首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
White matter lesions, typically manifesting as regions of signal intensity abnormality (WMSA) on MRI, increase in frequency with age. However, the role of this damage in cognitive decline and disease is still not clear, as lesion volume has only loosely been associated with clinical status. Diffusion tensor imaging (DTI) has been used to examine the quantitative microstructural integrity of white matter, and has applications in the examination of subtle changes to tissue that appear visually normal on conventional imaging. The primary goal of this study was to determine whether major macrostructural white matter damage, (total WMSA volume), is associated with microstructural integrity of normal appearing white matter, and if these macrostructural changes fully account for microstructural changes. Imaging was performed in 126 nondemented individuals, ages 43–85 years, with no history of cerebrovascular disease. Controlling for age, greater WMSA volume was associated with decreased fractional anisotropy (FA) in widespread brain regions. Patterns were similar for FA and radial diffusivity but in contrast, WMSA was associated with axial diffusivity in fewer areas. Age was associated with FA in several regions, and many of these effects remained even when controlling for WMSA volume, suggesting the etiology of WMSAs does not fully account for all age‐associated white matter deterioration. These results provide evidence that WMSA volume is associated with the integrity of normal‐appearing white matter. In addition, our results suggest that overt lesions may not account for the association of increasing age with decreased white matter tissue integrity. Hum Brain Mapp 35:1085–1100, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
4.
5.
Primary torsion dystonia (PTD) has been conceptualized as a disorder of the basal ganglia. However, recent data suggest a widespread pathology involving motor control pathways. In this report, we explored whether PTD is associated with abnormal anatomical connectivity within motor control pathways. We used diffusion tensor magnetic resonance imaging (DT‐MRI) to assess the microstructure of white matter. We found that fractional anisotropy, a measure of axonal integrity and coherence, was significantly reduced in PTD patients in the pontine brainstem in the vicinity of the left superior cerebellar peduncle and bilaterally in the white matter of the sensorimotor region. Our data thus support the possibility of a disturbance in cerebello‐thalamo‐cortical pathways as a cause of the clinical manifestations of PTD. © 2007 Movement Disorder Society  相似文献   

6.
Glucocerebrosidase gene mutations represent a genetic risk factor for the development of Parkinson's disease. This study investigated brain alterations in Parkinson's disease patients carrying heterozygous glucocerebrosidase gene mutations using structural and diffusion tensor magnetic resonance imaging. Among 360 Parkinson's disease patients screened for glucocerebrosidase gene mutations, 19 heterozygous mutation carriers (5.3%) were identified. Of these, 15 patients underwent a neuropsychological evaluation and a magnetic resonance imaging scan. Sixteen age‐ and sex‐matched healthy controls and 14 idiopathic Parkinson's disease patients without glucocerebrosidase gene mutations were also studied. Tract‐based spatial statistics was used to perform a white matter voxel‐wise analysis of diffusion tensor magnetic resonance imaging metrics. Mean fractional anisotropy values were obtained from white matter tracts of interest. Voxel‐based morphometry was used to assess gray‐matter atrophy. Cognitive deficits were found in 9 mutation carrier patients (60%). Compared with controls, Parkinson's disease patients carrying glucocerebrosidase gene mutations showed decreased fractional anisotropy in the olfactory tracts, corpus callosum, and anterior limb of the internal capsule bilaterally, as well as in the right anterior external capsule, and left cingulum, parahippocampal tract, parietal portion of the superior longitudinal fasciculus, and occipital white matter. Mutation carrier patients also had decreased fractional anisotropy of the majority of white matter tracts compared with Parkinson's disease patients with no mutations. No white matter abnormalities were found in Parkinson's disease patients without glucocerebrosidase gene mutations. No gray matter difference was found between patients and controls. In Parkinson's disease patients, verbal fluency scores correlated with white matter abnormalities. Parkinson's disease patients carrying glucocerebrosidase gene mutations experience a distributed pattern of white matter abnormalities involving the interhemispheric, frontal corticocortical, and parahippocampal tracts. White matter pathology in these patients may have an impact on the clinical manifestations of the disease, including cognitive impairment. © 2013 Movement Disorder Society  相似文献   

7.
目的:利用能够提示脑白质纤维完整性的磁共振弥散张量成像(DTI)探讨首发和复发重性抑郁症患者脑白质纤维的变化及其差异。方法:20例重性抑郁症患者(首发9例,复发11例)和20名正常对照者均经常规磁共振成像(MRI)平扫,未发现异常者继续进行DTI和结构MRI(3D)扫描,基于像素的全脑分析技术对DTI数据进行分析。结果:与对照组相比较,抑郁症组白质纤维结构在双侧额中回、右顶下小叶及双侧脑岛等区域白质的各向异性值(FA)显著降低(各脑区P均〈0.001,cluster〉30像素);与首发抑郁症患者相比较,复发抑郁症患者右侧额上回、右顶叶、中央前回、中央后回及右顶下小叶等区域FA值降低更为显著(各脑区P均〈0.001,cluster〉10像素)。结论:重性抑郁症患者存在脑白质异常,抑郁反复发作会导致脑白质损害进一步加重。  相似文献   

