首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND AND PURPOSE: Recent transcranial Doppler studies in patients with neurocardiogenic syncopes (NCS) have demonstrated that the cerebrovascular response to sudden systemic hypotension is vasoconstriction instead of compensatory vasodilation (autoregulation). We tried to characterize the conditions leading to this unexpected response in NCS patients further by continuously monitoring autoregulation and autonomic parameters during a standardized tilt-table test (TTT). METHODS: Sixteen patients below the age of 50 years with a history of at least three syncopes of undetermined cause and tilt-table verified NCS and 20 normal controls were studied. Arterial blood pressure (ABP) and heart rate (HR) were monitored by Finapres and cerebral blood flow velocity (CBFV) of the left middle cerebral artery by transcranial Doppler. Baroreflex sensitivity and autoregulation parameters were measured continuously, using cross-spectral analysis of Mayer waves (3-9 cycles per minute oscillations) in ABP, HR and CBFV, respectively. Pulsatility indices (PI) of CBFV and ABP were determined continuously. Measurements were taken during 5 min in supine and during 5 min in tilted position. In patients, tilting was continued for a maximum of 45 min until the onset of syncope or presyncope. RESULTS: According to the maximum increase in heart rate (deltaHR) during the first 5 min of standing, heart rate responses were classified as postural tachycardia syndrome (POTS) (deltaHR > 35/min) or as normal. Only one out of 20 control subjects showed a POTS (5%) in contrast to seven patients (44%). Patients with a POTS had significantly lower PI values in ABP and higher ratios between the PI of CBFV and the PI of ABP both in supine and in tilted positions. Baroreflex sensitivity during standing decreased significantly in POTS patients when compared to controls. Although autoregulation remained intact during standing, mean CBFV decreased significantly and continuously. The nine patients without a POTS showed almost the same cardiovascular and cerebrovascular responses as the control subjects. All 16 patients showed similar circulatory responses during syncope (sudden hypotension, relative or absolute bradycardia, reduced CBFV and increased PI in CBFV). CONCLUSIONS: The development of a POTS during tilting indicates a high risk for fainting. The characteristic hemodynamic features in the initial phase of standing in these patients can be interpreted in terms of central hypovolemia (low PI of ABP) with sufficient ABP regulation and increased cerebrovascular resistance (defined as the ratio between PI of CBFV and ABP). Cerebral autoregulation seems not to be affected in patients suffering from NCS.  相似文献   

2.
Evaluation of dynamic cerebral autoregulation might yield a physiologically more adequate measure of cerebral hemodynamic impairment in carotid artery stenosis than CO2-reactivity. This study re-evaluates and compares the Valsalva maneuver (VM) and phase shift during deep breathing. Nineteen patients with severe carotid artery stenosis and 17 age-matched controls were examined using transcranial Doppler sonography and non-invasive blood pressure recordings (Finapres). Phase shift was determined by cross-spectral analysis, responses to VM were graded by the formerly-introduced autoregulation slope index (ASI) and the new Valsalva time index (VTI). Phase shift and autoregulatory indices were significantly reduced on the affected side (p < 0.001). Correlations with CO2-reactivity were significant when pooling values of controls and patients (r from 0.54 to 0.78; p < 0.001). Correlations except for the VTI (r = -0.65; p = 0.002) were not significant considering only the affected side in patients. Correlations of pooled values between phase shift and VM-derived indices were significant (VTI r = -0.62; p < 0.001; ASI r = 0.49; p < 0.001), within patients only when comparing side-to-side differences (VTI r = -0.58; p = 0.009; ASI r = 0.52; p = 0.023). In conclusion, detection of impaired cerebral autoregulation is possible both by deep breathing and VM. The new VTI seems to be more suitable than the conventional ASI. Inter-method agreement concerning the extent of impairment is only acceptable for intra-individual side-to-side differences. Since absolute values of one autoregulation testing method or CO2-reactivity alone might fail, various tests should be combined for comprehensive assessment of cerebral hemodynamic impairment.  相似文献   

