首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Currently available microbubbles used for ultrasound imaging and therapeutics are limited to intravascular space due to their size distribution in the micron range. Phase-change contrast agents (PCCAs) have been proposed as a means to overcome this limitation, since droplets formed in the hundred nanometer size range might be able to extravasate through leaky microvasculature, after which they could be activated to form larger highly echogenic microbubbles. Existing PCCAs in the sub-micron size range require substantial acoustic energy to be vaporized, increasing the likelihood of unwanted bioeffects. Thus, there exists a need for PCCAs with reduced acoustic activation energies for use in imaging studies. In this article, it is shown that decafluorobutane, which is normally a gas at room temperature, can be incorporated into metastable liquid sub-micron droplets with appropriate encapsulation methods. The resulting droplets are activatable with substantially less energy than other favored PCCA compounds. Decafluorobutane nanodroplets may present a new means to safely extend ultrasound imaging beyond the vascular space.  相似文献   

2.
Phase-change contrast agents (PCCAs) possess advantages over microbubble contrast agents, such as the ability to extravasate and circulate longer in the vasculature that could enhance the diagnostic capabilities of contrast-enhanced ultrasound. PCCAs typically have a liquid perfluorocarbon (PFC) core that can be vaporized into echogenic microbubbles. Vaporization of submicron agents filled with liquid PFCs at body temperature usually requires therapeutic pressures higher than typically used for diagnostic imaging, but low-boiling-point PCCAs using decafluorobutane or octafluoropropane can be vaporized using pressures in the diagnostic imaging regime. Low-boiling-point PCCAs produce a unique acoustic signature that can be separated from tissue and bubble signals to make images with high contrast-to-tissue ratios. In this work, we explore the effect of pulse length and concentration on the vaporization signal of PCCAs and a new technique to capture and use the signals to make high contrast-to-tissue ratio images in vivo. The results indicate that using a short pulse may be ideal for imaging because it does not interact with created bubbles but still produces strong signals for making images. Furthermore, it was found that capturing PCCA vaporization signals produced higher contrast-to-tissue ratio values and better depth of penetration than imaging the bubbles generated by droplet activation using conventional contrast imaging techniques. The resolution of the vaporization signal images is poor because of the low frequency of the signals, but their high sensitivity may be used for applications such as molecular imaging, where the detection of small numbers of contrast agents is important.  相似文献   

3.
Sub-micron phase-change contrast agents (PCCAs) have been proposed as a tool for ultrasound molecular imaging based on their potential to extravasate and target extravascular markers and also because of the potential to image these contrast agents with a high contrast-to-tissue ratio. We compare in vivo ultrasound molecular imaging with targeted low-boiling-point PCCAs and targeted microbubble contrast agents. Both agents were targeted to the intravascular (endothelial) integrin αvß3via a cyclic RGD peptide (cyclo-Arg–Gly–Asp–D-Tyr–Cys) mechanism and imaged in vivo in a rodent fibrosarcoma model, which exhibits angiogenic microvasculature. Signal intensity was measured using two different techniques, conventional contrast-specific imaging (amplitude/phase modulation) and a droplet vaporization imaging sequence, which detects the unique signature of vaporizing PCCAs. Data indicate that PCCA-specific imaging is more sensitive to small numbers of bound agents than conventional contrast imaging. However, data also revealed that contrast from targeted microbubbles was greater than that provided by PCCAs. Both control and targeted PCCAs were observed to be retained in tissue post-vaporization, which was expected for targeted agents but not expected for control agents. The exact mechanism underlying this observation remains unknown.  相似文献   

4.
Low-boiling-point perfluorocarbon phase-change contrast agents (PCCAs) provide an alternative to microbubble contrast agents. Although parameter ranges related to in vivo bio-effects of microbubbles are fairly well characterized, few studies have been done to evaluate the potential of bio-effects related to PCCAs. To bridge this gap, we present an assessment of biological effects (e.g., hemorrhage) related to acoustically excited PCCAs in the rodent kidney. The presence or absence of bio-effects was observed after sonication with various perfluorocarbon core PCCAs (decafluorobutane, octafluoropropane or a 1:1 mixture) and as a function of activation pulse mechanical index (MI; minimum activation threshold, which was a moderate MI of 0.81–1.35 vs. a clinical maximum of 1.9). Bio-effects on renal tissue were assessed through hematology and histology including measurement of blood creatinine levels and the quantity of red blood cell (RBC) casts present in hematoxylin and eosin-stained kidney tissue sections after sonication. Short-term (24?h) and long-term (2 and 4?wk) analyses were performed after treatment. Results indicated that bio-effects from PCCA vaporization were not observed at lower mechanical indices. At higher mechanical indices, bio-effects were observed at 24?h, although these were not observable 2?wk after treatment.  相似文献   

