首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MAP2 and nestin co-expression in dysembryoplastic neuroepithelial tumors   总被引:4,自引:0,他引:4  
BACKGROUND: The ontogeny and maturity of neurons and oligodendroglia-like cells (OLC) found in dysembryoplastic neuroepithelial tumors (DNT) remains controversial. A developmental origin has been proposed based on the close association to cortical dysplasia and the benign microscopic and clinical course. Our goal was to characterize the expression of nestin, a neuroepithelial precursor/stem cell antigen in DNT, along with other pathological and clinical features of this entity. METHODS: The clinical and operative features of 13 surgical specimens meeting the histological criteria for DNT were reviewed. Nestin, microtubule-associated protein 2 (MAP2), neurofilament (NF) and glial fibrillary acidic protein (GFAP) were examined by immunohistochemistry and confocal scanning laser microscopy. RESULTS: Select neuronal cells in all cases demonstrated strong MAP2 immunoreactivity. Nestin-positive cells of neuronal morphology were found in 6 cases. OLC demonstrated frequent selective staining for MAP2, GFAP and nestin. Confocal microscopy demonstrated numerous examples of cells co-expressing nestin and MAP2. CONCLUSIONS: Our study suggests that OLCs represent a united population of immature neuronal (nestin + MAP2) and glial (GFAP) phenotypes. Larger, morphologically recognizable neurons also showed occasional co-expression of nestin and MAP2, suggesting a degree of dysmaturity in common with their OLC counterparts. The apparent mixed lineage of OLCs lends support to theories suggesting that DNTs arise from pluripotent neuroepithelial cells.  相似文献   

2.
Glial fibrillary acidic protein (GFAP)-positive cells derived from the neurogenic areas of the brain can be stem/progenitor cells and give rise to new neurons in vitro and in vivo. We report here that a population of GFAP-positive cells derived from fetal human brain parenchyma coexpress markers of early neural and neuronal cells, and have neural progenitor cell characteristics. We used a monolayer culture system to expend and differentiate these cells. During the initial proliferative phase, all cells expressed GFAP, nestin and low levels of betaIII-tubulin. When these cells were cultured in serum and then basic fibroblast growth factor, they generated two distinct progenies: (i) betaIII-tubulin- and nestin-positive cells and (ii) GFAP- and nestin-positive cells. These cells, when subsequently cultured in serum-free media without growth factors, ceased to proliferate and differentiated into two major neural cell classes, neurons and glia. In the cells of neuronal lineage, nestin expression was down-regulated and betaIII-tubulin expression became robust. Cells of glial lineage differentiated by down-regulating nestin expression and up-regulating GFAP expression. These data suggest that populations of parenchymal brain cells, initially expressing both glial and neuronal markers, are capable of differentiating into single neuronal and glial lineages through asymmetric regulation of gene expression in these cells, rather than acquiring markers through differentiation.  相似文献   

3.
Based on the expression of glial fibrillary acidic protein (GFAP), a recent hypothesis considered stem or progenitor cells in the adult hippocampus to be a type of astrocyte. In a complementary approach, we used transgenic mice expressing green fluorescent protein (GFP) under the promoter for nestin, an intermediate filament present in progenitor cells, to demonstrate astrocytic features in nestin-GFP-positive cells. Morphologically, two subpopulations of nestin-GFP-positive cells were distinguishable; one had an elaborate tree of processes in the granule cell layer and expression of GFAP (but not of S100beta, another astrocytic marker). Electron microscopy revealed vascular end feet of nestin-positive cells, further supporting astrocytic differentiation. Electrophysiological examination of nestin-GFP-positive cells on acutely isolated hippocampal slices showed passive current characteristics of astrocytes in one subset of cells. Among the nestin-GFP-expressing cells with lacking astrocytic features, two cell types could be identified electrophysiologically: cells with delayed-rectifying potassium currents and a very small number of cells with sodium currents, potentially representing signs of the earliest steps of neuronal differentiation.  相似文献   

4.
Nestin expression in the developing human brain was examined with the use of unique human specific anti-nestin antibodies. Double immunostaining of cell cultures and tissue sections derived from first and second trimester human fetal brain (HFB) examined the co-expression of nestin with other cell type specific phenotypic markers. The immunocytochemical analysis shows that from first to second trimester, the majority of developing glial cells exhibited a transitional state marked by co-expression of nestin and GFAP. However, the corresponding transitional state for developing neuronal cells, co-expressing nestin and MAP-2, was rarely detected. These results imply different temporal patterns of nestin expression in cells of glial and neuronal lineages. Confocal microscopy of HFB tissue section staining also revealed a similar pattern of nestin co-expression with glial and neuronal markers. Our results suggest that nestin expression alone may not identify an undifferentiated stem cell, and that progenitor cells in glial and neuronal lineages express nestin in different temporal patterns.  相似文献   

