首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kawano H  Masuko S 《Brain research》2001,903(1-2):154-161
The subfornical organ (SFO) is known to be innervated by noradrenergic fibers. One possible origin of these fibers, which carry peripheral baroreceptor information to enhance the activity of SFO neurons, is the nucleus tractus solitarius (NTS). To investigate possible sites of origin of the catecholaminergic projections to the SFO, a retrograde tracing method was combined with immunohistochemistry in the rat. Stereotaxical injection of a retrograde tracer, wheat germ agglutinin-conjugated horseradish peroxidase--colloidal gold complex, into the SFO from the dorsal aspect revealed retrogradely labeled neurons in several catecholaminergic cell groups. A substantial number of retrogradely labeled neurons showing tyrosine hydroxylase (TH) immunoreactivity were found in the NTS and ventrolateral medulla (VLM) at levels caudal to the obex and in the locus coeruleus, while retrogradely labeled neurons without TH immunoreactivity were found in the VLM at levels rostral to the obex and in the nucleus prepositus hypoglossi. When the tracer was injected into the structures dorsal to the SFO, including the triangular septal nucleus, the frequency of retrogradely labeled neurons in the NTS and VLM at the caudal level was very low. These findings indicate the existence of catecholaminergic projections from the VLM (probably A1) to the SFO, in addition to the noradrenergic projections from the NTS previously reported.  相似文献   

2.
In this study, we have employed triple fluorescent-labelling to reveal the distribution of catecholaminergic neurons within three brainstem areas which supply branching collateral input to the central nucleus of the amygdala (CNA) and the hypothalamic paraventricular nucleus (PVN): the ventrolateral medulla (VLM), the nucleus of the solitary tract (NTS) and the locus coeruleus (LC). The catecholaminergic identity of the neurons was revealed by immunocytochemical detection of the biosynthetic enzyme, tyrosine hydroxylase. The projections were defined by injections of two retrograde tracers, rhodamine- and fluorescein-labelled latex microspheres, in the CNA and PVN, respectively. In the VLM and NTS, the greatest incidence of neurons which contained both retrograde tracers was found at the level of the area postrema. These neurons were mainly located within the confines of the A1/C1 (VLM) and A2 (NTS) catecholaminergic neuronal groups. Double-projecting neurons in the LC (A6) were distributed randomly within the nucleus. It was found that 15% in the VLM, 10% in the NTS and 5% in the LC of the retrogradely labelled cells projected via branching collaterals to the PVN and CNA. One half of these neurons in the VLM and NTS were catecholaminergic, in contrast to the LC where virtually all double-retrogradely labelled neurons revealed tyrosine hydroxylase immunoreactivity. In the other brainstem catecholaminergic cell groups (A5, A7, C3), no catecholaminergic neurons were found that supplied branching collaterals to the CNA and PVN. Our results indicate that brainstem neurons may be involved in the simultaneous transmission of autonomic-related signals to the CNA and the PVN. Catecholamines are involved in these pathways as chemical messengers. Brainstem catecholaminergic and non-catecholaminergic neurons, through collateral branching inputs may provide coordinated signalling of visceral input to rostral forebrain sites. This may lead to a synchronized response of the CNA and PVN for the maintenance of homeostasis.  相似文献   

3.
Neuropeptide FF (NPFF), a morphine modulatory peptide, is emerging as an important neuromodulator in the context of central autonomic and neuroendocrine regulation. NPFF immunoreactivity and receptors have been identified in discrete autonomic regions within the brain and spinal cord, including the hypothalamic paraventricular nucleus (PVN). In this study, we examined the effects of intracerebroventricular (i.c.v.) administration of NPFF on activation of chemically identified PVN neurones that project to the brainstem nucleus of the solitary tract (NTS). In conscious rats, i.c.v. NPFF at a dose of 10 micro g, but not 8 micro g, caused an increase in arterial blood pressure. Immunohistochemical analysis revealed a dose-dependent increase in activated (Fos positive) PVN neurones following i.c.v. NPFF administration compared to controls receiving i.c.v. saline. Activated PVN neurones were located predominantly in the parvocellular compartment of the nucleus with relatively few Fos positive cells in the magnocellular subdivision. Chemical identification of activated neurones revealed significant number of activated cells to be oxytocin positive, whereas only few vasopressin, tyrosine hydroxylase (TH) or corticotrophin-releasing factor (CRF) neurones were double-labelled. Injection of the retrograde tracer fluorogold into the NTS resulted in labelling of significant numbers of parvocellular oxytocin, but not vasopressin, TH or CRF, PVN neurones. We conclude that centrally administered NPFF stimulates brainstem-projecting oxytocin PVN neurones. Oxytocin released from terminals within the NTS oxytocin thus modulate the activity of ascending visceral autonomic pathways that synapse initially within the NTS.  相似文献   