5.
Phase-shift perfluorocarbon droplets have been investigated for over 20 years as pre-clinical ultrasound contrast agents with distinctive advantages in imaging and therapy. A number of formulation strategies exist, each with inherent advantages and limitations. In this note, we demonstrate a unique opportunity: that phase-shift droplets can be generated directly from commercially available microbubbles. This may facilitate pre-clinical and translational development by reducing the in-house synthesis expertise and resources required to generate high concentration droplet emulsions. Proof-of-principle in vitro and in vivo is given using droplets created from Definity and MicroMarker. The results demonstrate the role of perfluorocarbon choice in the trade-off between thermal stability and vaporization threshold, and suggest that commercial microbubbles with decafluorobutane cores may be ideal for this approach.  相似文献   

6.
Phase-change contrast agents (PCCAs), which normally consist of nanoscale or microscale droplets of liquid perfluorocarbons in an encapsulating shell, can be triggered to undergo a phase transition to the highly echogenic gaseous state upon the input of sufficient acoustic energy. As a result of the subsequent volumetric expansion, a number of unique applications have emerged that are not possible with traditional ultrasound microbubble contrast agents. Although many studies have explored the therapeutic aspects of the PCCA platform, few have examined the potential of PCCAs for molecular imaging purposes. In this study, we demonstrate a PCCA-based platform for molecular imaging using αvβ3-targeted nanoscale PCCAs composed of low-boiling-point perfluorocarbons. In vitro, nanoscale PCCAs adhered to target cells, could be activated and imaged with a clinical ultrasound system and produced a six-fold increase in image contrast compared with non-targeted control PCCAs and a greater than fifty-fold increase over baseline. Data suggest that low-boiling-point nanoscale PCCAs could enable future ultrasound-based molecular imaging techniques in both the vascular and extravascular spaces.  相似文献   

7.
Ultrasound-mediated microbubble cavitation improves perfusion in chronic limb and myocardial ischemia. The purpose of this study was to determine the effects of ultrasound-mediated microbubble cavitation in acute limb ischemia and investigate the mechanism of action. The animal with acute hindlimb ischemia was established using male Sprague-Dawley rats. The rats were randomly divided into three groups: intermittent high-mechanical-index ultrasound pulses combined with microbubbles (ultrasound [US] + MB group), US alone (US group) and MB alone (MB group). Both hindlimbs were treated for 10 min. Contrast ultrasound perfusion imaging of both hindlimbs was performed immediately and 5, 10, 15, 20 and 25 min after treatment. The role of the nitric oxide (NO) pathway in increasing blood flow in acutely ischemic tissue was evaluated by inhibiting endothelial nitric oxide synthase (eNOS) with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME). In the US + MB group, microvascular blood volume and microvascular blood flow of the ischemic hindlimb were significantly increased after treatment (both p values <0.05), while the microvascular flux rate (β) increased, but not significantly (p > 0.05). The increases were observed immediately after treatment, and had dissipated by 25 min. Changes in the US and MB groups were minimal. Inhibitory studies indicated cavitation increased phospho-eNOS concentration in ischemic hindlimb muscle tissue, and the increase was significantly inhibited by L-NAME (p < 0.05). Ultrasound-mediated microbubble cavitation transiently increases local perfusion in acutely ischemic tissue, mainly by improving microcirculatory perfusion. The eNOS/NO signaling pathway appears to be an important mediator of the effect.  相似文献   