3.
Background and purpose:  Obstructive sleep apnea syndrome (OSAS) is an independent risk factor for stroke. Impairment of cerebral autoregulation may play a potential role in the pre-disposition to stroke of OSAS patients. In this study, we aimed to assess dynamic cerebral autoregulation (DCA) during wakefulness in OSAS patients and a group of matched controls.
Methods:  Patients and controls were examined in the morning after an overnight complete polysomnography. Mean cerebral blood flow velocity (CBFV) in the middle cerebral artery and mean arterial blood pressure (ABP) were continuously recorded using transcranial Doppler and Finapres. DCA was assessed using the Mx autoregulatory index. Mx is a moving correlation coefficient between mean CBFV and mean ABP. More positive value of Mx indicates worse autoregulation.
Results:  Eleven OSAS patients (mean age ± SD; 52.6 ± 7.9) and 9 controls (mean age ± SD; 49.1 ± 5.3) were enrolled. The mean apnea–hypopnea index (AHI) in the OSAS group was of 22.7 ± 11.6. No significant difference was found between the two groups as for age, body mass index, mean ABP and endtidal CO2 pressure. Cerebral autoregulation was impaired in OSAS patients compared with controls (Mx index: 0.414 ± 0.138 vs. 0.233 ± 0.100; P  = 0.009). The severity of autoregulation impairment correlated to the severity of the sleep respiratory disturbance measured by the AHI ( P  = 0.003).
Conclusion:  Cerebral autoregulation is impaired in patients with OSAS during wakefulness. Impairment of cerebral autoregulation is correlated with the severity of OSAS.  相似文献   

4.
Although the assessment of dynamic cerebral autoregulation (CA) based on measurements of spontaneous fluctuations in arterial blood pressure (ABP) and cerebral blood flow (CBF) is a convenient and much used method, there remains uncertainty about its reliability. We tested the effects of increasing ABP variability, provoked by a modification of the thigh cuff method, on the ability of the autoregulation index to discriminate between normal and impaired CA, using hypercapnia as a surrogate for dynamic CA impairment. In 30 healthy volunteers, ABP (Finapres) and CBF velocity (CBFV, transcranial Doppler) were recorded at rest and during 5% CO2 breathing, with and without pseudo-random sequence inflation and deflation of bilateral thigh cuffs. The application of thigh cuffs increased ABP and CBFV variabilities and was not associated with a distortion of the CBFV step response estimates for both normocapnic and hypercapnic conditions (P=0.59 and P=0.96, respectively). Sensitivity and specificity of CA impairment detection were improved with the thigh cuff method, with the area under the receiver–operator curve increasing from 0.746 to 0.859 (P=0.031). We conclude that the new method is a safe, efficient, and appealing alternative to currently existing assessment methods for the investigation of the status of CA.  相似文献   

5.
In familial dysautonomia (FD), cerebral autoregulation (CA) must adjust cerebral blood flow to extreme and rapid fluctuations in systemic blood pressure. Compromised CA during systemic blood pressure (BP) fluctuations might contribute to central autonomic dysfunction in FD. To evaluate CA during rapid BP changes, we monitored heart rate (HR), radial artery BP and middle cerebral artery blood flow velocity (CBFV), using transcranial Doppler sonography, in eight FD patients and twelve age-matched controls in supine position at baseline and during a Valsalva maneuver (VM, 40 mmHg expiratory pressure for 15 seconds). The best of four VM recordings was analyzed. We calculated two autoregulation parameters. CAII reflects BP related autoregulatory CBFV increase in late phase II of VM. CAII = [(CBFVII late-CBFVII early)/CBFVII early]/[(BPII late-BPII early)/BPII early]. CAIV reflects BP and HR related autoregulatory CBFV increase in phase IV of VM. CAIV = (CBFVIV/CBFVI)/(BPIV/BPI)/(HRIV/HRI). Baseline systemic BP, but not CBFV, was higher in the patients than the controls. During VM, both groups had similar CBFV and BP values, but CAIV and especially CAII were significantly lower in the patients than the controls. We have documented that FD patients maintain stable CBFV during rapid BP fluctuations associated with early and late phase II and phase IV of VM suggesting that small intracerebral vessels of FD patients are less responsive to rapid systemic blood pressure fluctuations. To compensate for decreased sympathetic vascular innervation, we propose that FD patients may alter the myogenic component of CA by vessel wall thickening resulting in increased rigidity of intracerebral resistance vessels. The resulting vasoconstriction would allow maintenance of normal baseline CBFV in spite of chronic recumbent hypertension. Received: 31 August 2001, Accepted: 24 April 2002 Correspondence to M. J. Hilz, M. D., Ph. D.  相似文献   

