首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differences between control and focal hand dystonia (FHD) subject groups in short interval intracortical inhibition (SICI) as determined by paired transcranial magnetic stimulation (TMS) can be difficult to demonstrate, due to interindividual differences. The purpose of this study was to compare two TMS methods for assessing SICI in 8 control and 7 FHD subjects. Electromyographic (EMG) data were recorded from the first dorsal interosseous (FDI) muscle of the dominant hands of the control subjects and affected hands of the FHD subjects. The first method used a conventional approach of setting conditioning stimulus intensity to 80% of rest threshold (RTh) and test stimulus intensity to 120% RTh. Three interstimulus intervals (ISIs) were used: 2 msec, 3 msec, and the ISI between 2 and 3 msec that produced optimal SICI. The second method was novel in that test stimulus intensity was set to 150% active threshold (ATh), and conditioning stimulus intensity was varied between 50% and 100% ATh. The latter was determined at the threshold for SICI and expressed as a ratio of ATh. There was no difference between the subject groups in the degree of SICI produced using the first method, at the three ISIs studied. However, using the second method, the SICI threshold:ATh ratio was found to be significantly higher for FHD subjects. This finding suggests that determining the SICI threshold:ATh ratio may be a more sensitive measure of intracortical inhibitory function than more conventional methods.  相似文献   

2.
We tested whether task-dependent modulation of inhibition within the motor cortex is impaired in patients with dystonia. Paired-pulse transcranial magnetic stimulation (TMS) at an interstimulus interval of 2 msec was used to measure the effect of two different tasks on short ISI intracortical inhibition (SICI) in dystonic and normal subjects. In two experiments, SICI of the fourth dorsal interosseus (4DIO) and abductor pollicis brevis (APB) muscles were measured before and at the end of the training task. In the first experiment, subjects performed a nonselective task consisting of abducting the thumb, where the APB acted as agonist and the 4DIO as synergist. In the second experiment, the function of the 4DIO was changed as the subjects were asked to consciously inhibit this muscle while abducting the thumb (selective task). Therefore, while the APB was activated in both tasks, the 4DIO was activated in the nonselective task but was in the inhibitory surround in the selective task. We found that performance of the selective but not the nonselective task resulted in increased SICI in the 4DIO of normal but not in dystonic subjects. We conclude that task-dependent SICI is disturbed in patients with dystonia.  相似文献   

3.
The aim of our present study was to detect whether a generalized disturbance of intracortical inhibitory mechanisms as assessed by transcranial magnetic stimulation (TMS) can be observed in a movement disorder with localized clinical expression, that is, in focal cervical dystonia. We measured motor threshold intensity, central motor conduction time and the duration of postexcitatory inhibition evoked by single and paired stimuli TMS from a small hand muscle in 20 patients with idiopathic cervical dystonia, and 21 healthy volunteers. A significant difference could not be found in any of the neurophysiological parameters between patients and controls. These findings are unlike the observations made in Parkinson's disease and Huntington's disease, where significant changes of postexcitatory inhibition after TMS can be observed. This suggests a lack of widespread change in activity of underlying cortical inhibitory mechanisms, as seen in other diseases of the extrapyramidal system with more generalized clinical involvement.  相似文献   

4.
We looked for an impaired interaction in the primary motor cortex between intracortical inhibitory circuits and circuits fed by somatosensory inputs in patients with writer's cramp. Short-interval intracortical inhibition (sICI) to wrist extensor carpi radialis muscle (ECR) was conditioned by stimulation of antagonist muscle afferents and sICI to first dorsal interosseus (FDI) muscle by homotopic cutaneous afferents stimulation. sICI was assessed at rest and during a tonic contraction of the target muscle. Eighteen patients with writer's cramp (10 having a wrist dystonic posture in flexion during writing and 8 in extension) were compared to 14 control subjects. Peripheral inputs decreased sICI in control subjects. This decrease was lost in patients in both FDI and ECR, regardless of the wrist dystonic posture. By contrast, contraction-induced depression of sICI appeared dependant on the dystonic status of the muscle: depression of sICI to ECR was abolished in patients with wrist dystonic posture in flexion, but not in patients with dystonic posture in extension, sICI even giving way to motor-evoked potential facilitation. Loss of interaction between interneurons mediating sICI and peripheral inputs probably belongs to the initial abnormalities underlying dystonia. Lack of peripherally induced sICI modulation may oppose wrist and/or hand muscles synergies.  相似文献   