8.
Ultrasound localization microscopy (ULM) is an emerging, super-resolution imaging technique for detailed mapping of the microvascular structure and flow velocity via subwavelength localization and tracking of microbubbles. Because microbubbles rely on blood flow for movement throughout the vascular space, acquisition times can be long in the smallest, low-flow microvessels. In addition, detection of microbubbles in low-flow regions can be difficult because of minimal separation of microbubble signal from tissue. Nanoscale, phase-change contrast agents (PCCAs) have emerged as a switchable, intermittent or persisting contrast agent for ULM via acoustic droplet vaporization (ADV). Here, the focus is on characterizing the spatiotemporal contrast properties of less volatile perfluoropentane (PFP) PCCAs. The results indicate that at physiological temperature, nanoscale PFP PCCAs with diameters less than 100 nm disappear within microseconds after ADV with high-frequency ultrasound (16 MHz, 5- to 6-MPa peak negative pressure) and that nanoscale PFP PCCAs have an inherent deactivation mechanism via immediate recondensation after ADV. This “blinking” on-and-off contrast signal allowed separation of flow in an in vitro flow phantom, regardless of flow conditions, although with a need for some replenishment at very low flow conditions to maintain count rate. This blinking behavior allows for rapid spatial mapping in areas of low or no flow with ULM, but limits velocity tracking because there is no stable bubble formation with nanoscale PFP PCCAs.  相似文献   

9.
The aim of the study described here was to investigate whether ultrasound-mediated microbubble destruction (UTMD) of targeted microbubbles conjugated with an anti-vascular endothelial growth factor receptor 2 (anti-VEGFR2) antibody can enhance the therapeutic effect of doxorubicin (DOX) on a mouse hepatocellular carcinoma (HCC) model bearing HEP-G2-RFP tumors. The growth of liver tumors in mice was inhibited by using Visistar VEGFR2 plus ultrasound irradiation and by DOX alone. DOX plus UTMD had an inhibitory effect on tumor growth beginning on the seventh day of treatment, while Visistar VEGFR2 alone and DOX alone had inhibitory effects beginning on the 11th day. DOX + UTMD significantly decreased tumor volume and tumor weight compared with DOX alone (p < 0.05) and Visistar VEGFR2 alone (p < 0.05). Compared with DOX alone and Visistar VEGFR2 alone, DOX + UTMD had the highest inhibitory effect on tumor angiogenesis and the highest apoptosis index. UTMD-targeted microbubbles can significantly enhance the antitumor effect of DOX on a mouse HCC model, inhibit angiogenesis and induce apoptosis in tumor cells.  相似文献   

10.
With Span and polyethylene glycol (PEG) as the membrane material, the as-prepared folate–carbon nanotube–paclitaxel (FA–CNT–PTX) complex was added to the reaction system under sound vibration cavitation and Span–PEG with FA–CNT–PTX microbubbles was obtained. The maximum tolerating dose of the obtained composite microbubbles on Kunming mice was determined by acute toxicity test. Utilizing the breast cancer tumor model in the nude mice to assess the anti-tumor activity in vivo, the inhibition effect of the composite microbubbles on tumor growth was analyzed by recording the weight and tumor volume of the nude mice. HE staining observations, the immunohistochemistry method, and TUNEL were, respectively, used to examine the inhibition effect of the composite microbubbles on breast cancer tumors in the nude mice. The ultrasound imaging effects and the changes in the peak intensities of the composite microbubbles were inspected using a Doppler color ultrasound imaging system. The experimental results showed that the maximum tolerated dose of the composite microbubbles was 3500 mg kg−1, indicating that the composite microbubbles had low toxicity and good biocompatibility. The composite microbubbles could reach the breast cancer tumor via a targeting factor, and then hindered the tumor growth by inhibiting the proliferation of tumor cells and inducing apoptosis of the tumor cells. The composite microbubbles contributed toward enhancing the ultrasound signal and improved the resolution of the ultrasound images and extended the imaging time. Also, the addition of CNTs in the composite microbubbles could enhance the ultrasound contrast. Simultaneously, the peak intensity at the tumor was significantly reduced after the treatment.