6.
Spontaneous blood pressure oscillations and cerebral autoregulation   总被引:10,自引:0,他引:10  
The relationship between spontaneous oscillations in cerebral blood flow velocity (CBFV) and arterial blood pressure (ABP) was analysed in normal subjects in order to evaluate whether these relationships provide information about cerebral autoregulation. CBFV was measured using transcranial Doppler sonography and continuous ABP and heart rate using Finapres in 50 volunteers. Measurements were made over 5 min in a supine position and 6 min in a tilted position. Coefficients of variation were calculated using power- and cross-spectral analysis in order to quantify amplitudes within two frequency ranges: 3–9 cycles per min (cpm) (M-waves); and 9–20 cpm (R-waves). Correlations, coherence values, phase angle shifts and gains were also computed between corresponding waves in CBFV and in ABP. A clear correlation was seen for M-waves and R-waves between CBFV and ABP and coherence values were large enough to calculate phase angle shifts and gains. Phase angles for M-waves were larger and gains lower than was the case for R-waves, either tilted or supine. These data are consistent with a highpass filter model of cerebral autoregulation. Relatively high CBFV/ABP gain values (between 1.4 and 2.0) suggest that the principle of frequency-dependent vascular input impedances has to be considered in addition to autoregulatory feedback mechanisms. Spontaneous ABP oscillations in the M-wave and R-wave ranges may serve as a basis for continuous autoregulation monitoring.  相似文献   

7.
BACKGROUND AND PURPOSE: Carotid artery disease (CAD) is able to critically impair cerebral autoregulation which increases the risk for stroke. As therapeutic strategy largely depends on the degree of CAD, we investigated whether this gradation is also related to significant changes in autoregulatory capacity. We applied cross-spectral analysis (CSA) of spontaneous Mayer-wave (M-wave) oscillations and passive tilting (PT) to test cerebral autoregulation. METHODS: Cerebral autoregulation was tested in 102 patients with carotid stenosis (> or =70%) or occlusion and 14 controls by comparison of continuous transcranial Doppler sonography of the middle cerebral artery and beat-to-beat arterial blood pressure (ABP) during PT to 80 degrees head-up position as well as by CSA of M-waves (3-9 cpm). RESULTS: The orthostatic decrease of cerebral blood flow velocity (CBFV) was not correlated with the degree of CAD and showed a lower sensitivity and specificity than phase angle shifts between M-waves in ABP and CBFV (sensitivity: 75-80%, specificity: 86%). Phase angles were gradually lowered in carotid stenoses > 70%, but apparently, they were only moderately correlated with the degree of CAD (r = -0.35, P < 0.01). An additional influencing factor seemed to be the sufficiency of collateralization. CONCLUSIONS: The results show that CSA of M-waves is more appropriate for testing autoregulation than PT. CSA suggests that the capacity to autoregulate depends to a certain extent on the degree of CAD but is also influenced by the sufficiency of collateral pathways and pre-existing strokes.  相似文献   

