首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
O6-Alkylguanine-DNA alkyltransferase (alkyltransferase) provides an important source of resistance to some cancer chemotherapeutic alkylating agents. Folate ester derivatives of O6-benzyl-2'-deoxyguanosine and of O6-[4-(hydroxymethyl)benzyl]guanine were synthesized and tested for their ability to inactivate human alkyltransferase. Inactivation of alkyltransferase by the gamma-folate ester of O6-[4-(hydroxymethyl)benzyl]guanine was similar to that of the parent base. The gamma-folate esters of O6-benzyl-2'-deoxyguanosine were more potent alkyltransferase inactivators than the parent nucleoside. The 3'-ester was considerably more potent than the 5'-ester and was more than an order of magnitude more active than O6-benzylguanine, which is currently in clinical trials to enhance therapy with alkylating agents. They were also able to sensitize human tumor cells to killing by 1,3-bis(2-chloroethyl)-1-nitrosourea, with O6-benzyl-3'-O-(gamma-folyl)-2'-deoxyguanosine being most active. These compounds provide a new class of highly water-soluble alkyltransferase inactivators and form the basis to construct more tumor-specific and potent compounds targeting this DNA repair protein.  相似文献   

2.
1,2-Bis(sulfonyl)hydrazine derivatives, designed to generate several of the electrophilic species classically believed to be responsible for the alkylating (chloroethylating) and/or carbamoylating activities of the chloroethylnitrosoureas (CNUs), were compared with respect to the cross-linking and nicking of T7 DNA to that caused by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU), and 1-(2-chloroethyl)-3-(4-trans-methylcyclohexyl)-1-nitrosourea (MeCCNU). In the case of BCNU, a large proportion of T7 DNA strand nicking was found to be due to the generation of 2-chloroethylamine, produced from the hydrolysis of 2-chloroethylisocyanate, in turn formed during the decomposition of the parental nitrosourea. 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (compound 1) gave a greater yield of DNA cross-links than the CNUs. Compound 1, as well as its derivatives that were incapable of generating 2-chloroethylisocyanate, did not produce detectable levels of strand nicking, indicating that N7-alkylation of guanine did not occur to a significant extent with these agents. Since compound 1 and its derivatives are believed to generate chloronium and chloroethyldiazonium ions, it would appear that these species could not be significantly involved in the N7-alkylation of guanine caused by the CNUs. The relatively low level of N7-alkylation of guanine residues and the relatively high yield of cross-links generated by some of the 1,2-bis(sulfonyl)-1-(2-chloroethyl)hydrazine derivatives implies that they are more exclusive O6-guanine chloroethylating agents than the CNUs. O6-Guanine chloroethylation is believed to be the therapeutically relevant event produced by the CNUs; therefore, compound 1 derivatives represent promising new cancer chemotherapeutic agents, since they appear to generate lower quantities of therapeutically unimportant, yet carcinogenic lesions, and more of the therapeutically relevant O6-guanine chloroethylation than the CNUs.  相似文献   

3.
The cytostatic drug dacarbazine [DTIC, 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide] is strongly carcinogenic in rats. Bioactivation of DTIC yields a methylating intermediate but the extent of interaction with cellular macromolecules has not previously been reported. Following a single i.p. injection of [14C-methyl]DTIC, exhalation of 14CO2 occurred with a t1/2 max of approximately 2 hr (0.95 mg/kg) and 2.5 hr (95 mg/kg). Of the total radioactivity administered, 8.5% was exhaled as 14CO2; 54% was excreted via the urine, predominantly as unchanged DTIC. In liver, kidney and lung, formation of 7-[14C]methylguanine in DNA and RNA was directly proportional with dose. DNA methylation by a single dose of DTIC (9.8 mg/kg; 5 hr survival time) was highest in liver (35 mumoles 7-methylguanine/mole guanine), followed by kidney (25 mumoles) and lung (20 mumoles). The remainder tissues showed 7-methylguanine concentrations approximately 50% of those in liver DNA, with the exception of the brain which had a very low extent of DNA modification (approximately 1 mumole/mole guanine). At the specific radioactivity used (48 mCi/mmole), the promutagenic base O6-methylguanine was only detectable in liver, kidney, lung, and stomach DNA (0.6-0.8 mumoles/mole guanine). Autoradiographic studies revealed a diffuse distribution of reaction products in rat liver. In contrast, N-nitrosodimethylamine and related carcinogens known to be bioactivated by the hepatic cytochrome P-450 system show a predominantly centrilobular distribution. This difference may be due to the greater stability of proximate carcinogens generated by alpha-C hydroxylation at one of the methyl groups of DTIC.  相似文献   

