首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There are now 21 agents or classes of therapeutic agents in the Friedreich ataxia research pipeline (http://www.curefa.org/pipeline.html) that have been developed in the 15 years since the discovery of the frataxin gene, with the ongoing characterization of its mutations and the resulting molecular pathology. Twenty-four studies are currently posted on ClinicalTrials.gov. Twenty-seven works discussing the results of clinical trials in Friedreich ataxia have been published. In 2010, 42 public (National Institutes of Health) and private (Friedreich Ataxia Research Alliance, Muscular Dystrophy Association, and National Ataxia Foundation) grants were funded for translational and clinical research in Friedreich ataxia. Millions of dollars from public, private, and industry-based initiatives have been dedicated to research in Friedreich ataxia therapeutics. Despite this vigorous international effort, there is as yet no proven disease-modifying therapy for Friedreich ataxia.  相似文献   

2.
Friedreich ataxia occurs due to mutations in the gene encoding the mitochondrial protein frataxin. This (31)P magnetic resonance spectroscopy study on the calf muscle of Friedreich ataxia patients provides in vivo evidence of a severe impairment of mitochondrial function. Mitochondrial adenosine triphosphate resynthesis was studied by means of the post-exercise recovery of phosphocreatine. After ischemic exercise in calf muscles of all patients, phosphocreatine recovery was dramatically delayed. Time constants of recovery correlated with mutations of the frataxin gene, the age of the patients, and disease duration. (31)P magnetic resonance spectroscopy represents the first expedient tool for monitoring therapeutic trials in Friedreich ataxia non-invasively.  相似文献   

3.
Friedreich ataxia is an autosomal recessive neurodegenerative disorder caused by mutations in the FXN gene that result in abnormally low levels of the mitochondrial protein frataxin. The authors recently used a lateral flow immunoassay to measure frataxin levels in a large cohort of controls, carriers, and patients with the condition. The findings show that frataxin levels do not appreciably change over time and correlate well with GAA(1) repeat length and age of onset; thus, frataxin is a reliable and stable marker for severity of disease. In this article, the authors present a patient diagnosed as having Friedreich ataxia and osteosarcoma who received combined methotrexate, doxorubicin (Adriamycin), and cisplatin (MAP) chemotherapy over 8 months. The authors assessed the effect of treatment on frataxin levels, blood cell counts, and clinical markers of cardiomyopathy. Results of the regimen and the use of MAP chemotherapy for treatment of neoplasms in individuals with Friedreich ataxia are discussed.  相似文献   

4.
Friedreich ataxia is an inherited, severe, progressive neuro- and cardiodegenerative disorder for which there currently is no approved therapy. Friedreich ataxia is caused by the decreased expression and/or function of frataxin, a mitochondrial matrix protein that binds iron and is involved in the formation of iron-sulfur clusters. Decreased frataxin function leads to decreased iron-sulfur cluster formation, mitochondrial iron accumulation, cytosolic iron depletion, oxidative stress, and mitochondrial dysfunction. Cloning of the disease gene for Friedreich ataxia and elucidation of many aspects of the biochemical defects underlying the disorder have led to several major therapeutic initiatives aimed at increasing frataxin expression, reversing mitochondrial iron accumulation, and alleviating oxidative stress. These initiatives are in preclinical and clinical development and are reviewed herein.  相似文献   

5.
During the past 15 years, the pace of research advancement in Friedreich ataxia has been rapid. The abnormal gene has been discovered and its gene product characterized, leading to the development of new evidence-based therapies. Still, various unsettled issues remain that affect clinical trials. These include the level of frataxin deficiency needed to cause disease, the mechanism by which frataxin-deficient mitochondrial dysfunction leads to symptomatology, and the reason selected cells are most affected in Friedreich ataxia. In this review, we summarize these questions and propose testable hypotheses for their resolution.  相似文献   

6.
7.
Friedreich ataxia is the most common inherited ataxia, with a wide phenotypic spectrum. It is generally caused by GAA expansions on both alleles of FXN, but a small percentage of patients are compound heterozygotes for a pathogenic expansion and a point mutation. Two recent diagnostic innovations are further characterizing individuals with the phenotype but without the classic genotypes. First, lateral-flow immunoassay is able to quantify the frataxin protein, thereby further characterizing these atypical individuals as likely affected or not affected, and providing some correlation to phenotype. It also holds promise as a biomarker for clinical trials in which the investigative agent increases frataxin. Second, gene dosage analysis and the identification of affected individuals with gene deletions introduce a novel genetic mechanism of disease. Both tests are now clinically available and suggest a new diagnostic paradigm for the disorder. Genetic counseling issues and future diagnostic testing approaches are considered as well.  相似文献   