5.
We report here a novel in vitro model for differentiating neuronal and glial cells from mouse embryonic day 10 telencephalon stem cells. At this developmental stage, the telencephalon consists of a single layer of neuroepithelial stem cells. We used various markers of proliferation and differentiation (Ki-67, nestin, BrdU, Tuj-1 and GFAP) to follow proliferative progenitors and to identify neuronal and glial derivatives. Neuronal derivatives were obtained from nestin+ progenitors. GFAP+ astrocytic derivatives were detected after only 72 h of culture. Both neuronal and glial derivatives were generated close to nestin-positive aggregates. In addition, we were able to manipulate neuronal determination of telencephalon stem cells by gene transient transfection as demonstrated by RP42 gene overexpression. These observations suggest that this in vitro model is of potential use for studying early steps in neuronal or glial determination from embryonic stem cells, an issue of key importance for adult brain cell therapy approaches.  相似文献   

6.
7.
Neural stem and progenitor cells in nestin-GFP transgenic mice   总被引:17,自引:0,他引:17  
Neural stem cells generate a wide spectrum of cell types in developing and adult nervous systems. These cells are marked by expression of the intermediate filament nestin. We used the regulatory elements of the nestin gene to generate transgenic mice in which neural stem cells of the embryonic and adult brain are marked by the expression of green fluorescent protein (GFP). We used these animals as a reporter line for studying neural stem and progenitor cells in the developing and adult nervous systems. In these nestin-GFP animals, we found that GFP-positive cells reflect the distribution of nestin-positive cells and accurately mark the neurogenic areas of the adult brain. Nestin-GFP cells can be isolated with high purity by using fluorescent-activated cell sorting and can generate multipotential neurospheres. In the adult brain, nestin-GFP cells are approximately 1,400-fold more efficient in generating neurospheres than are GFP-negative cells and, despite their small number, give rise to 70 times more neurospheres than does the GFP-negative population. We characterized the expression of a panel of differentiation markers in GFP-positive cells in the nestin-GFP transgenics and found that these cells can be divided into two groups based on the strength of their GFP signal: GFP-bright cells express glial fibrillary acidic protein (GFAP) but not betaIII-tubulin, whereas GFP-dim cells express betaIII-tubulin but not GFAP. These two classes of cells represent distinct classes of neuronal precursors in the adult mammalian brain, and may reflect different stages of neuronal differentiation. We also found unusual features of nestin-GFP-positive cells in the subgranular cell layer of the dentate gyrus. Together, our results indicate that GFP-positive cells in our transgenic animals accurately represent neural stem and progenitor cells and suggest that these nestin-GFP-expressing cells encompass the majority of the neural stem cells in the adult brain.  相似文献   

8.
反义Noggin基因对成年大鼠海马内Nestin及GFAP表达的影响   总被引:1,自引:0,他引:1  
目的探讨Noggin基因对成年大鼠海马内Nestin及GFAP表达的影响。方法反义寡核苷酸技术封闭内源性Noggin基因的表达,免疫组化法检测成年大鼠海马内Nestin与GFAP的表达。结果侧脑室连续4d注射Noggin基因的反义寡核苷酸后,可见海马齿状回(dentate gyrus,DG)内Nestin阳性细胞数与GFAP阳性细胞数较对照组显著增加;室下区GFAP阳性细胞数亦明显增加。结论Noggin对成年海马干细胞的分化有重要作用,内源性Noggin基因的表达可使神经干细胞向神经元方向分化。  相似文献   

9.
Post-mortem human brain tissue represents a vast potential source of neural progenitor cells for use in basic research as well as therapeutic applications. Here we describe five human neural progenitor cell cultures derived from cortical tissue harvested from premature infants. Time-lapse videomicrography of the passaged cultures revealed them to be highly dynamic, with high motility and extensive, evanescent intercellular contacts. Karyotyping revealed normal chromosomal complements. Prior to differentiation, most of the cells were nestin, Sox2, vimentin, and/or GFAP positive, and a subpopulation was doublecortin positive. Multilineage potential of these cells was demonstrated after differentiation, with some subpopulations of cells expressing the neuronal markers beta-tubulin, MAP2ab, NeuN, FMRP, and Tau and others expressing the oligodendroglial marker O1. Still other cells expressed the classic glial marker glial fibrillary acidic protein (GFAP). RT-PCR confirmed nestin, SOX2, GFAP, and doublecortin expression and also showed epidermal growth factor receptor and nucleostemin expression during the expansion phase. Flow cytometry showed high levels of the neural stem cell markers CD133, CD44, CD81, CD184, CD90, and CD29. CD133 markedly decreased in high-passage, lineage-restricted cultures. Electrophysiological analysis after differentiation demonstrated that the majority of cells with neuronal morphology expressed voltage-gated sodium and potassium currents. These data suggest that post-mortem human brain tissue is an important source of neural progenitor cells that will be useful for analysis of neural differentiation and for transplantation studies.  相似文献   