4.
Immune and restraint stresses induce changes in the hypothalamo-pituitary-adrenal axis activity and autonomic function. In the hypothalamus, the paraventricular nucleus (PVN) plays an integral role, and nitric oxide (NO) is hypothesized to participate in this process. We used 1) intravenous injections of lipopolysaccharide (LPS, 125 microg/kg) to identify activated (Fos-positive) putative NO-producing neurons, 2) retrograde tracing to determine if autonomic medullary regions signal the PVN to mediate this activation, and 3) intravenous LPS injections plus restraint stress to determine if responses to restraint are altered by the presence of immune stress. At 2 hours after LPS injections, approximately 15% of putative NO-producing neurons were activated in the nucleus of the tractus solitarius (NTS) and ventrolateral medulla (VLM); about half of the putative NO neurons in the PVN were activated. In LPS + restraint rats, the percentage of activated putative NO neurons in the PVN was not significantly different from LPS-treated rats, but the numbers of putative NO neurons and activated NO neurons per section increased significantly. Retrogradely labeled neurons were found mostly in the middle NTS and VLM, and about 75% were activated. No neurons in the NTS or VLM were triple labeled. The results show that putative NO-producing neurons in the PVN, NTS, and VLM are activated by circulating LPS. However, the LPS-induced signaling to the PVN likely occurs through pathways other than the NO network of neurons in NTS or VLM. Finally, superimposition of restraint stress onto animals already exposed to immune stress stimulates the NO system in the PVN to a greater extent than either stress alone.  相似文献   

5.
Catecholaminergic neurons in the ventrolateral medulla (VLM) and nucleus of the solitary tract (NTS) are important because of their presumed roles in autonomic regulation, including the tonic and reflex control of arterial pressure, neuroendocrine functions, and the chemosensitivity associated with the ventral medullary surface. However, little is known about the connections of these neurons in the human brain. As a first step in analyzing the functional biochemical anatomy of catecholamine neurons in the human, we used antisera against tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) to localize medullary catecholamine-containing neurons and processes in the VLM and the NTS. Cells staining for TH were located throughout the VLM. Most cells staining for TH and PNMT, which are therefore adrenergic, occurred in an area of the VLM probably corresponding to the rostroventrolateral reticular nucleus. Axons of TH-immunoreactive neurons in the VLM projected (1) dorsally, in a series of parallel transtegmental trajectories, toward the dorsomedial reticular formation, the NTS, and vagal motor nucleus, (2) longitudinally, through the central tegmental field, as fascicles running parallel to the neuraxis, (3) ventrolaterally toward the ventral surface (VS) of the rostral VLM where they appeared to terminate, and (4) medially into the raphe, where they arborized. Similar systems of fibers were labeled for PNMT; the longitudinal bundles of PNMT-labeled axons were limited to the principal tegmental bundle and concentrated dorsally. Fibers containing PNMT were also identified in the medullary raphe, on the medullary ventral surface, and contacting intraparenchymal blood vessels. In the NTS, neurons exhibited immunoreactivity to both TH and PNMT: Four principal subgroups of TH-immunoreactive neurons were seen: a ventral, an intermediate, a medial, and a dorsal group. Perikarya containing PNMT were restricted to the dorsolateral aspect of the NTS. Processes containing TH and PNMT immunoreactivity were identified in the medial and dorsolateral NTS; others appeared to project between the NTS and the VLM and within the solitary tract. The presence of catecholaminergic fibers of the VLM interconnecting with the NTS, raphe, intraparenchymal microvessels, VS, and possibly the spinal cord suggests that the autonomic and chemoreceptor functions attributed to these neurons also may apply to the human.  相似文献   