4.
9L Rat brain tumor cells were treated with 0.2 microM 6-thioguanine for 48 hr, which produced a 40% cell kill, a small (15%) inhibition of cell growth, and an accumulation of cells in S-phase. Maximum incorporation of [14C]6-thioguanine into cellular DNA occurred after 24 hr of incubation; 70% of the label was incorporated into DNA as 6-thio-2'-deoxyguanosine. Pretreatment of 9L cells for 48 hr with 0.2 microM 6-thioguanine potentiated the cytotoxicity of 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU) by 50% with a dose enhancement ratio of 1.5, and caused a 30% increase in the number of BCNU-induced sister chromatid exchanges (SCEs) and a 50% increase in DNA crosslinks formed, compared to treatment with BCNU alone. Used as a single agent, 6-thioguanine induced a significant number of SCEs. Results suggest that these effects may be related to the increased formation of DNA crosslinks, possibly as the result of the formation of S6-(2-chloroethyl)-6-thioguanine in cellular DNA.  相似文献   

5.
All of the clinically available nitrosourea antitumor agents produce serious treatment-limiting bone marrow toxicity. A reduction in this toxicity can be achieved by attaching the chloroethylnitrosourea cytotoxic group to C2 (chlorozotocin) or C1 (1-(2-chloroethyl)-3-(β-d-glucopyranosyl)-1-nitrosourea, GANU) of glucose. Both glucose analogs are less myelotoxic in mice than 1-(2-chloroethyl)-3-cyclohepyl-1-nitrosourea (CCNU) or 1-(4-amino-2-methylpyrimidin-5-yl)methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU), while retaining comparable antitumor activity against the murine L121o leukemia. To define the nuclear mechanisms for this reduced myelotoxicity, alkylation of L1210 and murine bone marrow DNA was quantitated. With the use of the endonucleases micrococcal nuclease and DNase I, the sites of alkylation within the chromatin substructure were determined. Experiments were performed on L1210 leukemia or bone marrow cells that had been incubated in vitro for 2 hr with 0.1 mM [14C]chloroethyl drug. The quantitative alkylation of DNA by GANU was 1.3-fold greater in L1210, as compared to bone marrow, cells. This ratio of DNA alkylation is comparable to the 1.3 ratio we previously reported for chlorozotocin [L. C. Panasci, D. Green and P. S. Schein, J. clin. Invest.64, 1103 (1979)]. In contrast, the ratio of alkylation (L1210: bone marrow DNA) for the myelotoxic ACNU was 0.66, similar to 0.59 for CCNU. Nuclease digestion experiments demonstrated that chlorozotocin and GANU preferentially alkylated internucleosomal linker regions of bone marrow chromatin, while nucleosome core particles were the preferred targets of CCNU and ACNU. The reduced myelotoxicity of chlorozotocin and GANU may be correlated with the advantageous ratio of L1210: bone marrow DNA alkylation and preferential alkylation of internucleosomal regions of bone marrow chromatin.  相似文献   

6.
O(6)-Substituted guanine derivatives are powerful agents used for tumor cell sensitization by inhibition of the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). To provide targeted accumulation of MGMT inhibitors in tumor tissue as well as tools for in vivo imaging, we synthesized iodinated C(8)-alkyl-linked glucose conjugates of 2-amino-6-(5-iodothenyl)-9H-purine (O(6)-(5-iodothenyl) guanine, ITG) and 2-amino-6-(3-iodobenzyloxy)-9H-purine (O(6)-(5-iodobenzyl) guanine, IBG). These compounds have MGMT inhibitor constants (IC(50) values) of 0.8 and 0.45 microM for ITGG and IBGG, respectively, as determined in HeLa S3 cells after 2-h incubation with inhibitor. To substantiate that the (131)I-(hetero)arylmethylene group at the O(6)-position of guanine is transferred to MGMT, both the glucose conjugated inhibitors ITGG and IBGG and the corresponding nonglucose conjugated compounds ITG and IBG were labeled with iodine-131. The radioiodinations of all compounds with [(131)I]I(-) were performed with radiochemical yields of >70% for the destannylation of the corresponding tri-n-butylstannylated precursors. The binding ability of [(131)I]ITGG, [(131)]IBGG, [(131)I]ITG, and [(131)I]IBG to purified MGMT was tested. All radioactive compounds were substrates for MGMT, as demonstrated using a competitive repair assay. The newly synthesized radioactive inhibitors were utilized to study ex vivo biodistribution in mice, and the tumor-to-blood ratio of tissue uptake of [(131)I]IBG and [(131)I]IBGG was determined to be 0.24 and 0.76 after 0.5 h, respectively.  相似文献   