10.
目的 体外定向诱导成人骨髓间质干细胞 (MSC)分化为神经元样细胞。方法 采用Ficoll Paque液 (10 77g/L)离心分离成人MSC ,体外扩增 ,分别采用含碱性成纤维细胞生长因子 (bFGF)和叔丁对甲氧酚 (BHA)或硫代甘油等试剂的无血清DMEM诱导MSC分化为神经元。免疫组化鉴定神经元烯醇化酶 (NSE)、神经丝蛋白 (NF)、胶质纤维酸性蛋白 (GFAP)、巢蛋白 (nestin)的表达。结果 成人骨髓间质干细胞在体外扩增原代可获得 5× 10 5,10代可获得 2× 10 10 个细胞。加入bFGF和BHA等诱导剂或硫代甘油诱导后 ,MSC胞体收缩 ,突起伸出 ;免疫组化显示诱导出的神经元样细胞NSE、NF、nestin表达阳性 ,GFAP阴性。结论 成人骨髓间质干细胞在体外可以分化为神经元样细胞。  相似文献   

11.
The presence of the intermediate filament protein nestin has been the predominant marker used to describe stem and progenitor cells in the mammalian CNS. In this study, a 998-bp fragment in the 3' region of the nestin mRNA was cloned from human fetal brain cells (HFBC). The nucleotide sequence of the cloned cDNA revealed 21 differences with the previously published human nestin sequence, resulting in 17 amino acid changes. A 150-amino-acid fragment derived from the cloned nestin cDNA was coupled to glutathione S-transferase and used as an immunogen to generate a rabbit polyclonal antiserum that selectively detects human nestin. HFBC that proliferated in response to basic fibroblast growth factor incorporated 5-bromo-2'-deoxyuridine into their nuclei and immunostained for nestin, indicating nestin expression in proliferating CNS progenitor cells. In all cell cultures, nestin costained with the neuroepithelial cell marker vimentin. A small subset of nestin-stained cells (1-2%) immunostained with neuronal marker MAP-2 during the first week and after 4 weeks in culture. However, during the first week in culture, approximately 10-30% of the total cell population of HFBC stained for the glial cell marker GFAP, and nearly all coimmunostained for nestin. After 4 weeks in culture, a subset of GFAP-positive cells emerged that no longer costained with nestin. These results describe nestin expression not only in CNS progenitor cells but also in the cells which were in transition from a progenitor stage to glial differentiation. Collectively, these data suggest a differential temporal regulation of nestin expression during glial and neuronal cell differentiation.  相似文献   

12.
Both nestin and the neural RNA-binding protein Musashi1 (Msi1) are expressed in neural stem cells in the subventricular zone. Neurogenesis in the hippocampus has received much attention, so we evaluated the expression of Msi1 and nestin in the adult rat hippocampus after transient forebrain ischemia. Both Msi1 and nestin were induced in the reactive astrocytes after ischemia, especially in the CA1 region, until 35 days after ischemia. Induction of both molecules suggested that reactive astrocytes might have immature characteristics. In the subgranular zone (SGZ) of the hippocampal dentate gyrus, Msi1-positive cells formed clusters after ischemia. These cells were labeled by bromodeoxyuridine (BrdU) but did not express glial fibrillary acidic protein. In contrast, very few nestin-positive cells were labeled by BrdU. Our results suggest that neuronal progenitor cells in the SGZ expressed Msi1 but not nestin.  相似文献   