8.
9.
Numerous diffusion tensor imaging (DTI) studies have implicated white matter brain tissue abnormalities in schizophrenia. However, the vast majority of these studies included patient populations that use antipsychotic medication. Previous research showed that medication intake can affect brain morphology and the question therefore arises to what extent the reported white matter aberrations can be attributed to the disease rather than to the use of medication. In this study we included 16 medication‐naïve patients with schizophrenia and compared them to 23 healthy controls to exclude antipsychotic medication use as a confounding factor. For each subject DTI scans and magnetization transfer imaging (MTI) scans were acquired. A new tract‐based analysis was used that combines fractional anisoptropy (FA), mean diffusivity (MD) and magnetization transfer ratio (MTR) to examine group differences in 12 major white matter fiber bundles. Significant group differences in combined FA, MD, MTR values were found for the right uncinate fasciculus and the left arcuate fasciculus. Additional analysis revealed that the largest part of both tracts showed an increase in MTR in combination with an increase in MD for patients with schizophrenia. We interpret these group‐related differences as disease‐related axonal or glial aberrations that cannot be attributed to antipsychotic medication use. Hum Brain Mapp 34:2353–2365, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
We investigated the white matter structure in children (n = 14) with a wide range of reading performance levels using diffusion tensor imaging (DTI), a form of magnetic resonance imaging. White matter structure in a left temporo-parietal region that had been previously described as covarying with reading skill in adult readers also differs between children who are normal and poor readers. Specifically, the white matter structure measured using fractional anisotropy (FA) and coherence index (CI) significantly correlated with behavioral measurements of reading, spelling, and rapid naming performance. In general, lower anisotropy and lower coherence were associated with lower performance scores. Although the magnitude of the differences in children are smaller than those in adults, the results support the hypothesis that the structure of left temporoparietal neural pathways is a significant component of the neural system needed to develop fluent reading.  相似文献   

11.
目的利用磁共振弥散张量成像技术研究药物过度使用性头痛患者脑白质结构的变化。方法药物过度使用性头痛患者(病例组)及年龄、性别相匹配的同期健康体检者(对照组)各80例,收集一般临床资料,进行颅脑磁共振弥散张量成像(diffusion tensor imaging,DTI)检查,测取部分各向异性(fractional anisotropy,FA)值、表观弥散系数(apparent diffusion coefficient,ADC)值,并结合临床特点进行相关性分析。结果 (1)病例组眶额皮质、前后扣带回皮质、胼胝体压部、右侧内囊前肢FA值较对照组明显降低,差异有统计学意义(P0.05);(2)病例组右侧眶额皮质、左侧额下回皮质及前扣带回皮质ADC值较对照组明显升高,差异有统计学意义(P0.05);(3)病例组双侧眶额部皮质以及右侧内囊后肢FA值与患者头痛病程及发作频率呈负相关;左侧内囊后肢FA值与头痛频率呈负相关;(4)病例组左侧眶额皮质ADC值与患者头痛病程及发作频率呈正相关;右侧眶额皮质以及前扣带回皮质ADC值与患者头痛发作频率呈正相关;后扣带回皮质ADC值与患者头痛病程呈正相关。结论药物过度使用性头痛患者双侧额叶皮质及扣带回皮质存在白质微观结构异常变化,FA值与患者头痛病程及发作频率呈负相关,ADC值则呈正相关。  相似文献   