7.
A novel nitrosourea, 1-(2-chloroethyl)-3-[2-(dimethylaminosulphonyl)ethyl]1-nitrosourea , tauromustine (TCNU), has been investigated for in vitro metabolism by different rat organs. Two kinds of reactions were seen, demethylation and denitrosation, both reactions required NADPH. These reactions were achieved by the liver microsomes and to a much lesser extent by lung microsomes. Induction of cytochrome P450 system with phenobarbital resulted in increased demethylation (10 times) and denitrosation (6 times) of tauromustine while induction with 3-methylcholanthrene did not have any significant effect on these reactions. Known inhibitors of different cytochrome P450 activities inhibited the demethylation and denitrosation of tauromustine to different levels. After oral administration of [14C]tauromustine a metabolic pattern similar to that observed in vitro experiments, was seen in the urine. The demethylated compound, which has alkylating cytotoxic activity, could be detected in the urine up to 8 hr after oral administration.  相似文献   

8.
We have examined the pharmacological characteristics of three dinitrosated isomers of N,N'-bis[N(2-chloroethyl)-N-carbamoyl]cystamine [CNCC-(D), 1C1G1325] differing in the relative positions of the nitroso substituents [CNCC-(C), (1,1' dinitroso); CNCC-(S), 3,3' dinitroso); and CNCC-(M), (1,3'-dinitroso)] and which were designed to be subject to preferential bioreductive activation in hypoxic tumors. The decomposition products of the isomers formed under physiological conditions [both in the absence and in the presence of dithiothreitol (DDT)] were identified and quantified. For example, CNCC-(S) in phosphate buffer, pH 7.0, and 37 degrees gave rise to 2-chloroethylisocyanate, bis(2-chloroethyl)urea and bis(2-hydroxyethyl)disulfide, whereas in the presence of DTT it afforded 2-chloroethylisocyanate, bis(2-chloroethyl)urea, bis(2-hydroxyethyl) disulfide, thiirane and 2-mercaptoethanol. Control aqueous decomposition profiles were performed with two known metabolites of CNCC, namely 3-(2-chloroethyl)-1-(2-thioethyl)-1-nitrosourea and 3-(2-chloroethyl)-1-(2-methylthioethyl)-1-nitrosourea. CNCC-(C) caused 20% interstrand cross-linking of lambda-DNA in 2 hr, whereas in the presence of DTT the extent of cross-linking increased to 38% in the same time period. In contrast, isomer (S) showed no detectable cross-linking in 7 hr. This thiol potentiation of cross-linking which is observed with other 2-chloroethylnitrosoureas is explained by nucleophilic attack at the carbonyl group and subsequent stereoelectronically controlled decomposition of the tetrahedral intermediate. The relative extents of carbamoylating activity of the CNCC isomers were obtained using a [14C]-lysine assay which showed (S) approximately equal to (M) greater than (C). Inhibition of glutathione reductase for both Walker 256 resistant (WR) and Walker 256 sensitive (WS) strains showed that isomer (S) inactivated the enzyme more effectively than isomer (C) in accord with the carbamoylating activity results. The higher carbamoylators (S) and (M) also showed greater effects on the intracellular thiol pools in both WR and WS cells indicative of sulfhydryl conjugation and efflux and/or inhibition of the GSH metabolic enzymes. In vitro cytotoxicity studies with human DU 145 prostatic carcinoma cells showed the isomer cytotoxicity was (M) greater than (C) greater than (S) over a 24-hr incubation period. The reduced cytotoxic potential of CNCC-(S) in both the Walker 256 cells and in the human prostatic carcinoma cells may be a function of an interaction between GSH and the drug thereby protecting other more critical nucleophilic targets within the nucleus.  相似文献   