13.
Nestin, a currently used marker of neural stem cells, is transiently coexpressed with glial fibrillary acidic protein (GFAP) during development and is induced in reactive astrocytes following brain injury. Nestin expression has also been found in cultures of astroglial cells, but little is known about the fate and the mitotic activity of nestin-expressing cells in this in vitro model. The present study reveals a long-lasting expression of nestin in primary cultures of astroglial cells derived from the rat brain. Over 70% of the cells were nestin(+) at 12 weeks, with a large majority coexpressing the GFAP astrocytic marker. Time-course analyses supported a transition from a nestin(+)/GFAP(-) to a nestin(+)/GFAP(+) phenotype over time, which was further increased by cell cycle arrest. Interestingly, double staining with Ki67 revealed that over 90% of cycling cells were nestin(+) whereas only 28% were GFAP(+) in a population consisting of almost equivalent numbers of nestin(+) and GFAP(+) cells. These observations indicated that nestin(+)/GFAP(-) cells are actively engaged in mitotic activity, even after 2 weeks in vitro. Part of these cells might have retained properties of neural stem cells, insofar as 10% of cells in a primary culture of glial cells were able to generate neurospheres that gave rise to both neurons and astrocytes. Further studies will be necessary to characterize fully the proliferating cells in primary cultures of glial cells, but our present results reveal a major contribution of the nestin(+)/GFAP(-) cells to the increase in the number of astrocytes, even though nestin(+)/GFAP(+) cells proliferate also.  相似文献   

14.
During development of the nervous system, neuronal precursors that originated in proliferative regions migrate along radial glial fibers to reach their final destination. P19 embryonal carcinoma (EC) stem cells exposed to retinoic acid (RA) differentiate into neurons, glia, and fibroblast-like cells. In this work, we induced P19 aggregates for 4 days with RA and plated them onto tissue culture dishes coated with poly-L-lysine. Several cells migrated out of and/or extended processes from the aggregates after 24 hr. Some cell processes were morphologically similar to radial glial fibers and stained for glial fibrillar acidic protein (GFAP) and nestin. Large numbers of migrating cells showed characteristics similar to those of bipolar migrating neurons and expressed the neuronal marker microtubule-associated protein 2. Furthermore, scanning electron microscopy analysis revealed an intimate association between the radial fibers and the migrating cells. Therefore, the migration of neuron-like cells on radial glia fibers in differentiated P19 aggregates resembled some of the migration models used thus far to study gliophilic neuronal migration. In addition, HPTLC analysis in this system showed the expression of 9-O-acetyl GD3, a ganglioside that has been associated with neuronal migration. Antibody perturbation assays showed that immunoblockage of 9-O-acetyl GD3 arrested neuronal migration in a reversible manner. In summary, we have characterized a new cell culture model for investigation of glial-guided neuronal migration and have shown that 9-O-acetyl GD3 ganglioside has an important role in this phenomenon.  相似文献   

15.
16.
The adult brain contains a small population of central nervous system (CNS) cells in the subependyma which, like embryonic CNS progenitor cells, express the intermediate filament nestin. In this report, the differentiation capacity in vivo of these cells was analysed following a standardized trauma. Before the trauma, the subependymal cells expressed nestin but not the astrocytic and neuronal differentiation markers glial fibrillary acidic protein (GFAP) and neurofilament respectively. In response to injury, the majority of the subependymal cells coexpressed nestin and GFAP, but never nestin and neurofilament. Furthermore, cells coexpressing nestin and GFAP were found progressively further away from the subependyma and closer to the lesion at later time points after the injury, indicating that these cells migrate towards the lesion. Nestin was in addition re-expressed in reactive astrocytes near the lesion and in non-reactive astrocytes very far from the lesion throughout the ipsilateral cortex. In conclusion, our data indicate that the nestin-positive subependymal cells are an in vivo source for the generation of new astrocytes but not neurons after injury, and that nestin re-expression in astrocytes following traumatic stimuli can be used as a sensitive marker for astroglial activation.  相似文献   

17.
In this study,cells from the cerebral cortex of fetal rats at pregnant 16 days were harvested and cultured with 20 μg/L neurotrophin-3.After 7 days of culture,immunocytochemical staining showed that,22.4% of cells were positive for nestin,10.5% were positive for β-III tubulin(neuronal marker),and 60.6% were positive for glial fibrillary acidic protein,but no cells were positive for O4(oligodendrocytic marker).At 14 days,there were 5.6% nestin-,9.6% β-III tubulin-,81.1% glial fibrillary acidic protein-,and 2.2% O4-positive cells.In cells not treated with neurotrophin-3,some were nestin-positive,while the majority showed positive staining for glial fibrillary acidic protein.Our experimental findings indicate that neurotrophin-3 is a crucial factor for inducing neural stem cells differentiation into neurons and oligodendrocytes.  相似文献   

