse brain overcoming the blood-brain barrier (BBB) through expedient vector construct having RVG peptide as targeting ligand for neuronal cells. The newly developed delivery vector was designed to impart bioreducibility for greater intracellular pDNA release, higher serum stability and efficient complexing ability by incorporating disulfide linkage, PEG and low molecular weight polyethylenimine, respectively. The physiochemical properties of the polyplex, its cytotoxicity and the in vitro transfection efficiency on Neuro2a cell were studied prior to the successful in vivo study. In vivo fluorescence assay substantiated the permeation of the pDNA loaded polymeric vector through the BBB. The RVG-mediated target-specific cellular uptake of polymeric vector was established conclusively by competitive assay.  相似文献   

6.

Purpose

Transport across the plasma membrane is a critical step of drug delivery for weakly permeable compounds with intracellular mode of action. The purpose of this study is to demonstrate real-time monitoring of ultrasound (US)-mediated cell-impermeable model drug uptake with fibered confocal fluorescence microscopy (FCFM).

Procedures

An in vitro setup was designed to combine a mono-element US transducer, a cell chamber with a monolayer of tumor cells together with SonoVue microbubbles, and a FCFM system. The cell-impermeable intercalating dye, SYTOX Green, was used to monitor US-mediated uptake.

Results

The majority of the cell population showed fluorescence signal enhancement 10 s after US onset. The mean rate constant k of signal enhancement was calculated to be 0.23?±?0.04 min?1.

Conclusions

Feasibility of real-time monitoring of US-mediated intracellular delivery by FCFM has been demonstrated. The method allowed quantitative assessment of model drug uptake, holding great promise for further local drug delivery studies.  相似文献   

7.
Microbubbles triggered with localized ultrasound (US) can improve tumor drug delivery and retention. Termed US-stimulated drug delivery, this strategy was applied to head and neck cancer (HNC) in a post-surgical tumor resection model. Luciferase-positive HNC squamous cell carcinoma (SCC) was implanted in the flanks of nude athymic mice (N = 24) that underwent various degrees of surgical tumor resection (0%, 50% or 100%). After surgery, animals received adjuvant therapy with cetuximab-IRDye alone, or cetuximab-IRDye in combination with US-stimulated drug delivery or saline injections (control) on days 4, 7 and 10. Tumor drug delivery was assessed on days 0, 4, 7, 10, 14 and 17 with an in vivo fluorescence imaging system, and tumor viability was evaluated at the same times with in vivo bioluminescence imaging. Tumor caliper measurements occurred two times per week for 24 d. Optical imaging revealed that in the 50% tumor resection group, US-stimulated drug delivery resulted in a significant increase in cetuximab delivery compared with administration of drug alone on day 10 (day of peak fluorescence) (p = 0.03). Tumor viability decreased in all groups that received cetuximab-IRDye in combination with US-stimulated drug delivery, compared with the group that received only the drug. After various degrees of surgical resection, this novel study reports positive improvements in drug uptake in the residual cancer cells when drug delivery is stimulated with US.  相似文献   

8.
The use of tissue engineering to deliver genes to stem cells has been impeded by low transfection efficiency of the inserted gene and poor retention at the target site. Herein, we describe the use of non-viral gene transfer by cell-permeable peptide (CPP) to increase the transfection efficiency. The combination of this technique with the use of a controlled release concept using a poly (l-lactide) scaffold allowed for prolonged uptake in stem cells. High transfection efficiency was obtained using a human-derived arginine-rich peptide denoted as Hph-1 (YARVRRRGPRR). The formation of complex between pDNA and Hph-1 was monitored using gel retardation tests to measure size and zeta potential. Complex formation was further assessed using a DNase I protection assay. A sustained gene delivery system was developed using a fibrous 3-D scaffold coated with pDNA/Hph-1 complexes. Transfection efficiency and the mean fluorescence intensity of human adipose-derived stem cells (hASCs) on the sustained delivery scaffold were compared to those of cells transfected via bolus delivery. Plasmid DNA completely bound Hph-1 at a negative-to-positive (N/P) charge ratio of 10. After complex formation, Hph-1 appeared to effectively protect pDNA against DNase I attack and exhibited cytotoxicity markedly lower than that of the pDNA/PEI complex. Plasmid DNA/Hph-1 complexes were released from the scaffolds over 14 days and were successfully transfected hASCs seeded on the scaffolds. Flow cytometry revealed that the transfection efficiency in hASCs treated with pDNA/Hph-1 complex was approximately 5-fold higher than that in cells transfected using Lipofectamine. The sustained delivery system showed a significantly higher transfection efficiency and remained able to transfect cells for a longer period of time than bolus delivery. These results suggest that cell-scaffold-based tissue regeneration can be further improved by transduction concept using CPP and controlled release using polymeric scaffold.  相似文献   

