首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gaucher  C; Dieval  J; Mazurier  C 《Blood》1994,84(4):1024-1030
Genetic studies were performed in two unrelated patients with the IIC phenotype of von Willebrand disease (vWD) characterized by the increased concentration of the protomeric form of von Willebrand factor (vWF). In patient B, the sequencing of both exons 15 and 16 of the vWF gene showed two sequence alterations: a 3-bp insertion in exon 15 resulting in the insertion of a Glycine at position 625 (625insGly) and a 2-bp deletion in exon 16 leading to a premature translational stop at codon 711 (711 ter), at the heterozygote state. Patient A was found homozygous for a single point mutation also localized in exon 15 and responsible for the substitution Cys623Trp. These candidate mutations were not found in a panel of 96 normal chromosomes, suggesting a causal relationship with IIC vWD phenotypic expression. The composite heterozygote or homozygote state of both patients supports the recessive mode of inheritance already described for this phenotype. Furthermore, the localization of these gene defects in the D2 domain of vWF propeptide, known to play an important role in vWF multimerization, provides another argument in favor of their causative effect regarding the peculiar multimeric pattern of vWF in these patients.  相似文献   

3.
A family with von Willebrand disease has been identified in which different members of the same sibship exhibit different abnormalities of von Willebrand factor (vWF). The two most severely affected sibs (bleeding time over 20 min) had abnormalities of vWF similar to those seen in type IIC. The smallest detectable multimer was increased and the triplet structure of individual multimers was replaced with a single band. The largest multimers could not be detected and there were relatively more small multimers than intermediate sized forms. vWF antigen (vWF:Ag) was decreased to 12.5-17% by electroimmunoassay (EIA) and to 3.2-5.5% by immunoradiometric assay (IRMA). In the less severely affected sibling (bleeding time 12.5 min) there was a similar relative increase in the smallest detectable multimer. However, the larger multimers were present and the relative concentration of large to small multimers was similar to normal. The triplet structure was altered in that the relative proportion of satellite bands to the central predominant band was decreased. vWF:Ag concentrations were moderately decreased (40-80% by EIA and 25-35% by IRMA). The father and grandfather showed a vWF multimeric pattern similar to the less severely affected sibling but there was no decrease in vWF:Ag concentration and their bleeding times were normal. These observations suggest that the interplay of several genetic factors is responsible for the expression of von Willebrand disease in this family.  相似文献   

4.
5.
Circulating inhibitors against von Willebrand factor (vWF) that show the properties of heterologous IgG antibodies have been described in a few patients with severe von Willebrand disease (vWD). The present study provides further characterization of inhibitors from two patients with severe vWD. Inhibitors in both, like polyclonal rabbit antibody, detected all sizes of multimers and the complex structure of each multimer from platelets and plasma of normal individuals as well as from plasma of patients with IIA, IIB, and IIC vWD. Both inhibitors and the rabbit antibody reacted mainly with the intact 225-Kd vWF subunit and the 189-H and 140-Kd fragments in contrast to monoclonal antibodies specific for vWF fragments that detected a higher relative proportion of 176-Kd fragment. Furthermore, all these antibodies recognized fragment III, although one inhibitor and rabbit polyclonal antibody reacted poorly and the other inhibitor did not react at all with reduced fragment II of vWF digested with Staphylococcus aureus V-8 protease. These data suggest that although human inhibitors from severe vWD patients may behave, to some extent, as polyclonal heterologous antibodies against native vWF, the former show striking differences in their target specificity as well as a much broader specificity than that described for human factor VIII inhibitors.  相似文献   