5.
The emerging view of dystonia is that of a large‐scale functional network disorder, in which the communication is disrupted between sensorimotor cortical areas, basal ganglia, thalamus, and cerebellum. The structural underpinnings of functional alterations in dystonia are, however, poorly understood. Notably, it is unclear whether structural changes form a larger‐scale dystonic network or rather remain focal to isolated brain regions, merely underlying their functional abnormalities. Using diffusion‐weighted imaging and graph theoretical analysis, we examined inter‐regional white matter connectivity of the whole‐brain structural network in two different forms of task‐specific focal dystonia, writer's cramp and laryngeal dystonia, compared to healthy individuals. We show that, in addition to profoundly altered functional network in focal dystonia, its structural connectome is characterized by large‐scale aberrations due to abnormal transfer of prefrontal and parietal nodes between neural communities and the reorganization of normal hub architecture, commonly involving the insula and superior frontal gyrus in patients compared to controls. Other prominent common changes involved the basal ganglia, parietal and cingulate cortical regions, whereas premotor and occipital abnormalities distinctly characterized the two forms of dystonia. We propose a revised pathophysiological model of focal dystonia as a disorder of both functional and structural connectomes, where dystonia form‐specific abnormalities underlie the divergent mechanisms in the development of distinct clinical symptomatology. These findings may guide the development of novel therapeutic strategies directed at targeted neuromodulation of pathophysiological brain regions for the restoration of their structural and functional connectivity.  相似文献   

6.
Impaired surround inhibition could account for the abnormal motor control seen in patients with focal hand dystonia, but the neural mechanisms underlying surround inhibition in the motor system are not known. We sought to determine whether an abnormality of the influence of sensory input at short latency could contribute to the deficit of surround inhibition in patients with focal hand dystonia (FHD). To measure digital short afferent inhibition (dSAI), subjects received electrical stimulation at the digit followed after 23 ms by transcranial magnetic stimulation (TMS). Motor evoked potentials (MEPs) were recorded over abductor digiti minimi (ADM) during rest and during voluntary phasic flexion of the second digit. F-waves were also recorded. We studied 13 FHD patients and 17 healthy volunteers. FHD patients had increased homotopic dSAI in ADM during flexion of the second digit, suggesting that this process acts to diminish overflow during movement; this might be a compensatory mechanism. No group differences were observed in first dorsal interosseous. Further, no differences were seen in the F-waves between groups, suggesting that the changes in dSAI are mediated at the cortical level rather than at the spinal cord. Understanding the role of these inhibitory circuits in dystonia may lead to development of therapeutic agents aimed at restoring inhibition.  相似文献   

7.
Afferent input has been shown to be a powerful modulator of cortical inhibition. Such modulation is likely to be important for the control of ongoing movement, but may also play a role in facilitating neuroplastic reorganisation. Human motor control and neuroplasticity both decline with ageing, whereas the efficacy of short‐interval intracortical inhibition (SICI) appears not to. We examined if ageing alters the efficacy of afferent modulation of SICI. Previously, electrical cutaneous stimulation of a finger has been shown to reduce SICI in the motor cortices of young adults. Paired‐pulse transcranial magnetic stimulation was used to assess SICI in the cortical representation of the first dorsal interosseous muscle. SICI was assessed separately under two conditions: with and without prior afferent input from electrical cutaneous stimulation of the index finger. Fifteen ‘young’ (20.1 ± 2.1 years) and 15 ‘old’ male humans (65.5 ± 3.9 years) were studied. SICI did not differ when young and old males were compared. However, when preceded by electrical cutaneous finger stimulation, SICI was reduced in young men but not old men. Reflex testing indicated preservation of the afferent volley to the cortex. These findings suggest that a contributing factor in the decline of motor function, and possibly neuroplasticity, with ageing is loss of SICI modulation, probably due to altered cortical sensorimotor integration of afferent input.  相似文献   