9.
Focal drug delivery to a vessel wall facilitated by intravascular ultrasound and microbubbles holds promise as a potential therapy for atherosclerosis. Conventional methods of microbubble administration result in rapid clearance from the bloodstream and significant drug loss. To address these limitations, we evaluated whether drug delivery could be achieved with transiently stable microbubbles produced in real time and in close proximity to the therapeutic site. Rat aortic smooth muscle cells were placed in a flow chamber designed to simulate physiological flow conditions. A flow-focusing microfluidic device produced 8 μm diameter monodisperse microbubbles within the flow chamber, and ultrasound was applied to enhance uptake of a surrogate drug (calcein). Acoustic pressures up to 300 kPa and flow rates up to 18 mL/s were investigated. Microbubbles generated by the flow-focusing microfluidic device were stabilized with a polyethylene glycol-40 stearate shell and had either a perfluorobutane (PFB) or nitrogen gas core. The gas core composition affected stability, with PFB and nitrogen microbubbles exhibiting half-lives of 40.7 and 18.2 s, respectively. Calcein uptake was observed at lower acoustic pressures with nitrogen microbubbles (100 kPa) than with PFB microbubbles (200 kPa) (p < 0.05, n > 3). In addition, delivery was observed at all flow rates, with maximal delivery (>70% of cells) occurring at a flow rate of 9 mL/s. These results demonstrate the potential of transiently stable microbubbles produced in real time and in close proximity to the intended therapeutic site for enhancing localized drug delivery.  相似文献   

10.
The transplantation of genetically engineered fibroblasts has been shown to be an effective approach for achieving continuous and site-specific delivery of therapeutic molecules to various regions of the central nervous system. However, to our knowledge no one has asked whether soluble factors released from the transplanted fibroblasts influence the delivery of therapeutic molecules from the engrafted cells. To address this issue, we used a newly developed cell encapsulation device to study the functional consequence of the foreign body response on soluble factor delivery from fibroblasts transplanted into adult brain tissue. We found that transplanted fibroblasts increased the level of inflammation and glial cell encapsulation at the transplantation site, and reduced the diffusion of a 70 kDa dextran probe through the reactive tissue. The response, however, did not prevent the diffusion of the 70 kDa dextran test probe indicating that the approach appears suitable for the delivery of neurotrophins and other therapeutic molecules with a molecular weight less than 70 kDa. The results suggest that less reactive cell types may be better suited for sustained delivery of therapeutic molecules into brain tissue.  相似文献   

11.
Translocation through the plasma membrane is a major limiting step for the cellular delivery of macromolecules. Several cell penetrating peptides (CPP) have been demonstrated to efficiently internalize various molecular cargo to targets inside eukaryotic cells. In this study, the efficiency and mechanism of cellular uptake of the CPPs penetratin, Tat, and MTS fused to elastin-like polypeptides (CPP-ELP) were evaluated. Elastin-like polypeptides are biopolymers with features that make them useful as polymeric carriers for the delivery of therapeutics. Therefore, improving efficiency of cellular uptake by fusing ELPs to CPPs and understanding the mechanism of their cellular internalization could contribute to development of new therapeutic approaches. Flow cytometry and confocal fluorescence microscopy were used to elucidate the mechanism of CPP-ELP uptake. The internalization of all CPP-ELPs was impaired dramatically at 4 degrees C, under ATP depletion conditions, and with hyperosmolar sucrose, implicating involvement of an endocytic pathway for CPP-ELP internalization. Penetratin was identified as the most effective CPP for delivering ELP. Finally, in order to demonstrate the potential of CPP-ELP for drug delivery, a fusion polypeptide was made containing penetratin, ELP, and a peptide derived from the cyclin-dependent kinase inhibitor p21. This polypeptide was shown to inhibit proliferation of SKOV-3 and HeLa cells by slowing their growth rate.  相似文献   