9.
The effect of five different 1-(2-chloroethyl)-1-nitrosoureas on the growth of cultured P388 cells has been analyzed in terms of physical, chemical, and kinetic parameters that are related to the mechanism of action of this class of cancer chemotherapeutic agent. This study correlates structure with activity at the cellular level by using a dose function that is related to the amount of active species, the (2-chloroethyl)diazonium ion, that is formed during the period of exposure of cells to drug rather than to the initial drug dose. 1-(2-Chloroethyl)-1-nitrosourea analogues that rapidly enter the P388 cells are shown to have the same activity relative to the amount of active species formed. When analyzed in this way, activity is not influenced by the structure of the N-3 substituent, lipophilicity, or carbamoylating activity. The agents 1-(2-chloroethyl)-1-nitrosourea (CNU), 1-(2-chloroethyl)-3-(2,6-dioxo-3-piperidyl)-1-nitrosourea (PCNU), 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU), and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) all produce a 50% cell growth inhibition at 6 to 7 microM active species formed per cell volume. Chlorozotocin required a twofold higher effective dose to produce the same toxic effect. This decreased activity is attributed to the slow uptake of the water-soluble chlorozotocin into P388 and L1210 cells relative to the rate of chlorozotocin conversion to active species in medium. The yields to 2-chloroethanol from CNU, BCNU, and chlorozotocin were shown to be the same, indicating that these agents generate the same yield of alkylating intermediate at 37 degrees C and pH 7.4.  相似文献   

10.
The nucleobase guanine was oxidized with dimethyldioxirane (DMDO) to explore the role of epoxidizing agents in oxidative DNA damage. Treatment of guanine with 10% molar excess DMDO in aqueous solution at 0 degrees C and pH 7.5 followed by workup under mild conditions gave 5-carboxamido-5-formamido-2-iminohydantoin (1) as the sole isolable product in 71% yield. The structure of 1 was established on the basis of mass spectrometry and NMR studies on 1 and its isotopomers generated by the oxidation of [4-(13)C] and [7-(15)N]guanine, which yield [5-(13)C]1 and [7-(15)N]1. The distribution of 13C and 15N labels in the isotopomeric products supports initial epoxidation of the C4-C5 bond of guanine followed by a 1,2-acyl migration of guanine C6. Compound 1 is suggested as a possible primary DNA lesion from putative epoxidizing agents, including hydroperoxides present during biological processes such as lipid peroxidation.  相似文献   