8.
Focal hand dystonia (FHD) is a movement disorder that is also associated with impaired sensory function and sensorimotor integration. The aim of this study was to assess the modulation of inhibitory function in the motor cortex during the performance of four motor tasks (isometric pinch grip, writing, texture discrimination, and a phasic control task) in 8 FHD and 8 control subjects. The affected hands of the FHD subjects and the dominant hands of the control subjects were tested. Inhibitory function was assessed using transcranial magnetic stimulation to evoke a silent period in the ongoing electromyographic activity of the target muscle (first dorsal interosseous). There was no difference between FHD subjects and control subjects in silent period duration, which was significantly longer during the phasic texture discrimination and phasic control task than during the isometric pinch or writing. This finding suggests that the phasic nature of the task may increase cortical inhibitory function, rather than the sensory discrimination task itself. The accuracy of texture discrimination was significantly lower in FHD subjects than in control subjects. Sensory discrimination tasks do not appear to directly modulate the inhibitory processes responsible for the duration of the silent period.  相似文献   

9.
Focal task-specific dystonia (FTSD) of the hand and face have been well described; however, FTSD of the leg is exceedingly rare. We describe and demonstrate by videotape 2 patients with FTSD affecting the leg, in both cases triggered specifically by walking down steps. Walking on a level surface, up steps, and down steps backward, and sideways were normal. An interoceptive sensory trick (imagining walking in a different modality) led to temporary improvement. Our patients appear to demonstrated that task-specificity in focal dystonia may not be limited to skilled, rehearsed actions and that FTSD may occur in an activity that is relatively autonomic.  相似文献   

10.
Repetitive movements have been reported to induce task-specific changes of intracortical inhibition and facilitation, but the mechanism operating shortly after hand movement is unclear. Transcranial magnetic single and paired stimuli (2 ms) were applied to 15 healthy subjects at rest and 1 s after repetitive (every 6 s) active and passive hand extensions. Motor evoked potentials (MEPs) were recorded from hand extensors (agonists) and flexors (antagonists). A strong overall inhibitory effect was observed after applying paired stimuli. In agonists only, active movements produced significantly larger MEPs. Inhibition, however, did not differ between active or passive movements and rest. This suggests that MEP increases produced by active movements in agonists are not caused by disinhibition, but are rather due to excitation (facilitation). This finding may also have implications for future studies evaluating the preferential activation of target muscles in physiotherapy.  相似文献   

11.
A decrease of heteronymous median nerve-evoked inhibition of corticospinal projections to forearm extensor muscles was reported in a group of 10 dystonic patients by Bertolasi and colleagues in 2003. Here we tested the excitability of corticomotoneuronal connections to both wrist extensor (ECR) and flexor (FCR) muscles after conditioning stimulation of median and also radial nerve at rest in a group of 25 patients with focal hand dystonia compared to 20 healthy subjects. We also investigated the effect of the wrist dystonic posture, either in flexion or in extension, on the afferent modulation of ECR and FCR motor evolved potentials (MEPs). The heteronymous (median-induced) but also homonymous (radial-induced) inhibitions (interstimuli intervals 13-21 ms) of ECR MEP size observed in healthy subjects were decreased in patients. In addition, homonymous (median-induced) facilitation of FCR MEP size was also decreased in patients while heteronymous inhibition (radial-induced) was not. Neither the involvement of the target muscle in the dystonic posture nor the origin of the afferent volley (from a dystonic muscle) influenced the degree of impairment of afferent modulation of the MEP. These findings support the view that a global abnormal somatosensory coupling in focal hand dystonia may contribute to an inadequate motor command to wrist muscles.  相似文献   