12.
The aim of this study was to evaluate the ability of a low-fluence fractional erbium:yttrim-aluminum-garnet (Er:YAG) laser, with a wavelength of 2940 nm, for enhancing and controlling the skin permeation of imiquimod and macromolecules such as polypeptides and fluorescein isothiocyanate (FITC)-labeled dextran (FD). The in vitro permeation has been determined using a Franz diffusion cell, with porcine skin and nude mouse skin as the barriers. Hyperproliferative and ultraviolet (UV)-irradiated skins were also used as barrier models to mimic the clinical therapeutic conditions. Confocal laser scanning microscopy (CLSM) was used to examine the in vivo nude mouse skin uptake of peptide, FITC, and FD. Both in vitro and in vivo results indicated an improvement in permeant skin delivery by the laser. The laser fluence and number of passes were found to play important roles in controlling drug transport. Increases of 46- and 127-fold in imiquimod flux were detected using the respective fluences of 2 and 3 J/cm2 with 4 pulses. An imiquimod concentration of 0.4% from aqueous vehicle with laser treatment was sufficient to approximate the flux from the commercial cream with an imiquimod dose of 5% without laser treatment, indicating a reduction of the drug dose by 125-fold. The enhancement of peptide permeation was size and sequence dependent, with the smaller molecular weight (MW) and more-hydrophilic entities showing greater enhancing effect. Skin permeation of FD with an MW of at least 150 kDa could be achieved with fractional laser irradiation. CLSM images revealed intense green fluorescence from the permeants after exposure of the skin to the laser. The follicular pathway was significant in laser-assisted permeation.  相似文献   

13.
Poly(vinylpyrrolidone-co-dimethyl maleic acid) (PVD) was found to have high renal-targeting capability and safety as a drug carrier. To optimize the renal drug delivery system using PVD, the relationship between the molecular weight of PVD and its renal accumulation were evaluated in mice by their intravenous injection. It was found that the molecular size of 6-8 kDa was associated with the highest renal accumulation. The specific bioactivity of PVD-conjugated superoxide dismutase (SOD) relative to that of unmodified SOD gradually decreased with an increase in the degree of modification to SOD with PVD6K. The conjugated SOD (L-PVD-SOD) with the molecular size of 73 kDa, which had comparable specific bioactivity with native SOD, showed longer plasma half-life than native SOD. About sixfold more L-PVD-SOD was distributed to the kidneys than native SOD 3 h after intravenous injection, whereas extensive PVD modification did not enhance the renal accumulation of SOD. This L-PVD-SOD effectively accelerated recovery from mercuric chloride-induced acute renal failure in vivo. These results suggest that L-PVD-SOD may be the optimal derivative as a potential therapeutic agent to various renal diseases.  相似文献   

14.
In recent years, polymer drug carriers based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers with pH-triggered drug release have shown enhanced uptake in solid tumors and excellent antitumor activity. Here, the impact of the structure of the acid-labile spacer between the drug and the polymer carrier on the biodistribution of both the drug and the carrier was studied using in vivo noninvasive multispectral optical imaging of dual fluorescently labeled HPMA copolymers. Five different spacers containing a pH-sensitive hydrazone bond were synthesized and used to combine a fluorescent model drug with a polymer backbone, conjugated with another non-releasable fluorescent dye. Two copolymers differing in polymer chain structure (linear and star-like) and molecular weight (30 and 200 kDa) were used to distinguish between carriers with molecular weights above and below the limit for renal filtration. The rate of model drug release from the conjugates was determined in vitro. The biodistributions of the six most promising conjugates were investigated in vivo in athymic nude mice inoculated with human colon carcinoma xenograft. The structure of the spacer in the vicinity of the hydrazone bond significantly influenced the release rate of the model drug. The slow release rate of a pyridyl group bearing spacer resulted in a greater amount of the model drug being transported to the tumor, which was independent of the carrier structure. The results of this study emphasize the importance of careful selection of the structure and appropriate spacer when designing polymer conjugates intended for passive tumor targeting.  相似文献   