8.
A moving correlation index (Mx-ABP) between arterial blood pressure (ABP) and mean middle cerebral artery blood flow velocity (CBFV) can be used to monitor dynamic cerebrovascular autoregulation (CA) after traumatic brain injury (TBI). In this study we examined hemispheric CA asymmetry and temporal CA profiles, their relationship with ABP and CBFV, and their prognostic relevance. Mx-ABP was calculated for each hemisphere in 25 TBI patients second-daily for as long as they were receiving sedation and analgesia. Forty-nine recordings were obtained, between one and six per patient. Four time periods were defined: immediate - postinjury days (PID) 0 and 1; early - PID 2 and 3; intermediate - PID 4 and 5, and late - PID 6 and later. GOS was estimated at discharge, GOS 4 and 5 were considered favorable (15 patients) and GOS 1-3 unfavorable outcome (10 patients). A Mx difference >0.2 was classified as hemispheric asymmetry (HA). HA was observed at least once in 12 of the 25 patients (48%) and in 18 of 49 recordings (37%). It was observed during all time periods: 35%, 43%, 25%, 43%, respectively, and was not related to outcome. There was no difference in mean CBFV or ABP between patients with and without HA. HA was not related to interhemispheric CBFV differences. A significant improvement in Mx was seen over time. Hemispheric CA asymmetry is common after traumatic brain injury. It does not bear significant clinical or predictive relevance, and it is unrelated to CBFV or ABP. CA is most profoundly disturbed during the immediate postinjury phase and improves gradually during the ICU course. Further studies are needed to investigate CA during post ICU recovery and rehabilitation.  相似文献   

9.
OBJECTIVES: Intra-aortic counterpulsation is the most frequently used cardiac assist device. However, there are only few studies of the effects of counterpulsation on cerebral blood flow and these report conflicting outcomes. The new enhanced external counterpulsation (EECP) technique reproduces non-invasively the effects of intra-aortic counterpulsation. In this study, we evaluated effects of EECP on blood pressure (BP) and on cerebral flow velocity (CBFV). SUBJECTS AND METHODS: Twenty-three healthy controls and 15 atherosclerotic patients each underwent a 5-min session of EECP. Before, during and after EECP we monitored heart rate, beat-to-beat radial artery BP and CBFV. RESULTS: EECP induced a second increase in BP and CBFV during diastole with a significant increase of mean BP and a decrease of systolic BP in patients and controls. Mean CBFV increased in both groups during the first 5 s of EECP. After 3 min of EECP, diastolic CBFV was still higher than at baseline, but systolic CBVF was lower than at baseline; mean CBFV was as low as before EECP in the patients and lower than the baseline values in the controls. Three minutes after ending EECP, mean and systolic BP were lower in the patients than the corresponding baseline values. Otherwise, CBFV and BP values did not differ from baseline in patients and controls. CONCLUSION: Cerebral autoregulation ensures the constancy of cerebral blood flow even though EECP creates marked systemic changes. In the patients, the decrease of BP after EECP with maintained CBFV indicates an improved BPCBFV relation and a more economic autoregulation.  相似文献   