11.
MDL74270 (6-acetyloxy-3,4-dihydro-N,N,N,2,5,7, 8-heptamethyl-2H-1-benzopyran-2-ethanaminium, 4-methylbenzenesulfonate) is a quaternary amine analogue of alpha-tocopherol with free radical scavenger properties. Rats were injected iv with [14C]MDL74270 (0.91 mg/kg), and whole blood and heart tissue were sampled. Five min after drug, the heart tissue/blood ratio (T/B) of radioactivity was 3.5, whereas at 1 hr it was 20.1 and remained at this value up to at least 6 hr. After iv administration the t 1/2 of radioactivity in blood was 6.3 hr, but po blood levels could not be quantified. The 0- to 96-hr urinary elimination of radioactivity was 39.9 +/- 5.7% of the dose after iv and only 1.2 +/- 0.4% after po administration, conversely, 44.7 +/- 5.2% was excreted in feces after iv and 79.1 +/- 17.4% after po administration. These results confirmed poor oral absorption of the compound. Tissue distribution of [14C]MDL74270 was compared with that of its tertiary amine analogue [14C]MDL74366 in rat heart, skeletal muscle, brain, and whole blood, after iv administration (1 mg/kg). The heart T/B was above 20, 1-6 hr after [14C]MDL74270, whereas it was less than 2 after [14C]MDL74366. Over the 1- to 6-hr time interval, skeletal muscle T/B varied from 1.8 to 5 compared with 1.5 to 0.6 for [14C] MDL74366. Brain T/B was higher after the tertiary amine compound. Results showed marked cardioselectivity of radioactivity after [14C] MDL74270. Differential centrifugation of heart homogenates showed that radioactivity was equally distributed between the major subcellular fractions studied.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The disposition of N-methyl-2-pyrrolidinone (NMP) was studied in the rat using tritium-labeled ([4-3H]NMP) and carbon-14-labeled ([methyl-14C]NMP and [ring-14C]NMP) radioisomers. Male Sprague-Dawley rats were administered a single intravenous dose (45 mg/kg) of 5.0 microCi of 3H or 14C for single-labeled disposition studies or 5.0 microCi of 3H and 2.5 microCi of 14C for double-labeled studies (2:1 ratio, 3H:14C). Plasma levels of intact NMP were analyzed by HPLC through 6 hr after dosing and suggested a rapid distribution phase followed by a slow elimination phase. The half-life for the terminal elimination phase from plasma was about 7 hr for both 14C-isomers and 9.9 hr for the 3H-isomer. The major route of excretion of radioactivity was via the urine and accounted for about 70% of the dose within 12 hr. After 24 hr, cumulative excretion in urine represented about 80% of the dose. The 2:1 ratio of administered 3H:14C was maintained in urine through 6 hr. Measurement of radioactivity in tissues at 6 hr showed the liver and intestines to contain the highest accumulations of radioactivity, representing approximately 2% and 3% of the dose, respectively. Tissue distribution of radioactivity was similar for all three radiolabeled isomers and showed that NMP was extensively distributed to all major organs. Radiomonitored HPLC analyses of urine revealed the presence of one major and two minor metabolites. The major metabolite, representing 70-75% of the administered dose of radioactivity, was found to retain all three radiolabeled positions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
When the selective anti-herpes agent [2-14C]-5-(2-chloroethyl)-2'-deoxyuridine [( 14C]CEDU) was administered as a single oral dose to mice, 87.9% of the radioactivity was excreted in the urine and 11.2% in the feces within 72 hr. Compounds accounting for 84% of the 14C radioactivity in the 0- to 24-hr urine were isolated by various chromatographic techniques and identified by MS, NMR, IR, and CD analysis. Approximately 25% of the radioactivity found in the urine was the parent compound (CEDU). According to the 14C-metabolites detected in the urine, one may infer that [14C]CEDU is metabolized, first, by cleavage of its N-glycosidic bond, resulting in the formation of 5-(2-chloroethyl)uracil (38.7%) and, second, by stereoselective hydroxylation of the alpha carbon atom of the haloalkyl side chain of 5-(2-chloroethyl)uracil, resulting in the formation of 5-(1-hydroxy-2-chloroethyl)uracil (29.6%). CEDU was absorbed rapidly from the gastrointestinal tract and the bloodstream, and did not show any particular accumulation in mouse tissues, as revealed by whole body autoradiography.  相似文献   

14.
The purpose of this study was to examine the influence of cations on the formation of the individual DNA alkylation products derived from 1-(2-chloroethyl)-1-nitrosourea (CNU). Reaction of calf-thymus DNA with [(3)H]CNU in 10 mM triethanolamine buffer produced 13 DNA adducts. Seven of these adducts were identified as N7-(2-hydroxyethyl)guanine, N7-(2-chloroethyl)guanine, 1, 2-(diguan-7-yl)ethane, N1-(2-hydroxyethyl)-2-deoxyguanosine, 1-(N1-2-deoxyguanosinyl)-2-(N3-2-deoxycytidyl)ethane, O(6)-(2-hydroxyethyl)-2-deoxyguanosine, and phosphotriesters. The ratios of the individual products indicated that the chloroethyl and hydroxyethyl adducts are derived from different alkylating intermediates. The influence of cations on the formation of these DNA alkylation products was investigated by the addition of either NaCl, MgCl(2), or spermine. The results demonstrated that (1) the levels of DNA alkylation were inversely proportional to ionic strength, (2) the extent of inhibition was dependent on the alkylation product, and (3) the order of relative effectiveness of inhibition of DNA alkylation by these cations was as follows: spermine > Mg > Na. These results support a model whereby reactions which proceed via an S(N)2 mechanism are more sensitive to the effects of ionic strength than reactions which proceed via an S(N)1 mechanism. In 9L cells treated with CNU, the same alkylation products were formed as in purified DNA; however, the product distribution was different. We interpret this to indicate that within cells, cations modify the reaction of intermediates derived from CNU with DNA.  相似文献   