6.
Visceral inputs to the brain make their initial synapses within the nucleus of the solitary tract (NTS), where information is relayed to other brain regions. These inputs relate to markedly different physiological functions and provide a tool for investigating the topography of visceral processing in brainstem nuclei. Therefore, Fos immunoreactivity was used to determine whether a gastric stimulus affects neurones within different or similar parts of the NTS, ventrolateral medulla (VLM) and parabrachial nucleus (PBN), compared to a baroreceptive stimulus. The contribution of catecholaminergic neurones in these areas was studied by combining Fos and tyrosine hydroxylase (TH) immunoreactivity. Conscious male rats received either cholecystokinin (CCK) intraperitoneally to activate gastrointestinal afferents, or were made hypertensive by intravenous infusion of phenylephrine (PE) to activate baroreceptors. Tissue sections were processed immunocytochemically for Fos and/or TH. Phenylephrine infusion and CCK injection elicited Fos expression in distinct and in overlapping regions of the NTS and the VLM. Cholecystokinin injections increased the number of Fos-immunoreactive neurones in the area postrema (AP) and throughout the rostral-caudal extent of the NTS, including commissural neurones and the medial subnuclei. Some reactive neurones in NTS were also positive for TH, but most were not, and most of the TH-positive NTS neurones were not Fos-positive. In contrast, PE infusion produced a more restricted distribution of Fos-positive neurones in the NTS, with most neurones confined to a dorsolateral strip containing few TH-positive neurones. The medial NTS at the level of the AP and the AP itself were largely unresponsive, but rostral to the AP the medial NTS was labelled, including some TH-positive neurones. Both treatments produced labelling in the caudal and mid-VLM, but PE infusion had a stronger effect in the rostral VLM. In the PBN, CCK elevated Fos expression in several subregions, whereas PE infusion failed to specifically alter any subdivision. The results suggest that stimulation of baroreceptor and gastric afferents evoke both overlapping and cytoarchitectonically distinct pathways in the brainstem.  相似文献   

7.
Immune-responsive neurons in the brainstem, primarily in the nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM), contribute to a significant drive on forebrain nuclei responsible for brain-mediated host defense responses. The current study investigated the relative contribution of brainstem-derived ascending pathways to forebrain immune-responsive nuclei in the rat by means of retrograde tract tracing and c-Fos immunohistochemistry. Fluorogold was iontophoresed into the bed nucleus of stria terminalis (BST), central nucleus of the amygdala (CEA), paraventricular nucleus of the hypothalamus (PVN), and the pontine lateral parabrachial nucleus (PBL; an important component of ascending viscerosensensory pathways) followed 2 weeks later by intraperitoneal injection of lipopolysaccharide (LPS, 0.1 mg/kg) or saline. The NTS and VLM provide immune-responsive input to all four regions, via direct, predominantly catecholaminergic, projections to the PVN, the lateral BST, and the CEA, and mostly non-catecholaminergic projections to the PBL. The PBL provides a major LPS-activated input to the BST and CEA. The pattern of LPS-activated catecholaminergic projections from the VLM and NTS to the forebrain is characterized by a strong predominance of VLM input to the PVN, whereas the NTS provides a greater contribution to the BST. These findings indicate that direct and indirect pathways originate in the caudal brainstem that propagate immune-related information from the periphery with multiple levels of processing en route to the forebrain nuclei, which may allow for integration of brain responses to infection.  相似文献   