10.
Abstract. In Fabry disease, there is glycosphingolipid storage in vascular endothelial and smooth muscle cells and neurons of the autonomic nervous system. Vascular or autonomic dysfunction is likely to compromise cerebral blood flow velocities and cerebral autoregulation. This study was performed to evaluate cerebral blood flow velocities and cerebral autoregulation in Fabry patients. In 22 Fabry patients and 24 controls, we monitored resting respiratory frequency, electrocardiographic RR-intervals, blood pressure, and cerebral blood flow velocities (CBFV) in the middle cerebral artery using transcranial Doppler sonography. We assessed the Resistance Index, Pulsatility Index, Cerebrovascular Resistance, and spectral powers of oscillations in RR-intervals, mean blood pressure and mean CBFV in the high (0.15–0.5 Hz) and sympathetically mediated low frequency (0.04–0.15 Hz) ranges using autoregressive analysis. Cerebral autoregulation was determined from the transfer function gain between the low frequency oscillations in mean blood pressure and mean CBFV. Mean CBFV (P < 0.05) and the powers of mean blood pressure (P < 0.01) and mean CBFV oscillations (P < 0.05) in the low frequency range were lower,while RR-intervals, Resistance Index (P < 0.01), Pulsatility Index, Cerebrovascular Resistance (P < 0.05), and the transfer function gain between low frequency oscillations in mean blood pressure and mean CBFV (P < 0.01) were higher in patients than in controls. Mean blood pressure, respiratory frequency and spectral powers of RR-intervals did not differ between the two groups (P > 0.05). The decrease of CBFV might result from downstream stenoses of resistance vessels and dilatation of the insonated segment of the middle cerebral artery due to reduced sympathetic tone and vessel wall pathology with decreased elasticity. The augmented gain between blood pressure and CBFV oscillations indicates inability to dampen blood pressure fluctuations by cerebral autoregulation. Both, reduced CBFV and impaired cerebral autoregulation, are likely to be involved in the increased risk of stroke in patients with Fabry disease.  相似文献   

11.
In occlusive cerebrovascular disease cerebral blood flow (CBF) autoregulation can be impaired and constant CBF during fluctuations in blood pressure (BP) cannot be guaranteed. Therefore, an assessment of cerebral autoregulation should consider not only responsiveness to CO2 or Diamox. Passive tilting (PT) and Valsalva maneuver (VM) are established tests for cardiovascular autoregulatory function by provoking BP changes. To develop a comprehensive test for vasomotor reactivity with a potential increase of sensitivity and specificity, the authors combined these maneuvers. Blood pressure, corrected to represent arterial pressure at the level of the circle of Willis, middle cerebral artery Doppler frequencies (DF), heart rate (HR) and endtidal partial pressure of CO2 (PtCO2) were measured continuously and noninvasively in 81 healthy subjects (19-74 years). Passive tilt and Valsalva maneuver were performed under normocapnia (mean, 39 + 4 mmHg CO2) and under hypercapnia (mean, 51 + 5 mm Hg CO2). Resting BP, HR, and DF increased significantly under hypercapnia. Under normocapnia and hypercapnia, PT induced only minor, nonsignificant changes in mean BP at the level of the circle of Willis compared to baseline (normocapnia: + 2 + 15 mm Hg; hypercapnia: -3 +/- 13 mm Hg). This corresponded with a nonsignificant decrease of the mean of DF (normocapnia: -4 +/- 11%; hypercapnia -6 +/- 12%). Orthostasis reduced pulsatility of BP by a predominantly diastolic increase of BP without significant changes in pulsatility of DF. Valsalva maneuver, with its characteristic rapid changes of BP due to elevated intrathoracic pressure, showed no significant BP differences in changes to baseline between normocapnic and hypercapnic conditions. Under both conditions the decrease in BP in phase II was accompanied by significantly increased pulsatility index ratio (PIDF/PIBP). Valsalva maneuver and PT as established tests in autonomic control of circulation provoked not only changes in time-mean of BP but also in pulsatility of BP. The significant increase in pulsatility ratio and decrease of the DF/BP ratio during normocapnia and hypercapnia indicated preserved CBF autoregulation within a wide range of CO2 partial pressures. Hypercapnia did not significantly influence the autoregulatory indices during VM and PT. Physiologically submaximally dilated cerebral arterioles can guarantee unchanged dynamics of cerebral autoregulation. Combined BP and MCA-DF assessment under hypercapnia enables investigating the effect of rapid changes of blood pressure on CO2-induced predilated cerebral arterioles. Assuming no interference of hypercapnia-induced vasodilation, VM, with its rapid, distinct changes in BP, seems especially to be adequate provocation for CBF autoregulation. This combined vasomotor reactivity might provide a more sensitive diagnostic tool to detect impaired cerebral autoregulation very early.  相似文献   