With Span and polyethylene glycol (PEG) as the membrane material, the as-prepared folate–carbon nanotube–paclitaxel (FA–CNT–PTX) complex was added to the reaction system under sound vibration cavitation and Span–PEG with FA–CNT–PTX microbubbles was obtained.  相似文献   

11.
New clinical applications of ultrasound contrast microbubbles extend beyond imaging and diagnosis toward therapeutic applications. Cell membrane permeability and the uptake of substances have been shown to be enhanced by microbubbles under ultrasound stimulation. However, the mechanisms of action of ultrasound-activated microbubbles are still unknown. The aim of our study was to examine how microbubbles and ultrasound interact with cells in an attempt to understand the sonoporation mechanism. The ruptured-patch-clamp whole-cell technique was used to measure membrane potential variations of a single cell. SonoVue microbubbles and mammary breast cancer cell line MDA-MB-231 were used. Ultrasound was applied using single-element transducers of 1 MHz. Microbubbles and cells were simultaneously video monitored during ultrasound exposure. Our results showed that, during sonoporation, a marked cell membrane hyperpolarization occurs (n = 6 cells) at negative pressures above 150 kPa, indicating the activation of specific ion channels while the cell and the microbubbles remain viable. The hyperpolarization was sustained for as long as the microbubbles are in a direct contact with the cell and the ultrasound waves are transmitted. Smaller acoustic amplitudes induced only mild hyperpolarization, whereas shutting off the ultrasound brings the cell membrane potential to its resting value. However, ultrasound alone did not affect the cell membrane potential. A similar hyperpolarization of the cell membrane was observed when a mechanical pressure was applied on the cell through a glass probe. In conclusion, the results demonstrate that microbubbles' oscillations under ultrasound activation entail modifications of the electrophysiologic cell activities by triggering the modulation of ionic transports through the plasmic cell membrane. However, only cells in direct contact with the microbubbles are impacted. The mechanisms involved are likely related to activation of specific channels sensitive to mechanical stresses (stretch-activated channels) and possibly nonspecific ion channels.  相似文献   

12.
Targeted microbubbles (MBs) are ultrasound contrast agents that are functionalized with a ligand for ultrasound molecular imaging of endothelial markers. Novel targeted MBs are characterized in vitro by incubation in protein-coated wells, followed by binding quantification by microscopy or ultrasound imaging. Both methods provide operator-dependent results: Between 3 and 20 fields of view from a heterogeneous sample are typically selected for analysis by microscopy, and in ultrasound imaging, different acoustic settings affect signal intensities. This study proposes a new method to reproducibly quantify MB binding based on enzyme-linked immunosorbent assay (ELISA), in which bound MBs are revealed with an enzyme-linked antibody. MB-ELISA was adapted to in vitro static binding assays, incubating the MBs in inverted position or by agitation, and compared with microscopy. The specificity and sensitivity of MB-ELISA enable the reliable quantification of MB binding in a rapid, high-throughput and whole-well analysis, facilitating the characterization of new targeted contrast agents.  相似文献   

13.
Previous studies have reported that microbubbles bearing targeting ligands to molecular markers of angiogenesis can be successfully detected by ultrasound imaging in various animal models of solid cancer. In the present study, we sought to investigate the activity of microbubbles targeted to vascular endothelial growth factor receptor 2 (VEGFR2) in an orthotopic model of renal cell carcinoma (RCC). Microbubbles conjugated to an anti-VEGFR2 antibody (MBV) were compared with microbubbles conjugated to an isotype control antibody (MBC) or naked microbubbles (MBN). An orthotopic mouse model of human RCC was established by surgically implanting an established tumor within the renal capsule in mice. Tumor growth and blood flow were verified by B-mode and color Doppler ultrasound imaging. VEGFR2 expression within the tumor and renal parenchyma was detected by immunohistochemistry. The duration of contrast enhancement of MBV was much longer than those of MBN and MBC when assessed over 10 min. The baseline-subtracted contrast intensity within the tumor was higher for MBV than for MBC and MBN (p < 0.01). Additionally, the contrast intensity for MBV was significantly higher in the tumor region than in normal parenchyma (p < 0.01). Microbubbles targeting VEGFR2 exhibit suitable properties for imaging angiogenesis in orthotopic models of renal cell carcinoma, with potential applications in life science research and clinical medicine.  相似文献   