8.
Both physical and psychological stressors recruit catecholamine cells (CA) located in the ventrolateral medulla (VLM) and the nucleus of the solitary tract (NTS). In the case of physical stressors, this effect is initiated by signals that first access the central nervous system at or below the level of the medulla. For psychological stressors, however, CA cell recruitment depends on higher structures within the neuraxis. Indeed, we have recently provided evidence of a pivotal role for the medial amygdala (MeA) in this regard, although such a role must involve a relay, as MeA neurons do not project directly to the medulla. However, some of the MeA neurons that respond to psychological stress have been found to project to the hypothalamic paraventricular nucleus (PVN), a structure that provides significant input to the medulla. To determine whether the PVN might regulate medullary CA cell responses to psychological stress, animals were prepared with unilateral injections of the neurotoxin ibotenic acid into the PVN (Experiment 1), or with unilateral injections of the retrograde tracer wheat germ agglutinin-gold (WGA-Au) into the CA cell columns of the VLM or NTS (Experiment 2). Seven days later, animals were subjected to a psychological stressor (restraint; 15 minutes), and their brains were subsequently processed for Fos plus appropriate cytoplasmic markers (Experiment 1), or Fos plus WGA-Au (Experiment 2). PVN lesions significantly suppressed the stress-related induction of Fos in both VLM and NTS CA cells, whereas tracer deposits in the VLM or NTS retrogradely labeled substantial numbers of PVN cells that were also Fos-positive after stress. Considered in concert with previous results, these data suggest that the activation of medullary CA cells in response to psychological stress may involve a critical input from the PVN.  相似文献   

9.
Previously we reported that during protracted morphine abstinence rats show reduced conditioned place preferences (CPP) for food-associated environments, compared to non-dependent subjects. To determine the brain regions involved in this altered reward behavior, we examined neural activation (as indexed by Fos-like proteins) induced by a preference test for a food-associated environment in 5-week morphine-abstinent versus non-dependent animals. The results indicate that elevated Fos expression in the anterior cingulate cortex (Cg) and basolateral amygdala (BLA) correlated positively with preference behavior in all groups. In contrast, Fos expression in stress-associated brain areas, including the ventral lateral bed nucleus of the stria terminalis (VL-BNST), central nucleus of the amygdala (CE), and noradrenergic (A2) neurons in the nucleus tractus solitarius (NTS) was significantly elevated only in morphine-abstinent animals. Furthermore, the number of Fos positive neurons in these areas was found to correlate negatively with food preference in abstinent animals. These results indicate that the altered hedonic processing during protracted morphine withdrawal leading to decreased preference for cues associated with natural rewards may involve heightened activity in stress-related brain areas of the extended amygdala and their medullary noradrenergic inputs.  相似文献   

10.
We sought to identify the brain areas that might contribute to the increased autonomic activity seen during morphine withdrawal by mapping neuronal expression of c-fos protein (Fos) and Fos-related antigens. Rats were implanted with morphine pellets or placebo pellets over a 5 day regimen and injected on day 6 with either saline or naltrexone (100 mg/kg). After a standard PAP immunocytochemical protocol, Fos-like immunoreactivity (Fos-LIR) was observed in medullary nuclei including the NTS (nucleus of the solitary tract), caudal (CVL) and rostral ventrolateral medulla (RVL). Although some Fos-LIR was seen in these areas in control rats (either morphine-implanted, saline injected, or placebo-implanted, saline or naltrexone injected), a significantly higher number of Fos-LIR-positive cells in NTS, CVL and RVL were seen after morphine withdrawal. Large numbers of Fos-like immunoreactive cells were also seen in the A5 area, the parabrachial nuclei of the pons and the locus coeruleus. Increased Fos-LIR was also detected in the paraventricular nucleus of the hypothalamus and the amygdala of morphine withdrawn rats. The Fos-LIR was co-localized with tyrosine hydroxylase immunoreactivity in many of the cells in caudal and rostral ventrolateral medulla, A5 and locus coeruleus. These data support the conclusion that autonomic areas in brain and noradrenergic/adrenergic cells in these areas are activated during morphine withdrawal and may contribute to the autonomic symptoms of opiate withdrawal.  相似文献   