6.
7.
Plasma and platelet von Willebrand factor defects in uremia   总被引:3,自引:0,他引:3  
PURPOSE: Several mechanisms have been proposed to explain the prolonged bleeding times and clinical bleeding in chronic renal failure. Recent evidence has implicated an abnormality in the structure or function of the von Willebrand factor or in its interaction with uremic platelets. We investigated this factor in 11 patients with chronic renal failure. PATIENTS AND METHODS: Blood samples for cell counts, chemistries, and coagulation studies were obtained from 11 patients with chronic renal failure and prolonged bleeding times. Concentrations of von Willebrand factor antigen and ristocetin cofactor activity were determined in plasma and platelets. Multimeric analysis of von Willebrand factor in plasma and platelets was conducted. In eight cases, the platelets of uremic patients were purified, and the thrombin- and ristocetin-induced binding of normal von Willebrand factor to these platelets was examined. RESULTS: The mean plasma von Willebrand factor antigen and activity (ristocetin cofactor assay) were elevated 2.77 mu/ml and 1.88 mu/ml, respectively (normal, 1.01 mu/ml and 1.07 mu/ml, respectively). The ratio of activity to antigen in uremic plasma was 0.67 (normal, 1.05). The mean platelet von Willebrand factor antigen and activity in the uremic patients was decreased (0.26 and 0.50 mu/10(9) platelets, respectively) compared with normal patients (0.46 and 0.93 mu/10(9) platelets, respectively). The oligomeric structure of the uremic plasma von Willebrand factor lacked the largest multimers. Collection of the blood for analysis in several protease inhibitors and/or EDTA did not change the multimeric structure. The von Willebrand factor multimeric structure of platelets from uremic patients was normal. The ristocetin-induced platelet aggregation of the uremic platelet-rich plasma was decreased compared with normal plasma samples. Thrombin and ristocetin-induced binding of normal von Willebrand factor to uremic patients' platelets was indistinguishable from the binding to normal platelets. CONCLUSION: These data suggest that the uremic platelet-binding sites for von Willebrand factor are intact and that the defect in ristocetin-induced platelet aggregation is most likely plasmatic in nature. At least one plasmatic defect was the observed reduction or absence of the largest plasma von Willebrand factor multimer in uremic patients. The platelet von Willebrand content was significantly decreased. These defects may play a role in the prolonged bleeding time and the clinical bleeding observed in patients with uremia.  相似文献   

8.
BACKGROUND AND OBJECTIVES: von Willebrand's disease (vWD), the most common hereditary bleeding disorder in humans, is caused by qualitative and/or quantitative deficiencies of von Willebrand factor, and can manifest itself under several different phenotypes. Most of the molecular defects have been detected in qualitative variants involving exon 28 of the vWF gene. Patients from four unrelated families with different types of vWD were included in the mutation screening of this region. DESIGN AND METHODS: The whole exon 28 was analyzed in three gene specific fragments, two of them comprising the region involved in the platelet glycoprotein Ib vWF interaction. The search for mutations was carried out by single-stranded conformation polymorphism analysis. The mutations were then identified by automatic sequencing of the anomalous electrophoretic pattern samples. RESULTS: The following candidate mutations were detected. The 3941T-->A transversion, which predicts the amino acid change V1314D, was detected in a sporadic patient with type 2B vWD and severe thrombocytopenia. The 4309G-->A transition, resulting in the amino acid substitution A1437T, was identified in four patients classified as having type 2M vWD. Six unclassified patients from another family carry the 4135C-->T mutation, which gives rise to a cysteine instead of the normal arginine (R1379C) that segregates with the phenotype. The amino acid change C1227R, predicted by the mutation 4135C-->T, was identified as a compound heterozygote in a patient with moderately severe type 1 vWD. None of these mutations had been described previously. INTERPRETATION AND CONCLUSIONS: These findings confirm the importance already given to this region for the correct function of von Willebrand factor since the mutations detected, which affect the D3 and A1 domains, could give rise to different variants of the disease.  相似文献   

9.
In von Willebrand disease, the main goals of treatment are to correct the dual defect of haemostasis caused by a reduced or abnormal von Willebrand factor (vWF), i.e. the prolonged bleeding time (BT) and the deficiency of factor VIII coagulant activity (FVIII:C). The synthetic vasopressin analogue, desmopressin (DDAVP), has reduced the need for transfusions in most of the mild forms of von Willebrand disease but DDAVP is ineffective in type 3 and in other severe cases of types 1 and 2 von Willebrand disease. For many years cryoprecipitate has been the mainstay of replacement therapy but, after the introduction of virucidal methods, concentrates containing FVIII/vWF have been considered much safer than cryoprecipitate and proposed in von Willebrand disease management. FVIII/vWF concentrates have been produced and tested by many authors but there is only one report describing four virus-inactivated FVIII/vWF concentrates evaluated in a cross-over randomized trial. According to these in vitro and pharmacokinetic data, the following information can be derived: (a) no FVIII/vWF concentrate had an intact multimeric structure similar to that of normal plasma or of cryoprecipitate; (b) all FVIII/vWF concentrates were equally effective in attaining normal and sustained levels of FVIII:C postinfusion, although peak levels were more delayed in the concentrate devoid of FVIII:C; (c) no FVIII/vWF concentrate consistently normalized the BT in a sustained fashion. On the other hand, clinical haemostasis can be achieved in the management of bleeding episodes and of surgery for most of von Willebrand disease cases regardless of whether the BT is corrected; in the few rare cases with mucosal bleeding not controlled by FVIII/vWF concentrates, infusion of DDAVP or platelet concentrates can be administered in addition.  相似文献   