15.
The anti-cancer agent, cyclophosphamide, metabolises to the cytotoxic alkylating agent phosphoramide mustard, which can be dephosphoramidated to give nornitrogen mustard. A rat liver mitochondrial supernatant system was used to study the binding of [chloroethyl 3H]cyclophosphamide to DNA. The reacted DNA was acid-hydrolysed and one major adduct was identified using Sephadex G-10 chromatography, followed by HPLC, using reversed-phase or ion-exchange systems. Further studies, using [14C]guanine as reaction substrate for [chloroethyl 3H]cyclophosphamide, phosphoramide mustard or nornitrogen mustard, demonstrated the main adduct from each reaction had identical chromatographic properties in these systems. The radiolabelled ratio in the [3H]cyclophosphamide-[14C]guanine reaction demonstrated a monoadducted product. From this evidence and from 1H NMR data, the common adduct was putatively identified as a hydroxylated nornitrogen mustard adduct (N-(2-hydroxyethyl)-N-[2-(7-guaninyl)ethyl]amine). In in vivo studies, rats were injected intraperitoneally with 2.775 MBq [3H]cyclophosphamide. Total organ [3H] content and DNA binding levels were ascertained. Maximal levels of [3H] binding to DNA were seen between 1-4 hr with the highest binding levels observed in the bladder. The in vivo adduct was shown, using various HPLC systems, to co-chromatograph with the in vitro adduct and thus the main in vivo adduct was putatively identified as N-(2-hydroxyethyl)-N-[2-(7-guaninyl)ethyl]amine.  相似文献   

16.
In primary cultures of astrocytes, methylmethane, 2-N-methyl 9-hydroxy-ellepticinium acetate, ditercalinium, 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea and 1,3 bis (2-chloroethyl)-1-nitrosourea (BCNU) blocked to various extents the activation of S6 kinase by acidic fibroblast growth factor and insulin [or insulin-like growth factor 1 (IGF1)]. The effects of the most active agent, BCNU, were time and concentration dependent. Pretreatment of cells with 50 microM BCNU for 1 hr completely prevented S6 kinase activation by growth factors for at least 2 days. The S6 kinase activity of unstimulated cells was slightly affected. S6 kinase activation by 12-O-tetradecanoylphorbol 13 acetate was also strongly impaired by treating cells with BCNU whereas activation by 8-bromo-cyclic AMP was slightly reduced. Cyclic AMP-dependent protein kinase and phospholipid and Ca(2+)-dependent protein kinase were unaffected. BCNU had no direct effect on IGF1 binding to cell surface receptors or on the S6 kinase activity of cell cytosols.  相似文献   

17.
O(6)-Methyl-2'-deoxyguanosine (O(6)-Me-dG) is a potent mutagenic DNA adduct that can be induced by a variety of methylating agents, including tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). O(6)-Me-dG is directly repaired by the specialized DNA repair protein, O(6)-alkylguanine DNA alkyltransferase (AGT), which transfers the O(6)-alkyl group from the modified guanine to a cysteine thiol within the active site of the protein. Previous investigations suggested that AGT repair of O(6)-alkylguanines may be sequence-dependent as a result of flanking nucleobase effects on DNA conformation and energetics. In the present work, a novel high-performance/pressure liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI+-MS/MS)-based approach was developed to analyze the kinetics of AGT-mediated repair of O(6)-Me-dG adducts placed at different sites within the double-stranded DNA sequence representing codons 8-17 of the K-ras protooncogene, 5'-G1TA G2TT G3G4A G5CT G6G7T G8G9C G10TA G11G12C AAG13 AG14T-3', where G5, G6, G7, G8, G9, G10, or G11 was replaced with O(6)-Me-dG. The second guanine of K-ras codon 12 (G7 in our numbering system) is a major mutational hotspot for G --> A transitions observed in lung tumors of smokers and in neoplasms induced in laboratory animals by exposure to methylating agents. O(6)-Me-dG-containing duplexes were incubated with human recombinant AGT protein, and the reactions were quenched at specific times. Following acid hydrolysis to release purines, isotope dilution HPLC-ESI-MS/MS was used to determine the amounts of O(6)-Me-G remaining in DNA. The relative extent of demethylation for O(6)-Me-dG adducts located at G5, G6, G7, G8, G9, G10, or G11 following a 10 s incubation with AGT showed little variation as a function of sequence position. Furthermore, the second-order rate constants for the repair of O(6)-Me-dG adducts located at the first and second positions of the K-ras codon 12 (5'-G6G7T-3') were similar (1.4 x 10(7) M(-1) s(-1) vs 7.4 x 10(6) M(-1) s(-1), respectively), suggesting that O(6)-Me-dG repair by AGT is not the determining factor for K-ras codon 12 mutagenesis following exposure to methylating agents. The new HPLC-ESI-MS/MS assay developed in this work is a valuable tool which will be used to further explore the role of local sequence environment and endogenous DNA modifications in shaping mutational spectra of NNK and other methylating agents.  相似文献   