11.
The paraventricular nucleus (PVN) of the hypothalamus has a heterogenous structure containing different types of output neurons that project to the median eminence, posterior pituitary, brain stem autonomic centers and sympathetic preganglionic neurons in the spinal cord. Presympathetic neurons in the PVN send mono- and poly-synaptic projections to the spinal cord. In the present study using urethane-anesthetized rats, we examined the effects of centrally administered bombesin (a homologue of the mammalian gastrin-releasing peptide) on the mono-synaptic spinally projecting PVN neurons pre-labeled with a retrograde tracer Fluoro-Gold (FG) injected into T8 level of the spinal cord, with regard to the immunoreactivity for cyclooxygenase (COX) isozymes (COX-1/COX-2) and Fos (a marker of neuronal activation). FG-labeled spinally projecting neurons were abundantly observed in the dorsal cap, ventral part and posterior part of the PVN. The immunoreactivity of each COX-1 and COX-2 was detected in FG-labeled spinally projecting PVN neurons in the vehicle (10 μl of saline/animal, i.c.v.)-treated group, while bombesin (1 nmol/animal, i.c.v.) had no effect on the number of these immunoreactive neurons for each COX isozyme with labeling of FG. On the other hand, the peptide significantly increased the number of double-immunoreactive neurons for Fos and COX-1/COX-2 with FG-labeling in the PVN (except triple-labeled neurons for FG, COX-2 and Fos in the dorsal cap of the PVN), as compared to those of vehicle-treated group. These results suggest that centrally administered bombesin activates spinally projecting PVN neurons containing COX-1 and COX-2 in rats.  相似文献   

12.
Morphine dependence was experimentally induced in rats by daily injection of increasing doses of morphine for seven days. Withdrawal was precipitated in half of the morphine-dependent rats by a single injection of naloxone on day 8. Behavioral signs of withdrawal weret evident in the morphine/naloxone group. Gene expression in locus coeruleus (LC) neurons was investigated using quantitative in situ hybridization analysis. Messenger RNA (mRNA) levels for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis, and for precursors to galanin (GAL) and neuropep tide Y (NPY), peptides that coexist with norepinephrine in LC neurons, were not altered by chronic morphine treatment or naloxone-precipitated withdrawal. In contrast, mRNA levels for c fos were dramatically elevated in the LC following naloxone-precipitated withdrawal. Chronic morphine treatment caused a small decrease in levels of mRNA encoding the precursor to corticotropin-releasing factor (CRF) in Barrington's nucleus. Although long-term adaptations of LC neurons have previously been implicated in the development of morphine tolerance, dependence, and withdrawal, alterations in the levels of TH, GAL, or NPY mRNA in the LC apparently do not underlie this process. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Endogenous vasopressin and baroreflex mechanisms   总被引:5,自引:0,他引:5  
This article reviews the anatomical and functional evidence for ascending pathways from specific brain regions to the PVN and SON which could influence AVP release. The majority of evidence favours the main projection being from a region in the caudal VLM which may coincide with the noradrenergic neurons of the A1 cell group. However, the transmitter(s) involved have yet to be identified, and whether the pathway is excitatory and/or inhibitory remains to be fully resolved. Anatomical and functional evidence is reviewed for descending projections from the SON and PVN to specific brain regions involved in cardiovascular control, and their possible involvement in baroreflex mechanisms is discussed. However, there is little unequivocal evidence that AVP is the main neurotransmitter utilized by descending projections from PVN to NTS and DMX. While, in some situations, circulating endogenous AVP exerts cardiovascular effects, details of its putative influences on baroreflex mechanisms are lacking.  相似文献   