12.
This study aimed to determine the test–retest reliability of a range of transcranial magnetic stimulation (TMS) outcomes in the biceps femoris during isometric, eccentric and concentric contractions. Corticospinal excitability (active motor threshold 120% [AMT120%] and area under recruitment curve [AURC]), short- and long-interval intracortical inhibition (SICI and LICI) and intracortical facilitation (ICF) were assessed from the biceps femoris in 10 participants (age 26.3 ± 6.0 years; height 180.2 ± 6.6 cm, body mass 77.2 ± 8.0 kg) in three sessions. Single- and paired-pulse stimuli were delivered under low-level muscle activity (5% ± 2% of maximal isometric root mean squared surface electromyography [rmsEMG]) during isometric, concentric and eccentric contractions. Participants were provided visual feedback on their levels of rmsEMG during all contractions. Single-pulse outcomes measured during isometric contractions (AURC, AMT110%, AMT120%, AMT130%, AMT150%, AMT170%) demonstrated fair to excellent reliability (ICC range, .51 to .92; CV%, 21% to 37%), whereas SICI, LICI and ICF demonstrated good to excellent reliability (ICC range, .62 to .80; CV%, 19 to 42%). Single-pulse outcomes measured during concentric contractions demonstrated excellent reliability (ICC range, .75 to .96; CV%, 15% to 34%), whereas SICI, LICI and ICF demonstrated good to excellent reliability (ICC range, .65 to .76; CV%, 16% to 71%). Single-pulse outcomes during eccentric contractions demonstrated fair to excellent reliability (ICC range, .56 to .96; CV%, 16% to 41%), whereas SICI, LICI and ICF demonstrated good to excellent (ICC range, .67 to .86; CV%, 20% to 42%). This study found that both single- and paired-pulse TMS outcomes can be measured from the biceps femoris muscle across all contraction modes with fair to excellent reliability. However, coefficient of variation values were typically greater than the smallest worthwhile change which may make tracking physiological changes in these variables difficult without moderate to large effect sizes.  相似文献   

13.
14.
Somesthetic temporal discrimination (STD) is impaired in focal hand dystonia (FHD). We explored the electrophysiological correlate of the STD deficit to assess whether this is due to dysfunction of temporal inhibition in the somatosensory inhibitory pathway or due to dysfunction in structures responsible for nonmodality‐specific timing integration. Eleven FHD patients and 11 healthy volunteers were studied. STD threshold was investigated as the time interval required for perceiving a pair of stimuli as two separate stimuli in time. We also examined the somatosensory‐evoked potential (SEP) in a paired‐pulse paradigm. We compared STD threshold and recovery function of SEP between the groups. STD thresholds were significantly greater in FHD than in healthy volunteers. The amount of P27 suppression in the 5 ms‐ISI condition was significantly less in FHD. It was also found that the STD threshold and P27 suppression were significantly correlated: the greater the STD threshold, the less the P27 suppression. Significantly less suppression of P27 with a lack of significant change in N20 indicates that the impairment of somatosensory information processing in the time domain is due to dysfunction within the primary somatosensory cortex, suggesting that that the STD deficit in FHD is more attributable to dysfunction in the somatosensory pathway. © 2007 Movement Disorder Society  相似文献   

15.
Inherited myoclonus‐dystonia (M‐D) is an autosomal dominant disorder characterized by myoclonus and dystonia that often improves with alcohol. To examine the electrophysiologic characteristics of M‐D, we studied 6 patients from 4 different families and 9 age‐matched healthy subjects. Neurophysiological studies performed include electromyography (EMG)‐electroencephalography (EEG) polygraphy, jerk‐locked back‐averaged EEG, somatosensory evoked potentials (SEP), long‐latency reflex (LLR) to median and digital nerve stimulation, and transcranial magnetic stimulation studies with short‐interval intracortical inhibition (SICI), intracortical facilitation (ICF), and long‐interval intracortical inhibition (LICI). All 6 patients showed myoclonus and dystonia on clinical examination and EMG testing. The EMG burst durations ranged from 30.4 to 750.6 milliseconds (mean, 101.5 milliseconds). Jerk‐locked back‐averaged EEG failed to reveal any preceding cortical correlates. Median nerve SEP revealed no giant potential. No patients had exaggerated LLR to median or digital nerve stimulation. There was no significant difference in SICI, ICF, and LICI between M‐D patients and normal subjects. Myoclonus in inherited M‐D is likely of subcortical origin. Normal intracortical inhibition and facilitation suggest that the GABAergic circuits in the motor cortex are largely intact and that the mechanisms of myoclonus and dystonia are different from those for cortical myoclonus and other dystonic disorders. © 2008 Movement Disorder Society  相似文献   

16.

Background

Inhibition in the human motor cortex can be probed by means of paired-pulse transcranial magnetic stimulation (ppTMS) at interstimulus intervals of 2–3 ms (short-interval intracortical inhibition, SICI) or ~100?ms (long-interval intracortical inhibition, LICI). Conventionally, SICI and LICI are recorded as motor evoked potential (MEP) inhibition in the hand muscle. Pharmacological experiments indicate that they are mediated by GABAA and GABAB receptors, respectively.Objective/Hypothesis: SICI and LICI of TMS-evoked EEG potentials (TEPs) and their pharmacological properties have not been systematically studied. Here, we sought to examine SICI by ppTMS-evoked compared to single-pulse TMS-evoked TEPs, to investigate its pharmacological manipulation and to compare SICI with our previous results on LICI.