15.
Disulfiram (DSF), an FDA-approved anti-alcoholic drug, has recently shown that it possesses anti-cancer effects. However, DSF is hydrophobic in nature with less stability. Therefore, new approaches are required for the effective delivery of DSF to treat cancers. Herein, we prepared DSF loaded soy protein isolate (SPI) nanosuspension (Ns) for enhancing the anti-cancer delivery of DSF. The optimized DSF-SPI-Ns had an average particle size of 164.28 ± 2.07 nm with a narrow size distribution of 0.217 ± 0.035 and zeta potential around −22.30 ± 2.11 mV, respectively. The highest drug loading and entrapment efficiency achieved was 5.516 ± 1.98%, and 91.61 ± 1.15%, respectively. The surface morphology of Ns was revealed by TEM, and the FTIR DSC, PXRD, and TGA were used for physicochemical characterization. Further, fluorescence spectroscopy and molecular docking studies were carried out to understand the interactions between (SPI and DSF) and binding sites of DSF on the surface of SPI, respectively. In vitro release studies showed a sustained release pattern and followed a Fickian diffusion release from the Ns. The in vitro cytotoxicity of SPI indicated the excellent biocompatibility, and DSF-SPI-Ns were found to be more cytotoxic compared to the free DSF solution. Moreover, the cellular uptake studies also indicated the effective delivery of the formulation to the cancer cells. Results of the current study suggested that the SPI coated Ns might be a promising drug delivery system for hydrophobic DSF, and the potential application of SPI as a coating/stabilizing agent for the delivery of hydrophobic/hydrophilic cancer therapeutics.

Disulfiram (DSF), an FDA-approved anti-alcoholic drug, has recently shown that it possesses anti-cancer effects.  相似文献   

16.
A novel two-step protocol for intracellular drug delivery has been evaluated in vitro. As a first step TO-PRO-3 (a cell-impermeable dye that displays a strong fluorescence enhancement upon binding to nucleic acids) encapsulated in thermosensitive liposomes was released after heating to 42 °C. A second step consisted of ultrasound-mediated local permeabilization of cell membrane allowing TO-PRO-3 internalization observable as nuclear staining. Only the combination of two consecutive steps — heating and sonication in the presence of SonoVue microbubbles led to the model drug TO-PRO-3 release from the thermosensitive liposomes and its intracellular uptake. This protocol is potentially beneficial for the intracellular delivery of cell impermeable drugs that suffer from rapid clearance and/or degradation in blood and are not intrinsically taken up by cells.  相似文献   

17.
In hepatobiliary transport of organic cations some remarkable differences have been reported between the monovalent compounds (prototype procainamidethobromide) and the potentially bivalent cations, containing a second quaternary ammonium group or a protonated tertiary amine function (prototype d-tubocurarine). In order to characterize the hepatic uptake mechanism for such bivalent cations in more detail, we studied the uptake of the steroidal muscle relaxant vecuronium in isolated rat hepatocytes. Uptake occurred by both a saturable (Vmax = 181 pmol/min x 10(6) cells, Km = 15 microM) and a nonsaturable process (rate constant = 1.10 pmol/min/10(6) cells/microM). The uptake of vecuronium was reduced by various metabolic inhibitors and by sulfhydryl-blocking agents. The transport system showed temperature dependency with an activation energy of 85 kJ/mol. Sodium replacement by lithium or choline in the extracellular medium had no effect on the uptake of vecuronium. Replacement of sodium chloride by sucrose led to a decrease of the uptake, whereas chloride replacement by bicarbonate or iodide stimulated the vecuronium uptake. These data point to a significant anion-dependency of the uptake system and indicate electroneutral uptake of vecuronium. The uptake of vecuronium was inhibited by a variety of hepatic transport model compounds, including bile acids, uncharged compounds and high molecular weight organic cations. Low molecular weight monovalent cations had no effect on the uptake of vecuronium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Carbon dots (CDs) are photoluminescent nanoparticles with distinctive properties, having great potential in nano-biomaterial systems such as gene/drug delivery vectors and cell imaging agents. Fluorine-doped CD C-6F was prepared by a one-step ring-opening polymerization-dehydrative carbonization (RPDC) approach based on low molecular weight polyethyleneimine (PEI, 600 Da) and fluorinated diglycidyl ethers, while the non-fluorinated counterpart C-6H and the CD prepared from PEI 600 Da solely (C-600) were also prepared for comparison. TEM, FT-IR and XPS were performed to determine the compositions and surface states of the CDs. In vitro cell experiment results reveal that the CDs prepared from RPDC approach have much higher transfection efficiency and cellular uptake than PEI 600 contrasts in various cell lines. Compared to non-fluorinated C-6H, C-6F exhibited distinctly higher transfection efficiency, and up to 30 and 260 times higher efficiency than PEI 25 kDa could be achieved in the absence and presence of serum, respectively, indicating the advantage of F-doping. Besides, these CDs exhibit good cell imaging capability under single wavelength excitation, making the materials suitable for cellular tracking and transfection mechanism studies. These results demonstrate that fluorine-doping is an efficient approach to obtained CD gene vectors with high efficiency and serum tolerance.