12.
People with HIV are living longer as combination antiretroviral therapy (cART) becomes more widely available. However, even when plasma viral load is reduced to untraceable levels, chronic HIV infection is associated with neurological deficits and brain atrophy beyond that of normal aging. HIV is often marked by cortical and subcortical atrophy, but the integrity of the brain's white matter (WM) pathways also progressively declines. Few studies focus on older cohorts where normal aging may be compounded with HIV infection to influence deficit patterns. In this relatively large diffusion tensor imaging (DTI) study, we investigated abnormalities in WM fiber integrity in 56 HIV+ adults with access to cART (mean age: 63.9 ± 3.7 years), compared to 31 matched healthy controls (65.4 ± 2.2 years). Statistical 3D maps revealed the independent effects of HIV diagnosis and age on fractional anisotropy (FA) and diffusivity, but we did not find any evidence for an age by diagnosis interaction in our current sample. Compared to healthy controls, HIV patients showed pervasive FA decreases and diffusivity increases throughout WM. We also assessed neuropsychological (NP) summary z‐score associations. In both patients and controls, fiber integrity measures were associated with NP summary scores. The greatest differences were detected in the corpus callosum and in the projection fibers of the corona radiata. These deficits are consistent with published NP deficits and cortical atrophy patterns in elderly people with HIV. Hum Brain Mapp 35:975–992, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
The purpose of this study was to determine the relationship between the organization of the brain connectome and cerebrovascular reactivity (CVR) in persons with white matter hyperintensities. Diffusion tensor and CVR mapping 3T MRI scans were acquired in 31 participants with white matter hyperintensities. In each participant, the connectome was assessed by reconstructing all white matter tracts with tractography and segmenting the whole brain into multiple regions. Graph theory analysis was performed to quantify how effectively tracts connected brain regions by measuring the global and local efficiency of the connectome. CVR in white matter and gray matter was correlated with the global and local efficiency of the connectome, while adjusting for age, gender, and gray matter volume. For comparison, white matter hyperintensity volume was also correlated with global and local efficiency. White matter CVR was positively correlated with the global efficiency (coefficient: 23.3, p = .005) and local efficiency (coefficient: 2850, p = .004) of the connectome. Gray matter CVR was positively correlated with the global efficiency (coefficient: 21.3, p < .001) and local efficiency (coefficient: 2670, p < .001) of the connectome. White matter hyperintensity volume was negatively correlated with global efficiency (coefficient: ?0.0002, p = .003) and local efficiency (coefficient: ?0.024, p = .003) of the connectome. The association between CVR and the brain connectome suggests that impaired cerebrovascular function may be part of the pathophysiology of the disruption of the brain connectome in persons with white matter hyperintensities.  相似文献   

14.
The third trimester of pregnancy is a period of rapid development of fiber bundles in the fetal white matter. Using a recently developed motion‐tracked slice‐to‐volume registration (MT‐SVR) method, we aimed to quantify tract‐specific developmental changes in apparent diffusion coefficient (ADC), fractional anisotropy (FA), and volume in third trimester healthy fetuses. To this end, we reconstructed diffusion tensor images from motion corrected fetal diffusion magnetic resonance imaging data. With an approved protocol, fetal MRI exams were performed on healthy pregnant women at 3 Tesla and included multiple (2–8) diffusion scans of the fetal head (1–2 b = 0 s/mm2 images and 12 diffusion‐sensitized images at b = 500 s/mm2). Diffusion data from 32 fetuses (13 females) with median gestational age (GA) of 33 weeks 4 days were processed with MT‐SVR and deterministic tractography seeded by regions of interest corresponding to 12 major fiber tracts. Multivariable regression analysis was used to evaluate the association of GA with volume, FA, and ADC for each tract. For all tracts, the volume and FA increased, and the ADC decreased with GA. Associations reached statistical significance for: FA and ADC of the forceps major; volume and ADC for the forceps minor; FA, ADC, and volume for the cingulum; ADC, FA, and volume for the uncinate fasciculi; ADC of the inferior fronto‐occipital fasciculi, ADC of the inferior longitudinal fasciculi; and FA and ADC for the corticospinal tracts. These quantitative results demonstrate the complex pattern and rates of tract‐specific, GA‐related microstructural changes of the developing white matter in human fetal brain.  相似文献   

15.
16.
Benedetti F, Absinta M, Rocca MA, Radaelli D, Poletti S, Bernasconi A, Dallaspezia S, Pagani E, Falini A, Copetti M, Colombo C, Comi G, Smeraldi E, Filippi M. Tract‐specific white matter structural disruption in patients with bipolar disorder. Bipolar Disord 2011: 13: 414–424. © 2011 The Authors. Journal compilation © 2011 John Wiley & Sons A/S. Objectives: A growing body of evidence suggests that, independent of localized brain lesions, mood disorders can be associated with dysfunction of brain networks involved in the modulation of emotional and cognitive behavior. We used diffusion tensor (DT) tractography to quantify the presence and extent of structural injury to the connections between the amygdala and other brain regions, which included the subgenual, the supragenual and posterior cingulate, the parahippocampal, the orbitofrontal and dorsolateral prefrontal cortices, as well as the insula. Methods: Using a 3.0 Tesla scanner, conventional and DT magnetic resonance imaging sequences of the brain were acquired from 15 adult patients with major depressive disorder (MDD), 15 with bipolar disorder (BD), and 21 age‐matched healthy controls. Using FSL software, diffusivity changes of the white matter (WM) fiber bundles belonging to the emotional network were measured. Results: Compared to controls and MDD patients, BD patients had significantly decreased average fractional anisotropy, increased average mean diffusivity, and increased average axial and radial diffusivity values in the majority of the WM fiber bundles connecting structures of the anterior limbic network (p‐values ranging from 0.002 to 0.040). Medication load did not influence the results with the exception of lithium, which was associated with normal diffusivity values in tracts connecting the amygdala with the subgenual cingulate cortex. Conclusions: We detected specific WM abnormalities, suggestive of disrupted integrity of fiber bundles in the brains of patients with BD. These abnormalities might contribute to understanding both mood dysregulation and cognitive disturbances in BD, and might provide an objective marker to monitor treatment efficacy in this condition.  相似文献   