10.
In a normal population, VWF plasma levels (VWF:Ag) and VWF activity (VWF:RCo) increase by approximately 0.17 and 0.15 IU mL?1 per decade, but the influence of age is unknown in patients with type 1 von Willebrand disease (VWD). In a retrospective cohort study, the medical records of 31 type 1 VWD patients over the age of 30, who had been followed for ≥5 years, were reviewed for baseline clinical data and previously performed VWF:Ag, VWF:RCo and factor VIII levels (FVIII:C). VWF multimer analysis was normal in 28/31 cases performed. Mean age at diagnosis was 33 (range 16–60 years), and duration of follow‐up ranged from 5 to 26 years (mean 11 years). Patients had 2–10 time points of VWD testing (mean of 5.2). The mean VWF:Ag, VWF:RCo and FVIII:C at time of diagnosis were 0.44 IU mL?1 0.34 IU mL?1 and 0.75 IU mL?1. At last follow‐up, the mean VWF:Ag, VWF:RCo and FVIII:C were significantly increased to 0.71 IU L?1, 0.56 IU mL?1 and 0.90 IU mL?1 (≤ 0.001, <0.001, and 0.0081 respectively). Here 18/31 patients had VWF:Ag, VWF:RCo and FVIII: C levels that increased into the normal range. The rate of change in VWF:Ag, VWF:RCo and FVIII was 0.30 IU mL?1 (0.21–0.39, CI 95%, < 0.0001), 0.20 IU mL?1 per decade (0.13–0.27, CI 95%, P = 0.0001) and 0.20 IU mL?1 (0.11–0.29, CI 95%, P = 0.0011). Patients with type 1 VWD experience age‐related increases to VWF:Ag and VWF:RCo which can result in normalization of VWF levels. Further studies are required to determine if the bleeding phenotype resolves with the increases in VWF:Ag and VWF:RCo levels.  相似文献   

11.
Type Vicenza variant of von Willebrand disease (VWD) is characterized by a low plasma von Willebrand factor (VWF) level and supranormal VWF multimers. Two candidate mutations, G2470A and G3864A at exons 17 and 27, respectively, of the VWF gene were recently reported to be present in this disorder. Four additional families, originating from northeast Italy, with both mutations of type Vicenza VWD are now described. Like the original type Vicenza subjects, they showed a mild bleeding tendency and a significant decrease in plasma VWF antigen level and ristocetin cofactor activity but normal platelet VWF content. Unlike the original patients, ristocetin-induced platelet aggregation was found to be normal. Larger than normal VWF multimers were also demonstrated in the plasma. Desmopressin (DDAVP) administration increased factor VIII (FVIII) and VWF plasma levels, with the appearance of even larger multimers. However, these forms, and all VWF oligomers, disappeared rapidly from the circulation. The half-life of VWF antigen release and of elimination was significantly shorter than that in healthy counterparts, so that at 4 hours after DDAVP administration, VWF antigen levels were close to baseline. Similar behavior was demonstrated by VWF ristocetin cofactor activity and FVIII. According to these findings, it is presumed that the low plasma VWF levels of type Vicenza VWD are mainly attributed to reduced survival of the VWF molecule, which, on the other hand, is normally synthesized. In addition, because normal VWF-platelet GPIb interaction was observed before or after DDAVP administration, it is proposed that type Vicenza VWD not be considered a 2M subtype.  相似文献   

12.
Type 2N von Willebrand disease (VWD) is characterized by a markedly decreased affinity of von Willebrand factor (VWF) for factor VIII (FVIII). The FVIII binding site has been localized within the first 272 amino acid residues of mature VWF, encoded by exons 18-23. Two substitutions in exon 18 of VWF gene, inducing candidate mutations Y795C and C804F were identified in the heterozygous state in two French patients who also displayed the frequent R854Q mutation in exon 20. Expression studies in Cos-7 cells showed that these abnormalities, which implicate cysteine residues, induced secretion, multimerization and FVIII binding defects of corresponding recombinant VWF. Results from transfection experiments with R854Q, performed to reproduce the hybrid VWF present in patient plasma, were in agreement with those obtained for patient's plasma VWF. These findings confirm the importance of the VWF D' domain in FVIII binding. In addition, this work shows that exon 18 should preferentially be sequenced in type 2N VWD patients when the frequent R854Q mutation in exon 20 has been excluded or detected in the heterozygous state.  相似文献   