Carbon dots (CDs) are photoluminescent nanoparticles with distinctive properties, having great potential in nano-biomaterial systems such as gene/drug delivery vectors and cell imaging agents.  相似文献   

19.
To improve the in vivo tumor targeting characteristics of polymeric nanoparticles, three glycol chitosan (GC-20 kDa, GC-100 kDa, and GC-250 kDa) derivatives with different molecular weights were modified with cholanic acid at the same molar ratio. The resulting amphiphilic glycol chitosan–cholanic acid conjugates self-assembled to form glycol chitosan nanoparticles (GC-20 kDa-NP, GC-100 kDa-NP, and GC-250 kDa-NP) under aqueous conditions. The physicochemical properties of all three glycol chitosan nanoparticles, including degree of substitution with cholanic acid, surface charge, particle size and in vitro stability, were similar regardless of molecular weight. In vivo tissue distribution, time-dependent excretion, and tumor accumulation of glycol chitosan nanoparticles labeled with the near-infrared (NIR) fluorophore, Cy5.5, were monitored in SCC7 tumor-bearing mice, using NIR fluorescence imaging systems. Glycol chitosan nanoparticles displayed prolonged blood circulation time, decreased time-dependent excretion from the body, and elevated tumor accumulation with increasing polymer molecular weight. The results collectively suggest that high molecular weight glycol chitosan nanoparticles remain for longer periods in the blood circulation, leading to increased accumulation at the tumor site. Accordingly, we propose that enhanced tumor targeting by high molecular weight glycol chitosan nanoparticles is related to better in vivo stability, based on a pharmacokinetic improvement in blood circulation time.  相似文献   

20.
Clinically, the nanotherapy of tumors has been limited by the drug content, efficiency of targeted release, and bioavailability. In this study, we fabricated an amphiphilic block polymer, poly(2-methacryloyloxyethyl thiocticcarboxylate)-block-poly(N-isopropylacrylamide) (PMAOETC-b-PNIPAM), using an “ATRP polymerization–esterification” strategy for paclitaxel (PTX) delivery. The hydrophobic drug paclitaxel was encapsulated based on hydrogen bond interactions between PTX and the PMAOETC and PNIPAM blocks, together with hydrophobic interactions between PTX and PMAOETC segments, affording PTX-laden polymer micelles with ∼30% drug loading content. The critical micelle concentration of the PTX-loaded polymeric micellar aggregates was 34.53 mg l−1, as determined through fluorescence spectroscopy, which indicated favorable stability during infinite dilution by body fluids. The phase transition temperature of the micelles was tunable (36.10–39.48 °C) via adjusting the lengths of the blocks. The PTX-laden micelles showed the release of a significant amount of PTX in cancerous tissue, while negligible cytotoxicity was shown against HCT-116 cells in PBS at pH 7.4 and 37 °C. Further in vivo anticancer studies revealed that antitumor treatment using the PTX-laden micelles caused a significant suppression in tumor volume compared with a free-PTX-treated group. This study provides a reference for improving drug content levels and optimizing the therapeutic effects of drug delivery systems from the perspective of polymer preparation.

A dual temperature- and reduction-responsive nanovehicle with 29.36% paclitaxel loading was fabricated using an “ATRP polymerization–esterification” method for tumor suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号