8.
Friedreich ataxia is the most common human ataxia and results from inadequate production of the frataxin protein, most often the result of a triplet expansion in the nuclear FXN gene. The gene cannot be transcribed to generate the messenger ribonucleic acid for frataxin. Frataxin is an iron-binding protein targeted to the mitochondrial matrix. In its absence, multiple iron-sulfur-dependent proteins in mitochondria and the cytosol lack proper assembly, destroying mitochondrial and nuclear function. Mitochondrial oxidant stress may also participate in ongoing cellular injury. Although progressive and debilitative ataxia is the most prominent clinical finding, hypertrophic cardiomyopathy with heart failure is the most common cause of early death in this disease. There is no cure. In this review the authors cover recent basic and clinical findings regarding the heart in Friedreich ataxia, offer recommendations for clinical management of the cardiomyopathy in this disease, and point out new research directions to advance the field.  相似文献   

9.
Phenotype of patients with the aprataxin gene mutation varies and according to previous studies, screening of aprataxin gene could be useful, once frataxin gene mutation is excluded in patients with normal GAA expansion in frataxin gene. In the present study, we sought to determine possible causative mutations in aprataxin gene (all exons and flanking intronic sequences) in 14 Greek patients with sporadic cerebellar ataxia all but one without GAA expansion in frataxin gene (1 patient was heterozygous). No detectable point mutation or deletion was found in the aprataxin gene of all the patients. Our results do not confirm the previous studies. This difference may be attributed to the different populations studied and possible different genetic background. It is still questionable whether the screening for aprataxin mutation in Greek patients’ Friedreich ataxia phenotype is of clinical importance; larger, multicenter studies are necessary to clarify this issue.  相似文献   

10.
Numerous studies have pointed to histone deacetylase inhibitors as potential therapeutics for various neurodegenerative diseases, and clinical trials with several histone deacetylase inhibitors have been performed or are under way. However, histone deacetylase inhibitors tested to date either are highly cytotoxic or have very low specificities for different histone deacetylase enzymes. The authors' laboratories have identified a novel class of histone deacetylase inhibitors (2-aminobenzamides) that reverses heterochromatin-mediated silencing of the frataxin (FXN) gene in Friedreich ataxia. The authors have identified the histone deacetylase enzyme isotype target of these compounds and present evidence that compounds that target this enzyme selectively increase FXN expression from pathogenic alleles. Studies with model compounds show that these histone deacetylase inhibitors increase FXN messenger RNA levels in the brain in mouse models for Friedreich ataxia and relieve neurological symptoms observed in mouse models and support the notion that this class of molecules may serve as therapeutics for the human disease.  相似文献   

11.
An individual with late-onset ataxia was found to be heterozygous for an unusual (GAAGGA)65 sequence and a normal GAA repeat in the frataxin gene. No frataxin point mutation was present, excluding a form of Friedreich ataxia. (GAAGGA)65 did not have the inhibitory effect on gene expression in transfected cells shown by pathogenic GAA repeats of similar length. GAA repeats, but not (GAAGGA)65, adopt a triple helical conformation in vitro. We suggest that such a triplex structure is essential for suppression of gene expression.  相似文献   

12.
The discovery of the genetic cause of Friedreich ataxia has significantly affected our understanding of the disorder at both the clinical and basic science levels. Friedreich ataxia results from a deficiency of functional frataxin, a protein that appears to be involved in mitochondrial iron homeostasis. This leads to iron accumulation and mitochondrial abnormalities with consequent oxidant damage. The clinical spectrum of Friedreich ataxia has also expanded with the recognition of broader phenotypic features, including the absence of classical Friedreich ataxia features, later age at onset, and spasticity instead of ataxia. Although no proven therapy is yet available, antioxidants are a potential method for therapeutic intervention.  相似文献   