13.
Oligosaccharides make up approximately 20% of the mass of VWF and although their structures are well established, their functional role remains unclear. Modification of the VWF oligosaccharide structures has been shown to result in increased plasma clearance of the protein. A mutation which alters cell type-specific expression of the Galgt2 glycosyltransferase gene in the RIIIS/J mouse results in an autosomal dominant partial quantitative deficiency of VWF. Increased plasma clearance of VWF has been demonstrated in some individuals with a partial quantitative deficiency of the protein and it is possible that variation in VWF glycosylation may contribute towards this. ABH antigens occur within the oligosaccharide component of VWF and may account for the variation in plasma VWF:Ag levels observed between individuals of different ABO blood groups. The structures and functional roles of the oligosaccharide side chains of VWF and possible pathogenetic mechanisms by which they may contribute towards VWD are reviewed in this article.  相似文献   

14.
Dutch Kooiker dogs with hereditary von Willebrand disease have undetectable levels of von Willebrand factor (vWF), resulting in spontaneous haemorrhage of mucosal surfaces similar to the clinical picture of von Willebrand disease in humans. We used this canine model of von Willebrand disease to study the in vivo effects of a new recombinant von Willebrand factor (rvWF) preparation that contained all species of vWF multimers compared with a rvWF fraction containing only low molecular weight multimers (LMW-rvWF) and with a plasma-derived factor VIII/vWF concentrate (pdvWF). Administration of rvWF in these vWF-deficient dogs resulted in a vWF:Ag half-life of 21.6 h in one dog and 22.1 h in a second dog. Administration of pdvWF resulted in a half-life for vWF:Ag of 7.7 h, and LMW-rvWF, 9 h. The in vivo recovery of vWF:Ag after administration of rvWF was 59%, 64% and 70% in three dogs, respectively; 33% after pdvWF, and 92% after LMW-rvWF. The in vivo recovery of ristocetin cofactor (RCoF) was 78%, 110% and 120% for rvWF, and 25% for pdvWF. Both rvWF and pdvWF caused increases in FVIII. Although no effect was seen on bleeding time at the dosages used, the rate of blood flow from cuticle wounds was reduced after a single bolus administration of rvWF. The rvWF was able to control a severe nose bleed in one dog.  相似文献   

15.
Discrimination of types 1 and 2M von Willebrand disease (VWD) is problematic. Type 1 VWD represents a quantitative deficiency of von Willebrand factor and type 2M a qualitative disorder. 2M VWD is considered a potentially more serious bleeding disorder than type 1 VWD and may also require a differential management approach given the higher bleeding risk and that desmopressin may be less effective. We describe a case of 2M VWD 'masquerading' as type 1 and show how the differential diagnosis can be obtained using standard laboratory assays. The case was genetically confirmed as a 3943C>T mutation, leading to R1315C.  相似文献   

16.
In normal platelet α-granules von Willebrand factor (VWF) is stored with multimerin and factor V in an eccentric electron-lucent zone. Because the platelet stores of VWF are deficient in 'platelet low' type 1 and type 3 von Willebrand disease (VWD), we investigated their electron-lucent zone proteins. The patients with VWD had partial to complete deficiencies of plasma and platelet VWF but normal α-granular multimerin and factor V, and normal α-granular fibrinogen, thrombospondin-1, fibronectin, osteonectin and P-selectin. In type 3 VWD platelets, α-granular electron-lucent zones lacking VWF-associated tubules were identified and multimerin was found in its normal α-granular location. These findings indicate that the formation of the electron-lucent zone and the sorting of multimerin to this region occur independent of VWF. The isolated abnormalities in VWF suggests a VWF gene mutation is the cause of 'platelet low' type 1 VWD.  相似文献   

17.
Studies were conducted to characterize the biosynthesis of von Willebrand factor (vWf) by cultured endothelial cells (EC) derived from the umbilical vein of a patient with type IIA von Willebrand disease. The patient's EC, compared with those from normal individuals, produced vWf that had decreased amounts of large multimers and an increase in rapidly migrating satellite species, features characteristic of plasma vWf from patients with type IIA von Willebrand disease. The type IIA EC did produce a full spectrum of vWf multimers in both cell lysates and postculture medium, although the relative amounts of the largest species were decreased. The large multimers were degraded in conjunction with the appearance of rapidly migrating satellites that contained approximately equal to 170-kDa proteolytic fragments, suggesting that this patient's functional defect is due to abnormal proteolysis and not to a primary failure of vWf subunit oligomerization. Moreover, the observed degradation appears to result from an abnormal vWf molecule and not elevated protease levels. These results suggest that this patient's von Willebrand disease phenotype is caused by increased proteolytic sensitivity of his vWf protein.  相似文献   