18.
BCNU [1,3-bis(2-chloroethyl)-1-nitrosourea] and its less toxic derivative HeCNU [1-(2-chloroethyl)-3-(2-hydroxyethyl)-1-nitrosourea] are clinically-used antitumour drugs. In erythrocytes BCNU is a highly specific inhibitor of the enzyme glutathione reductase [H. Frischer and T. Ahmad, J. Lab. clin. Med. 89, 1080 (1977)]. When treating erythrocytes in vitro, 50% enzyme inhibition was obtained with 1 microM BCNU or 3 microM HeCNU within 2 hr. The two drugs were used for preparing red cell populations with various levels of glutathione reductase activity; complete inhibition (greater than or equal to 98%) was only achieved when the medium contained glucose as a source of reducing equivalents. The erythrocytes were then tested in drug-free media as host cells for the malaria parasite Plasmodium falciparum. In the range of 0-300 mU/ml cells, there was a correlation between glutathione reductase activity and parasite growth; erythrocytes with an activity of less than 20 mU/ml did not serve as host cells for P. falciparum at all although these erythrocytes were viable. When the culture medium was supplemented with 20 mM glutathione (GSH), parasite growth was normal irrespective of the glutathione reductase level in the erythrocytes. This is consistent with the finding that poisoning glutathione reductase led to a 10-fold decrease of the cytosolic GSH level. Our results corroborate the concept that intraerythrocytic inhibition of glutathione reductase mimicks the biochemistry of drug-sensitive glucose-6-phosphate dehydrogenase deficiency (favism), an inherited condition which confers protection from malaria.  相似文献   

19.
O6-methylguanine DNA methyltransferase/O6-alkylguanine DNA alkyltransferase (MGMT/AGT) removes alkyl adducts from the O6-position of guanine in DNA. Expression of MGMT in human cancers has been associated with resistance to therapies using alkylating agents. MGMT promoter methylation regulates its expression and response to alkylating agents. A combination of O6-benzylguanine-based inhibitors of MGMT with alkylating agents improved the efficacy. However, this is associated with enhanced cytotoxicity and the induction of GC to AT transition mutations presumably also in progenitor/stem cells. A few recent studies have described analogs of O6-benzylguanine targeting defined pathways of cancer cells that can be used to improve the selectivity of O6-benzylguanine-based inhibitors for cancer cells. Therefore, MGMT inhibitor targeting represents a reliable strategy for improving cancer therapy with alkylating agents.  相似文献   

20.
DNA pyridyloxobutylation occurs during the metabolic activation of the tobacco-specific nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN). This pathway contributes significantly to the carcinogenic and mutagenic activity of these nitrosamines. In general, the chemical structure of pyridyloxobutyl adducts are not well understood. Recently, an AGT reactive pyridyloxobutyl adduct was identified as O6-[4-oxo-4-(3-pyridyl)butyl]guanine (O6-pobG). To better understand the importance of this adduct to the biological activity of pyridyloxobutylating agents, we developed a method for site-specifically incorporating O6-pobG into DNA oligonucleotides. They were synthesized using the phosphoramidite of the precursor 2'-deoxy-O6-{3-[2-(3-pyridyl)-1,3-dithian-2-yl]propyl}guanosine. The dithiane group was oxidatively removed with N-chlorosuccinimide in a final postoligomerization reaction to generate the desired product. Human AGT with a polyhistidine tag was able to repair the O6-pobG-containing DNA oligonucleotide, generating unmodified oligonucleotide. These results are consistent with an alkyl group transfer mechanism for the repair of O6-pobG by AGT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号