13.
Friedreich ataxia, the most common type of inherited ataxia, is itself caused in most cases by a large expansion of an intronic GAA repeat, resulting in decreased expression of the target frataxin gene. The autosomal recessive inheritance of the disease gives this triplet repeat mutation some unique features of natural history and evolution. Frataxin is a mitochondrial protein that has homologues in yeast and even in gram-negative bacteria. Yeast organisms deficient in the frataxin homologue accumulate iron in mitochondria and show increased sensitivity to oxidative stress. This suggests that Friedreich ataxia is caused by mitochondrial dysfunction and free radical toxicity.  相似文献   

14.
Friedreich ataxia is the most common hereditary ataxia. The signs and symptoms of the disorder derive from decreased expression of the protein frataxin, which is involved in iron metabolism. Frataxin chaperones iron for iron-sulfur cluster biogenesis and detoxifies iron in the mitochondrial matrix. Decreased expression of frataxin is associated with impairments of iron-sulfur cluster biogenesis and heme synthesis, as well as with mitochondrial dysfunction and oxidative stress. Compounds currently in clinical trials are directed toward improving mitochondrial function and lessening oxidative stress. Iron chelators and compounds that increase frataxin expression are under evaluation. Further elucidation of frataxin's function should lead to additional therapeutic approaches.  相似文献   

15.
Friedreich’s ataxia is an inherited neurological disorder characterised by mitochondrial dysfunction and increased susceptibility to oxidative stress. At present, no therapy has been shown to reduce disease progression. Strategies being trialled to treat Friedreich’s ataxia include drugs that improve mitochondrial function and reduce oxidative injury. In addition, stem cells have been investigated as a potential therapeutic approach. We have used siRNA-induced knockdown of frataxin in SH-SY5Y cells as an in vitro cellular model for Friedreich’s ataxia. Knockdown of frataxin protein expression to levels detected in patients with the disorder was achieved, leading to decreased cellular viability, increased susceptibility to hydrogen peroxide-induced oxidative stress, dysregulation of key anti-oxidant molecules and deficiencies in both cell proliferation and differentiation. Bone marrow stem cells are being investigated extensively as potential treatments for a wide range of neurological disorders, including Friedreich’s ataxia. The potential neuroprotective effects of bone marrow-derived mesenchymal stem cells were therefore studied using our frataxin-deficient cell model. Soluble factors secreted by mesenchymal stem cells protected against cellular changes induced by frataxin deficiency, leading to restoration in frataxin levels and anti-oxidant defences, improved survival against oxidative stress and stimulated both cell proliferation and differentiation down the Schwann cell lineage. The demonstration that mesenchymal stem cell-derived factors can restore cellular homeostasis and function to frataxin-deficient cells further suggests that they may have potential therapeutic benefits for patients with Friedreich’s ataxia.  相似文献   

16.
Approximately 75% of Indo-European patients with recessive ataxia are homozygous for frataxin gene (FXN) mutations and have either typical or atypical Friedreich ataxia (FRDA). Our previous analysis of 134 Mexican Mestizo recessive ataxia patients showed that FRDA is relatively uncommon in the Mexican population (10.4%). This article reports the evaluation of the phenotypes of these patients. Over half of the patients with clinical diagnostic criteria for FRDA did not carry FXN mutations, constituting a "FRDA-like" phenotypic subgroup. Analysis of non-FRDA patients revealed a subgroup with early onset recessive cerebellar ataxia and cognitive deficit. These two phenotypic subgroups accounted for approximately 60% of all patients, indicating that the cause for recessive ataxia in the Mexican population is distinct from other populations and remains largely unknown.  相似文献   

17.
Friedreich ataxia is a neurodegenerative disease characterized by gait abnormalities, cardiomyopathy, and diabetes. Congestive heart failure was recently reported as the most frequent cause of Friedreich ataxia mortality. Cardiac dysfunction is suspected to result from a frataxin deficiency that leads to oxidative damage in cardiac tissues and possible metabolic syndrome characteristics. In this report, we describe 2 patient cases whose cardiac function worsened dramatically in the presence of underlying endocrinopathies. We report on one Friedreich ataxia teenager with previously undiagnosed diabetes that resulted in diabetic ketoacidosis and rapid progression to severe left ventricular dysfunction. We also describe a Friedreich ataxia teenager whose underlying Graves disease led to rapid worsening of known cardiomyopathy. Cardiac management and treatment for the endocrinopathies returned cardiac function to baseline. We conclude that screening for and awareness of underlying endocrinopathies in Friedreich ataxia may provide novel therapeutic targets for preventing Friedreich ataxia-associated cardiac dysfunction.  相似文献   