12.
Little is known about the effects of ageing on cerebral autoregulation (CA). To examine the relationship between age and CA in adults, we conducted a prospective study using a non-invasive protocol without external stimuli. We studied 32 subjects, aged 23-68 years. They were assigned to a young group (28+/-5 years) and an old group (54+/-8 years). The groups were sex-matched. Transcranial Doppler ultrasonography (TCD) was used to record bilateral middle cerebral artery flow velocities (CBFV, cm/sec). Noninvasive beat-to-beat tonometric arterial blood pressure (ABP) measurement of the radial artery was used to record spontaneous blood pressure fluctuations. The Mx, an index of dynamic cerebral autoregulation (dCA), was calculated from a moving correlation between ABP and CBFV. We did not find a correlation between age and Mx. No statistically significant difference in the Mx between the groups (0.27+/-0.23, young, vs. 0.37+/-0.24, old) was demonstrated. Age does not affect dynamic cerebral autoregulation assessed by the Mx index in healthy adult subjects. This study supports findings from previous papers wherein CA was measured with protocols which require external stimuli. Further studies are needed to determine CA in subjects above 70 years of age.  相似文献   

13.
Up till now, the presence of wave reflection of pressure and flow waves was not considered in studies on the cerebral circulation. This study tested the hypothesis whether the typical changes in cerebral blood flow velocity (CBFV) seen in patients during vasovagal syncope can be explained by the emergence of a wave reflection site in the cerebrovascular vessels. Continuous recordings of peripheral blood pressure (ABP, by Finapres) and CBFV (by transcranial Doppler) of 20 control subjects and 10 patients with syncope during tilt table testing were analyzed. Wave reflection analysis (WRA) consisted of a multivariate regression analysis with CBFV as dependent variable and simultaneous ABP as well as delayed ABP (by systematically varied time lags) as independent variables. The time delay yielding the best prediction of CBFV was interpreted as the reflection time. A univariate regression analysis with only simultaneous ABP as independent variable served as control method. In patients and controls CBFV during supine position could be explained sufficiently (explained variance=88-90%) by univariate regression without improvement by WRA. During syncope, multivariate regression improved the prediction of CBFV (explained variance=58% with univariate and 77% with multivariate regression) in 9 of 10 patients. The mean reflection time was 160 ms. The results can be explained by a collapse of the distal bridging veins during systemic hypotension giving rise to a pressure wave moving backward with a resulting distortion of the flow wave. In particular, the WRA model could account for the characteristic changes in the diastolic flow shape during syncope.  相似文献   

14.
OBJECTIVE: Cerebral autoregulation was assessed by transcranial Doppler sonography in 10 patients with familial dysautonomia and 10 age matched controls. METHODS: Blood pressure, heart rate, and middle cerebral artery blood flow velocity (CBFV) were simultaneously recorded when supine and during 180 seconds of head up tilt. Cerebrovascular resistance (CVR) was calculated from CBFV and mean blood pressure was adjusted to brain level. RESULTS: In the controls, mean blood pressure remained stable during tilt, but heart rate increased significantly. In the patients with familial dysautonomia, mean (SD) blood pressure decreased by 15.0 (10.8)% (p < 0.05). Heart rate remained unchanged. In controls, systolic and mean CBFV decreased by 9.1 (4.7)% and 9.4 (7.0)%, respectively, while diastolic CBFV remained stable. In the patients, diastolic and mean CBFV decreased continuously by 32.1 (13.9)% and by 14.8 (31.4)%. Supine CVR was 28% higher in patients than in controls and decreased significantly less during head up tilt. CONCLUSIONS: Tilt evokes orthostatic hypotension without compensatory tachycardia in patients with familial dysautonomia owing to decreased peripheral sympathetic innervation. High supine CVR values and relatively preserved CVR during tilt suggest preserved central sympathetic activation in familial dysautonomia, assuring adaptation of cerebrovascular autoregulation to chronic supine hypertension and orthostatic hypotension.  相似文献   