Methods

PpTMS-EEG was applied to the left motor cortex in 16 healthy subjects in a randomized, double-blind placebo-controlled crossover design, testing the effects of a single oral dose 20?mg of diazepam, a positive modulator at the GABAA receptor, vs. 50?mg of the GABAB receptor agonist baclofen on SICI of TEPs.

Results

We found significant SICI of the N100 and P180 TEPs prior to drug intake. Diazepam reduced SICI of the N100 TEP, while baclofen enhanced it. Compared to our previous ppTMS-EEG results on LICI, the SICI effects on TEPs, including their drug modulation, were largely analogous.

Conclusions

Findings suggest a similar interaction of paired-pulse effects on TEPs irrespective of the interstimulus interval. Therefore, SICI and LICI as measured with TEPs cannot be directly derived from SICI and LICI measured with MEPs, but may offer novel insight into paired-pulse responses recorded directly from the brain rather than muscle.  相似文献   

17.
Objectives - Transcranial magnetic stimulation (TMS) was used to study intracortical inhibitory and excitatory phenomena in patients with cerebellar ataxia. Methods - Motor evoked potentials (MEP) following single and paired TMS were recorded from the first dorsal interosseus muscle (FDI) in 15 patients with autosomal-dominant or idiopathic cerebellar ataxia and 15 age matched normal controls. Results- MEP amplitudes after paired TMS with short interstimulus intervals (1-4 ms) showing intracortical inhibition in the control group were not significantly different in the patient group. In contrast, with longer interstimulus intervals (8-20 ms) mean MEP amplitudes were significantly reduced in the patient group, indicating a decrease of intracortical facilitation. The mean postexcitatory inhibition after TMS was also significantly prolonged in the patient group. Conclusion -Our findings support the idea that the cerebellum physiologically exerts a facilitatory influence on the motor cortex which is decreased in patients with a cerebellar degeneration.  相似文献   

18.
Given the possible role of dorsal premotor cortex (PMd) in the pathophysiology of dystonia, we used transcranial magnetic stimulation (TMS) methods to study PMd and PMd–primary motor cortex (M1) interactions in patients with focal arm dystonia. Here, we tested the connectivity between left PMd and right M1 as well as the intracortical excitability of PMd in 11 right‐handed patients with focal arm/hand dystonia and nine age‐matched healthy controls. The results showed that excitability of the inhibitory connection between PMd and M1 was reduced in patients, but there was no significant difference to healthy subjects in the excitability of the facilitatory connection. A triple stimulation technique in which pairs of TMS pulses are given over PMd and their interaction measured in terms of the effect on the baseline PMd‐M1 connection failed to reveal the usual pattern of interaction between the pairs of PMd stimuli. Indeed, the results in patients were similar to those seen in a group of young healthy subjects after the excitability of PMd had been changed by pretreatment with high‐frequency rTMS. We suggest that reduced transcallosal inhibition from the PMd may be involved in the altered pattern of abnormal muscle contractions of agonists and antagonists (overflow). © 2007 Movement Disorder Society  相似文献   

19.
20.
Myoclonus‐dystonia (M‐D) is an autosomal dominant movement disorder caused by mutations in the ε‐sarcoglycan gene (DYT11). We explore pathophysiological characteristics of M‐D with the hypothesis that they may be different from those of sporadic or genetic dystonia. We compared five carriers of the DYT11 gene mutation and 10 healthy controls. Using transcranial magnetic stimulation, we measured parameters assessing cortical membrane excitability (active motor threshold, aMT) and synaptic activity (short interval, sICI) and afferent (AI) intracortical inhibitions and their interaction. aMT was significantly higher in the DYT11 gene carriers than in normal subjects. The others parameters (sICI, AI and their interaction) were not different between the two groups. In DYT11 gene carriers cortical membrane excitability was impaired while parameters assessing cortical synaptic activity were normal. Opposite results have been obtained in focal sporadic and generalized DYT1 dystonias. © 2008 Movement Disorder Society  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号