14.
Ultrasound-induced microbubble destruction can enhance drug delivery to cells. The molecular weight of therapeutic compounds varies significantly (from <1 kDa for small molecule drugs, to 7–15 kDa for siRNAs/miRNAs, to >1000 kDa for DNA plasmids). Therefore, the objective of this study was to determine the relationship between uptake efficiency and molecular weight using equal molar concentrations. Uptake efficiency of fluorescent compounds with different molecular weights (0.3, 10 and 2000 kDa) was explored in vitro using human cardiac mesenchymal cells and breast cancer cells exposed to microbubbles and 2.5-MHz ultrasound pulses. Uptake by viable cells was quantified using flow cytometry. After correction for the fluorescence yield of each compound, there was a significant size-dependent difference in fluorescence intensity, indicating an inverse relationship between size and uptake efficiency. These results suggest that diffusion of therapeutic compounds across permeabilized cell membranes may be an important mechanism for ultrasound-mediated drug delivery.  相似文献   

15.
目的探讨超声破坏造影剂微泡介导血管内皮生长因子(VEGF)基因转染兔缺血心肌的有效性。方法新西兰白兔48只,结扎兔冠状动脉左旋支,建立急性心肌梗死模型。术后3d,经胸超声检查左室壁运动情况,明确心肌缺血区域,然后将VEGF真核表达质粒与新型超声造影剂JD-95混合后,经耳缘静脉输入兔体内,同时进行超声实时造影成像,照射心脏缺血区。其他对照组包括超声和造影剂组、单独基因组、基因和超声组、基因和造影剂组以及空白对照组。术后17d处死动物,取动物缺血心肌、肝、肾及下肢骨骼肌组织,用免疫组化方法检测VEGF蛋白表达。结果在超声破坏造影剂微泡介导基因转染的实验组中5只兔的缺血心肌中VEGF蛋白的表达,2只兔肾有VEGF表达。而其他对照组中无VEGF蛋白表达。结论超声破坏造影剂微气泡的方法是将体外生物活性物质传递至心肌中的一种有效途径。  相似文献   

16.
The blood-brain barrier (BBB) inhibits the entry of the majority of chemotherapeutic agents into the brain. Previous studies have illustrated the feasibility of drug delivery across the BBB using focused ultrasound (FUS) and microbubbles. Here, we investigated the effect of FUS-enhanced delivery of doxorubicin on survival in rats with and 9L gliosarcoma cells inoculated in the brain. Each rat received either: (1) no treatment (control; N = 11), (2) FUS only (N = 9), (3) IV liposomal doxorubicin (DOX only; N = 17), or (4) FUS with concurrent IV injections of liposomal doxorubicin (FUS+DOX; N = 20). Post-treatment by magnetic resonance imaging (MRI) showed that FUS+DOX reduced tumor growth compared with DOX only. Further, we observed a modest but significant increase in median survival time after a single treatment FUS+DOX treatment (p = 0.0007), whereas neither DOX nor FUS had any significant impact on survival on its own. These results suggest that combined ultrasound-mediated BBB disruption may significantly increase the antineoplastic efficacy of liposomal doxorubicin in the brain.  相似文献   

17.
Unlike lipid-shelled microbubbles (MBs), albumin-shelled microbubbles (MBs) have not been reported to be actively targeted to cells without the assistance of antibodies. Recent studies indicate that the albumin molecule is similar to transforming growth factor β (TGF-β) both structurally and functionally. The TGF-β superfamily is important during early tumor outgrowth, with an elevated TGF-β being tumor suppressive; at later stages, this switches to malignant conversion and progression, including breast cancer. TGF-β receptors I and II play crucial roles in both the binding and endocytosis of albumin. However, until now, no specific albumin receptor has been found. On the basis of the above-mentioned information, we hypothesized that non-antibody-conjugated albumin-shelled MBs can be used to deliver drugs to breast cancer cells. We also studied the possible roles of TGF-β1 and radiation force in the behavior of cells and albumin-shelled MBs. The results indicate that albumin-shelled MBs loaded with paclitaxel (PTX) induce breast cancer cell apoptosis without the specific targeting produced by an antibody. Applying either an acoustic radiation force or cavitation alone to cells with PTX-loaded albumin MBs increased the apoptosis rate to 23.2% and 26.3% (p < 0.05), respectively. We also found that albumin-shelled MBs can enter MDA-MB-231 breast cancer cells and remain there for at least 24 h, even in the presence of PTX loading. Confocal micrographs revealed that 70.5% of the breast cancer cells took up albumin-shelled MBs spontaneously after 1 d of incubation. Applying an acoustic radiation force further increased the percentage to 91.9% in our experiments. However, this process could be blocked by TGF-β1, even with subsequent exposure to the radiation force. From these results, we conclude that TGF-β1 receptors are involved in the endocytotic process by which albumin-shelled MBs enter breast cancer cells. The acoustic radiation force increases the contact rate between albumin-shelled MBs and tumor cells. Combining a radiation force and cavitation yields an apoptosis rate of 31.3%. This in vitro study found that non-antibody-conjugated albumin-shelled MBs provide a useful method of drug delivery. Further in vivo studies of the roles of albumin MBs and TGF-β in different stages of cancer are necessary.  相似文献   