18.
To date, no dominant mutation has been identified in a significant proportion of patients with type 1 von Willebrand disease (VWD). In this study, we examined 70 families as part of the Canadian Type 1 VWD Study. The entire VWF gene was sequenced for 1 index case, revealing 2 sequence variations: intron 30 (5312-19A>C) and exon 28 at Tyr1584Cys (4751A>G). The Tyr1584Cys variation was identified in 14.3% (10 of 70) of the families and was in phase with the 5312-19A>C variation in 7 (10.0%) families. Both variants were observed in 2 of 10 UK families with type 1 VWD, but neither variant was found in 200 and 100 healthy, unrelated persons, respectively. Mean von Willebrand factor antigen (VWF:Ag), VWF ristocetin cofactor (VWF:RCo), and factor VIII coagulant activity (FVIII:C) for the index cases in these families are 0.4 U/mL, 0.36 U/mL, and 0.54 U/mL, respectively, and VWF multimer patterns show no qualitative abnormalities. Aberrant VWF splicing was not observed in these patients, and both alleles of the VWF gene are expressed as RNA. Molecular dynamic simulation was performed on a homology model of the VWF-A2 domain containing the Tyr1584Cys mutation. This showed that no significant structural changes occur as a result of the substitution but that a new solvent-exposed reactive thiol group is apparent. Expression studies revealed that the Tyr1584Cys mutation results in increased intracellular retention of the VWF protein. We demonstrate that all the families with the Tyr1584Cys mutation share a common, evolved VWF haplotype, suggesting that this mutation is ancient. This is the first report of a mutation that segregates in a significant proportion of patients with type 1 VWD.  相似文献   

19.
Purification and characterization of human platelet von Willebrand factor   总被引:3,自引:0,他引:3  
Summary. Platelet von Willebrand factor (vWf) was purified from human platelet concentrates. The multimeric structure of the purified platelet vWf was similar to that observed in the initial platelet lysate, and, like the platelet lysate, the purified platelet vWf contained higher molecular weight multimers than plasma vWf. The apparent molecular weight of the reduced platelet vWf subunit was similar to the plasma vWf subunit. The N-terminal amino acid of the purified platelet and plasma vWf was blocked. In concentration dependent binding to botrocetin- or ristocetin-stimulated platelets, 125I-plasma vWf bound with a higher affinity than platelet. The ristocetin cofactor activity per mg of purified plasma vWf was 5-fold greater than the platelet vWf activity. Platelet and plasma vWf bound to collagen with similar affinities; however, platelet vWf bound to thrombin-stimulated platelets and to heparin with a higher affinity than plasma vWf. The differences in the binding affinity(s) of plasma and platelet vWf to platelet GPIb and GPIIb/IIIa and extracellular matrix proteins may reflect different roles for plasma and platelet vWf in the initial stages of haemostasis and thrombosis.  相似文献   

20.
Summary Type IIA von Willebrand disease (vWD) is a heterogeneous disorder for which two different pathogenetic mechanisms have been proposed: increased proteolytic susceptibility of von Willebrand factor (vWF), and/or interference of its post-translational processing. Subunit analysis of vWF in type-IIA vWD has revealed an increased relative proportion of the 176- and 140-kDa subunit-derived fragments, suggesting an augmented fragmentation of vWF, even in the resting state. We analyzed the subunit pattern of vWF in plasma from five previously described patients with type-IIA vWD. All of them showed the above-mentioned pattern. In addition, the presence of a new band with an apparent molecular mass of 200 kDa, not described in normal individuals or in patients with vWD, was repeatedly observed in one of these patients. This patient also exhibited an abnormal vWF multimeric structure in platelets and in plasma, before and after desmopressin administration, when the blood was collected either in the presence or in the absence of proteinase inhibitors. We believe that an abnormal primary structure of vWF could be responsible for this abnormal proteolytic fragmentation pattern, as well as for the abnormal multimerization of vWF. Moreover, an abnormal susceptibility to proteolysis appears to be present, as suggested by the increase in the relative proportion of the 176-kDa fragment observed in the same patient. Future sequencing studies and genetic analysis may clarify whether there are one or two different defects related to the vWF of that patient. Our results indicate that the subunit analysis of vWF may reveal additional defects present in type-IIA vWD that may help our understanding of the pathogenesis of such disease.Supported in part by grants 90/3229, 91-92/0372, 94/1509 (FIS, INSALUD, Spain).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号