15.
Gierthmühlen J, Allardt A, Sawade M, Baron R, Wasner G. Dynamic cerebral autoregulation in stroke patients with a central sympathetic deficit.
Acta Neurol Scand: 2011: 123: 332–338.
© 2010 John Wiley & Sons A/S. Objective – To investigate the functional role of the sympathetic innervation on cerebral autoregulation. Materials and methods – Seventeen patients with infarction of the dorsolateral medulla oblongata affecting central sympathetic pathways (Wallenberg′s syndrome) and 21 healthy controls were included in the study. Cerebral blood flow velocity (CBFV) in the medial cerebral artery was investigated using transcranial Doppler ultrasound during decrease in cerebral perfusion pressure induced by leg‐cuff test and tilt table. Results – Upon leg‐cuff test, changes of cerebral blood flow and mean arterial blood pressure as well as autoregulatory index did not differ between patients or controls. No differences were found in changes of CBFV, mean arterial blood pressure and heart rate between patients or controls during the tilt table test. Conclusions – We suggest that the sympathetic nervous system does not have an influence on cerebral autoregulation after decrease in perfusion pressure under normotonous conditions.  相似文献   

16.
To explore the mechanisms underlying the phase lag between oscillations in arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV), ABP and CBFV signals were recorded noninvasively from normal volunteers who lay quietly in a supine position. Mean ABP (MAP) and CBFV (MFV) were calculated beat-to-beat by means of integration. Cerebral vascular resistance (CVR) was calculated by dividing MAP with MFV. Frequency domain analysis of MAP, MFV and CVR signals revealed very-low frequency (VLF, 0.016-0.04 Hz), low-frequency (LF, 0.04-0.15 Hz), and high-frequency (HF, 0.15-0.4 Hz) components. The transfer phase of MAP-CVR coupling in the LF and HF range was frequency-dependent, which is equivalent to a time delay of 2 s. However, the transfer phase differed in the CVR-MFV coupling in that the phase was distributed around 180 degrees across the LF and HF ranges. Cross-correlation analysis revealed a positive relationship between MAP-CVR coupling, with MAP leading by 2 s, and a negative relationship between CVR-MFV coupling, with CVR leading by 0.3 s. We concluded that the phase lag between oscillations in ABP and CBFV was chiefly contributed to by the starting latency of cerebral autoregulation (i.e. cerebral vasomotion, revealed by MAP-CVR coupling). Moreover, the negative correlation of the CVR-MFV coupling could offer a different explanation for the physiologic significance of the phase lead of CBFV-ABP oscillations.  相似文献   

17.
Patients with temporal lobe epilepsy (TLE) often show increased cardiovascular sympathetic modulation during the interictal period, that decreases after epilepsy surgery. In this study, we evaluated whether temporal lobectomy changes autonomic modulation of cerebral blood flow velocity (CBFV) and cerebral autoregulation. We studied 16 TLE patients 3-4 months before and after surgery. We monitored heart rate (HR), blood pressure (BP), respiration, transcutaneous oxygen saturation (sat-O(2)), end-expiratory carbon dioxide partial pressure (pCO(2)) and middle cerebral artery CBFV. Spectral analysis was used to determine sympathetic and parasympathetic modulation of HR, BP and CBFV as powers of signal oscillations in the low frequency (LF) ranges from 0.04-0.15Hz (LF-power) and in the high frequency ranges from (HF) 0.15-0.5Hz (HF-power). LF-transfer function gain and phase shift between BP and CBFV were calculated as parameters of cerebral autoregulation. After surgery, HR, BP(mean), CBFV(mean), respiration, sat-O(2), pCO(2) and HF powers remained unchanged. LF-powers of HR, BP, CBFV and LF-transfer function gain had decreased while the phase angle had increased (p<0.05). The reduction of LF powers and LF-gain and the higher phase angle showed reduced sympathetic modulation and improved cerebral autoregulation. The enhanced cerebrovascular stability after surgery may improve autonomic balance in epilepsy patients.  相似文献   