18.
Friedreich ataxia (FRDA) is an autosomal recessive inherited neurodegenerative disorder leading to reduced expression of the mitochondrial protein frataxin. Previous studies showed frataxin upregulation in FRDA following treatment with recombinant human erythropoietin (rhuEPO). Dose-response interactions between frataxin and rhuEPO have not been studied until to date. We administered escalating rhuEPO single doses (5,000, 10,000 and 30,000?IU) in monthly intervals to five adult FRDA patients. Measurements of frataxin, serum erythropoietin levels, iron metabolism and mitochondrial function were carried out. Clinical outcome was assessed using the "Scale for the assessment and rating of ataxia". We found maximal erythropoietin serum concentrations 24?h after rhuEPO application which is comparable to healthy subjects. Frataxin levels increased significantly over 3?months, while ataxia rating did not reveal clinical improvement. All FRDA patients had considerable ferritin decrease. NADH/NAD ratio, an indicator of mitochondrial function, increased following rhuEPO treatment. In addition to frataxin upregulation in response to continuous low-dose rhuEPO application shown in previous studies, our results indicate for a long-lasting frataxin increase after single high-dose rhuEPO administration. To detect frataxin-derived neuroprotective effects resulting in clinically relevant improvement, well-designed studies with extended time frame are required.  相似文献   

19.
Patients with Friedreich ataxia (FRDA) have severely reduced levels of the mitochondrial protein frataxin, which results from a large GAA triplet-repeat expansion within the frataxin gene (FXN). High evolutionary conservation of frataxin across species has enabled the development of disease models of FRDA in various unicellular and multicellular organisms. Mouse models include classical knockout models, in which the Fxn gene is constitutively inactivated, and knock-in models, in which a GAA repeat mutation or the conditional allele is inserted into the genome. Recently, “humanised” GAA repeat expansion mouse models were obtained by combining the constitutive knockout with the transgenic expression of a yeast artificial chromosome carrying the human FRDA locus. In lower organisms such as Caenorhabditis elegans and Drosophila, straight-forward and conditional RNA interference technology has provided an easy way to knock down frataxin expression. Conditional mouse models have been used for pre-clinical trials of potential therapeutic agents, including idebenone, MnTBAP (a superoxide dismutase mimetic), and iron chelators. Various models of FRDA have shown that different, even opposite, phenotypes can be observed, depending on the level of frataxin expression. Additional studies with animal models will be essential for an enhanced understanding of the disease pathophysiology and for the development of better therapies.  相似文献   

20.
Frataxin gene point mutations in Italian Friedreich ataxia patients   总被引:1,自引:0,他引:1  
Friedreich ataxia (FRDA) is associated with a GAA-trinucleotide-repeat expansion in the first intron of the FXN gene (9q13-21), which encodes a 210-amino-acid protein named frataxin. More than 95% of patients are homozygous for 90-1,300 repeat expansion on both alleles. The remaining patients have been shown to be compound heterozygous for a GAA expansion on one allele and a micromutation on the other. The reduction of both frataxin messenger RNA (mRNA) and protein was found to be proportional to the size of the smaller GAA repeat allele. We report a clinical and molecular study of 12 families in which classical FRDA patients were heterozygous for a GAA expansion on one allele. Sequence analysis of the FXN gene allowed the identification of the second disease-causing mutation in each heterozygous patient, which makes this the second largest series of FRDA compound heterozygotes reported thus far. We have identified seven mutations, four of which are novel. Five patients carried missense mutations, whereas eight patients carried null (frameshift or nonsense) mutations. Quantitation of frataxin levels in lymphoblastoid cell lines derived from six compound heterozygous patients showed a statistically significant correlation of residual protein levels with the age at onset (r = 0.82, p < 0.05) or the GAA expansion (r = -0.76, p < 0.1). In the group of patients heterozygous for a null allele, a strong (r = -0.94, p < 0.01) correlation was observed between the size of GAA expansion and the age at onset, thus lending support to the hypothesis that the residual function of frataxin in patients' cells derive exclusively from the expanded allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号