18.
We present enhanced cavitation erosion of blood clots exposed to low-boiling-point (−2°C) perfluorocarbon phase-change nanodroplets and pulsed ultrasound, as well as microbubbles with the same formulation under the same conditions. Given prior success with microbubbles as a sonothrombolysis agent, we considered that perfluorocarbon phase-change nanodroplets could enhance clot disruption further beyond that achieved with microbubbles. It has been hypothesized that owing to their small size and ability to penetrate into a clot, nanodroplets could enhance cavitation inside a blood clot and increase sonothrombolysis efficacy. The thrombolytic effects of lipid-shell-decafluorobutane nanodroplets were evaluated and compared with those of microbubbles with the same formulation, in an aged bovine blood clot flow model. Seven different pulsing schemes, with an acoustic intensity (ISPTA) range of 0.021–34.8 W/cm2 were applied in three different therapy scenarios: ultrasound only, ultrasound with microbubbles and ultrasound with nanodroplets (n = 5). Data indicated that pulsing schemes with 0.35 W/cm2 and 5.22 W/cm2 produced a significant difference (p < 0.05) in nanodroplet sonothrombolysis performance compared with compositionally identical microbubbles. With these excitation conditions, nanodroplet-mediated treatment achieved a 140% average thrombolysis rate over the microbubble-mediated case. We observed distinctive internal erosion in the middle of bovine clot samples from nanodroplet-mediated ultrasound, whereas the microbubble-mediated case generated surface erosion. This erosion pattern was supported by ultrasound imaging during sonothrombolysis, which revealed that nanodroplets generated cavitation clouds throughout a clot, whereas microbubble cavitation formed larger cavitation clouds only outside a clot sample.  相似文献   

19.
目的探讨低频超声联合微泡造影剂增强脂质体介导增强型绿色荧光蛋白质粒(pEGFP-N1)转染前列腺癌细胞的可行性,并对超声微泡浓度参数进行优化。方法将前列腺癌PC-3细胞悬液分为空白对照组、超声组、微泡组、微泡+超声组、脂质体组、脂质体+微泡组、脂质体+超声组、脂质体+微泡+超声组,其中脂质体+微泡+超声组根据微泡体积浓度不同分为(0、10%、20%、30%、40%和50%)6个亚组。经超声辐照,24h后用荧光显微镜观察细胞中基因表达情况,并用流式细胞仪检测转染率。结果脂质体+微泡+超声组基因转染效率最高,与其他组比较差异均有统计学意义(P均<0.05);在脂质体+微泡+超声亚组中,微泡浓度为20%亚组基因转染率最高。结论低频超声联合微泡能有效增强脂质体介导pEGFP-N1基因在体外前列腺癌细胞中的转染率,20%是体外基因转染前列腺癌细胞的最佳微泡浓度。  相似文献   

20.
The purpose of our study was to assess the potential clinical value of ultrasound imaging in predicting risk category in patients with breast cancer. Three hundred thirty-six patients were enrolled and divided into a high-risk group (99, 29.5%) and mid- to low-risk group (237, 70.5%) according to the St. Gallen risk criteria. All data were retrospectively collected to analyze correlations between ultrasound features and risk category. The results revealed that the ultrasound features of irregular shape (p?=?0.002), vertical growth orientation (p?=?0.002), angular contour (p?=?0.022) and high color Doppler flow imaging grade (p?=?0.001) tended to be present in images of the high-risk group. Therefore, tumor ultrasound features should be recognized as an ideal option for determination of risk category in patients with breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号