18.
Objectives: Autonomic and endothelial dysfunction is likely to contribute to the pathophysiology of normal pressure glaucoma (NPG) and primary open angle glaucoma (POAG). Although there is evidence of vasomotor dysregulation with decreased peripheral and ocular blood flow, cerebral autoregulation (CA) has not yet been evaluated. The aim of our study was to assess dynamic CA in patients with NPG and POAG. Materials and Methods: In 10 NPG patients, 11 POAG patients and 11 controls, we assessed the response of cerebral blood flow velocity (CBFV) to oscillations in mean arterial pressure (MAP) induced by deep breathing at 0.1 Hz. CA was assessed from the autoregressive cross-spectral gain between 0.1 Hz oscillations in MAP and CBFV. Results: 0.1 Hz spectral powers of MAP did not differ between NPG, POAG and controls; 0.1 Hz CBFV power was higher in patients with NPG (5.68±1.2 cm2 s−2) and POAG (6.79±2.1 cm2 s−2) than in controls (2.40±0.4 cm2 s−2). Furthermore, the MAP–CBFV gain was higher in NPG (2.44±0.5 arbitrary units [a.u.]) and POAG (1.99±0.2 a.u.) than in controls (1.21±0.1 a.u.). Conclusion: Enhanced transmission of oscillations in MAP onto CBFV in NPG and POAG indicates impaired cerebral autoregulation and might contribute to an increased risk of cerebrovascular disorders in these diseases.  相似文献   

19.
The valsalva manoeuvre (VM), used as an autonomic function test, can detect sympathetic and/or parasympathetic autonomic dysfunction. This study investigated the value of VM in patients with different Parkinsonian syndromes (PS). We continuously recorded blood pressure, ECG and respiration among 38 patients with multiple system atrophy (MSA), 32 patients with progressive supranuclear palsy (PSP), 26 patients with idiopathic Parkinson’s disease (PD) and in 27 healthy subjects matched in age and sex (Con). VM was performed in addition to metronomic breathing and tilt-table testing. VM could not be analysed in 26% of the ES patients. Valsalva ratio (VR), as a parameter of cardiovagal function, was pathologically decreased in all patient groups. Valsalva ratio (VR) was not able to discriminate parasympathetic dysfunction between patients and controls as well as E/I ratio of metronomic breathing. As a parameter of sympathetic dysfunction during VM, the physiological increase of blood pressure was more often missing during phase IV than phase II especially in PD and MSA patients. Correlation with orthostatic hypotension during tilt-table testing was only moderate. Although VM can demonstrate sympathetic and parasympathetic autonomic dysfunction, we cannot recommend VM as a first line autonomic test in PS patients. Metronomic breathing and tilt-table test seem more capable as parasympathetic resp. and sympathetic function tests to identify cardiovascular abnormalities in PS patients.  相似文献   

20.
Cerebrovascular response to dynamic changes in pCO2   总被引:4,自引:0,他引:4  
Fifty-six subjects with carotid artery disease were assessed by measuring the cerebral blood flow velocity (CBFV) change in response to inhalation of 5% CO2 in air whilst continuously monitoring the blood pressure (BP). Coherent averaging of the data characterised differences in CBFV, BP, resistance area product and critical closing pressure during changes in end-tidal CO2 (ETCO2). The results primarily demonstrate that the augmentation of ETCO2 increases the CBFV and BP, causing a pressure autoregulatory response, and allows the processes of pressure autoregulation and cerebral vascular reserve to be differentiated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号