18.
Embryonic stem (ES) cells proliferate and maintain their pluripotency for over 1 year in vitro and may therefore provide a sufficient source for cell therapies. However, most of the previously reported methods for obtaining a source for cell therapies have not been simple. We describe here a novel method for induction of neurospheres from mouse ES cells by coculturing on PA6 cells instead of the formation of embryoid bodies. The ES cells cocultured with the PA6 stromal cell line for at least 3 days were capable of differentiating into spheres. The cells in the spheres were all green fluorescent protein (GFP) positive, showing that they were derived from GFP-expressing D3-ES cells. The spheres contained nestin-positive cells. The number of spheres increased when they were cocultured with PA6 for a longer period. Sphere formation was observed even after 10 mechanical dissociations and subculturings, showing its self-renewal ability. The cells differentiated into microtubule-associated protein-2 (MAP2)-positive neuronal cells and glial fibrillary acidic protein (GFAP)-positive glial cells. gamma-Aminobutyric acid-positive cells and tyrosine hydroxylase-positive cells were also observed in the spheres. The percentages of the MAP2- or GFAP-positive cells in the sphere changed according to the period of coculture on PA6 cells. At an early stage of coculture, more neurons were generated and, at a later period, more glial cells were generated. These results suggested that neurosphere could be generated from ES cells by coculturing with PA6, and that these cells resembled neural stem cells derived from mouse fetal brain tissue.  相似文献   

19.
Neural tissue has limited capacity for intrinsic repair after injury, and the identification of alternate sources of neuronal stem cells has broad clinical potential. Preliminary studies have demonstrated that adipose-derived adult stromal (ADAS) cells are capable of differentiating into mesenchymal and non-mesenchymal cells in vitro, including cells with select characteristics of neuronal/glial tissue. In this study, we extended these observations to test the hypothesis that murine (mu) ADAS cells can be induced to exhibit characteristics of neuronal and glial tissue by exposure to a cocktail of induction agents. We characterized the differentiation of muADAS cells in vitro using immunohistochemistry and immunoblotting, and examined whether these cells respond to the glutamate agonist N-methyl-D-aspartate (NMDA). We found that induced muADAS cells express proteins indicative of neuronal/glial cells, including nestin, GFAP, S-100, NeuN, MAP2, tau, and beta-III tubulin. Induced muADAS cells express gamma-aminobutyric acid (GABA), the NR-1 and NR-2 subunits of the glutamate receptor, GAP-43, synapsin I, and voltage-gated calcium channels. Finally, induced muADAS cells demonstrate decreased viability in response to NMDA. These findings suggest that muADAS cells can be induced to exhibit several phenotypic, morphologic, and excitotoxic characteristics consistent with developing neuronal and glial tissue.  相似文献   

20.
The subependymal zone (SEZ) of the lateral ventricle of adult rodents has long been known to be mitotically active. There has been increased interest in the SEZ, since it has been demonstrated that neuroepithelial stem cells residing there generate neurons in addition to glia in vitro. In the present study, we have examined parasagittal sections of the adult mouse brain using immunocytochemistry for extracellular matrix (ECM) molecules (tenascin and chondroitin sulfate-containing proteoglycans), glial fibrillary acidic protein (GFAP, a cytoskeletal protein prominently expressed by immature and reactive astrocytes), RC-2 (a radial glial and immature astrocyte cytoskeletal marker), TuJ1 (a class III β-tubulin isoform expressed solely by postmitotic and adult neurons), nestin (a cytoskeletal protein associated with stem cells), neuron-specific enolase, and bromodeoxyuridine (BrdU, which is taken up by dividing cells). Our results demonstrate that a population of young neurons reside within an ECM-rich, GFAP-positive astrocyte pathway from the rostral SEZ all the way into the olfactory bulb. Furthermore, BrdU labeling studies indicate that there is a high level of cell division along the entire length of this path, and double-labeling studies indicate that neurons committed to a neuronal lineage (i.e., TuJ1+) take up BrdU (suggesting they are in the DNA synthesis phase of the cell cycle), again along the entire length of the SEZ “migratory pathway.” Thus, the SEZ appears to retain the ability to produce neurons and glia throughout the life of the animal, functioning as a type of “brain marrow.” The implications of these findings are discussed in relation to the role that such a glial/ECM-rich boundary (as seen in the embryonic cortical subplate and other developing areas) may play in: confining the migratory populations and maintaining them in a persistent state of immaturity; facilitating their migration to the olfactory bulb, where they are incorporated into established adult circuitries; and potentially altering SEZ cell cycle dynamics that eventually lead to cell death. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号