17.
Diffusion tensor imaging (DTI) analyses the movement of water molecules within the cerebral white matter thus providing information on ultrastructural brain changes. We studied 18 patients with cervical dystonia (CD), 16 with blepharospasm (BSP) and 35 years age-matched healthy controls. DTI data were obtained with a Philips 1.5 Tesla scanner and then processed to obtain maps of fractional anisotropy (FA) and mean diffusivity (MD). Twenty-three square regions of interest of uniform size were positioned on the FA maps and then automatically transferred to the MD maps. FA and MD values in the corpus callosum, left and right putamen, right caudate, left and right pre-frontal cortical area and left supplementary motor area in CD patients differed significantly from those in healthy controls. No significant regional differences were found between patients with BSP and healthy controls. In the CD group, age, duration and severity of dystonia did not correlate with regional FA/MD values, whereas the duration of botulinum toxin treatment correlated significantly with the MD value in the right-pre-frontal cortex. The abnormal DTI findings in patients with CD suggest the presence of brain ultrastructural changes in adult-onset primary CD.  相似文献   

18.
Objectives:  Strong qualitative and quantitative evidence exists of white matter abnormalities in both schizophrenia and bipolar disorder (BD). Diffusion tensor imaging (DTI) studies suggest altered connectivity in both disorders. We aim to address the diagnostic specificity of white matter abnormalities in these disorders.
Methods:  DTI was used to assess white matter integrity in clinically stable patients with familial BD (n = 42) and familial schizophrenia (n = 28), and in controls (n = 38). Differences in fractional anisotropy (FA) were measured using voxel-based morphometry and automated region of interest analysis.
Results:  Reduced FA was found in the anterior limb of the internal capsule (ALIC), anterior thalamic radiation (ATR), and in the region of the uncinate fasciculus in patients with BD and those with schizophrenia compared with controls. A direct comparison between patient groups found no significant differences in these regions. None of the findings were associated with psychotropic medication.
Conclusions:  Reduced integrity of the ALIC, uncinate fasciculus, and ATR regions is common to both schizophrenia and BD. These results imply an overlap in white matter pathology, possibly relating to risk factors common to both disorders.  相似文献   

19.
ObjectiveTo evaluate the relationships between cognitive function and white matter hyperintensity volume (WMHV) in patients with silent cerebrovascular disease and to investigate whether white matter integrity or brain atrophy play a role in this association.MethodsAutomated Fiber Quantification and Voxel‐ based morphometry were used to track and identify the integrity of 20 well‐defined white matter tracts and to measure the gray matter volume (GMV). A linear regression model was applied for examining the associations between cognitive function and WMHV and mediation analysis was used to identify the roles of white matter integrity or GMV in the influence of WMHV on cognitive function.ResultsTwo hundred and thirty‐six individuals were included for analysis. Executive function was linearly associated with fractional anisotropy (FA) of the right interior frontal occipital fasciculus (IFOF) (β = 0.193; 95% CI, 0.126 to 1.218) and with WMHV (β = −0.188; 95% CI, −0.372 to −0.037). Information processing speed was linearly associated with WMHV (β = −0.357; 95% CI, −0.643 to −0.245), FA of the right anterior thalamic radiation (ATR) (β = 0.207; 95% CI, 0.116 to 0.920), and FA of the left superior longitudinal fasciculus (SLF) (β = 0.177; 95% CI, 0.103 to 1.315). The relationship between WMHV and executive function was mediated by FA of the right IFOF (effect size = −0.045, 95% CI, −0.015 to −0.092). Parallel mediation analysis showed that the association between WMHV and information processing speed was mediated by FA of the right ATR (effect size = −0.099, 95% CI, −0.198 to −0.038) and FA of the left SLF (effect size = −0.038, 95% CI, −0.080 to −0.003).ConclusionThese findings suggest a mechanism by which WMH affects executive function and information processing speed by impairing white matter integrity. This may be helpful in providing a theoretical basis for rehabilitation strategies of cognitive function in patients with silent cerebrovascular diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号