14.
Chronic stress precipitates pronounced enhancement of central stress excitability, marked by sensitization of hypothalamic‐pituitary‐adrenocortical (HPA) axis responses and increased adrenocorticotropic hormone (ACTH) secretagogue biosynthesis in the paraventricular nucleus of the hypothalamus (PVN). Chronic stress‐induced enhancement of HPA axis excitability predicts increased excitatory and/or decreased inhibitory innervation of the parvocellular PVN. We tested this hypothesis by evaluating chronic variable stress (CVS)‐induced changes in total (synaptophysin), glutamatergic (VGluT2), GABAergic (GAD65), and noradrenergic (DBH) terminal immunoreactivity on PVN parvocellular neurons using immunofluorescence confocal microscopy. CVS increased the total PVN bouton immunoreactivity as well as the number of glutamatergic and noradrenergic immunoreactive boutons in apposition to both the corticotropin‐releasing hormone (CRH)‐immunoreactive cell bodies and dendrites within the parvocellular PVN. However, the number of GABAergic‐immunoreactive boutons in the PVN was unchanged. CVS did not alter CRH median eminence immunoreactivity, indicating that CVS does not enhance CRH storage within the median eminence. Taken together, the data are consistent with a role for both glutamate and norepinephrine in chronic stress enhancement of HPA axis excitability. These changes could lead to an enhanced capacity for excitation in these neurons, contributing to chronic stress‐induced hyperreactivity of stress effector systems in the brain. J. Comp. Neurol. 517:156–165, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
Using Fos immunolabelling as a marker of neuronal activation, we investigated the role of the parabrachial nucleus in generating central neuronal responses to the systemic administration of the proinflammatory cytokine interleukin-1beta (1 microg/kg, i.a.). Relative to intact animals, parabrachial nucleus lesions significantly reduced the number of Fos-positive cells observed in the central amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the ventrolateral medulla (VLM) after systemic interleukin-1beta. In a subsequent experiment in which animals received parabrachial-directed deposits of a retrograde tracer, it was found that many neurons located in the nucleus tractus solitarius (NTS) and the VLM neurons were both retrogradely labelled and Fos-positive after interleukin-1beta administration. These results suggest that the parabrachial nucleus plays a critical role in interleukin-1beta-induced Fos expression in CeA, BNST and VLM neurons and that neurons of the NTS and VLM may serve to trigger or at least influence changes in parabrachial nucleus activity that follows systemic interleukin-1beta administration.  相似文献   

17.
18.
Horseradish peroxidase (HRP) was stereotaxically injected into the nucleus accumbens (Acb), and visceral noxious stimulation given by injecting formalin into the stomach. Sections of the medulla were subjected to HRP reaction combined with immunohistochemical reactions for Fos protein (ABC method) and tyrosine hydroxylase (TH, PAP method). The catecholaminergic neurons of the medulla (including vagal complex, ventrolateral medulla and reticular formation between them) which expressed Fos protein and projected to Acb were studied. The results showed that HRP retrogradely labeled cells were seen in the medulla bilaterally with apparent ipsilateral predominance and TH-LI and Fos-LI single labeled cells were bilaterally distributed; HRP/TH,TH/Fos double labeled neurons were more numerous than HRP/Fos double-labeled neurons. HRP/TH/Fos triple-labeled neurons were small in number and were mainly distributed in the nucleus tractus solitarii (nTS) and ventrolateral medulla (VLM), but only a few labeled cells were located in RF between nTS and VLM. It is concluded that TH-LI neurons in the medulla projected to Acb and some of them expressed Fos protein after noxious stimulation of the stomach.  相似文献   

19.
Psychological stress evokes increases in sympathetic activity and blood pressure, which are due at least in part to an upward resetting of the baroreceptor‐sympathetic reflex. In this study we determined whether sympathetic premotor neurons in the rostral ventrolateral medulla (RVLM), which have a critical role in the reflex control of sympathetic activity, are activated during air puff stress, a moderate psychological stressor. Secondly, we identified neurons that are activated by air puff stress and that also project to the nucleus tractus solitarius (NTS), a key site for modulation of the baroreceptor reflex. Air puff stress resulted in increased c‐Fos expression in several hypothalamic and brainstem nuclei, including the paraventricular nucleus (PVN), dorsomedial hypothalamus, perifornical area (PeF), periaqueductal gray (PAG), NTS and rostral ventromedial medulla, but not in the RVLM region that contains sympathetic premotor neurons. In contrast, neurons in this RVLM region, including catecholamine‐synthesizing neurons, did express c‐Fos following induced hypotension, which reflexly activates RVLM sympathetic premotor neurons. The highest proportion of NTS‐projecting neurons that were double‐labelled with c‐Fos after air puff stress was in the ventrolateral PAG (29.3 ± 5.5%), with smaller but still significant proportions of double‐labelled NTS‐projecting neurons in the PVN and PeF (6.5 ± 1.8 and 6.4 ± 1.7%, respectively). The results suggest that the increased sympathetic activity during psychological stress is not driven primarily by RVLM sympathetic premotor neurons, and that neurons in the PVN, PeF and ventrolateral PAG may contribute to the resetting of the baroreceptor‐sympathetic reflex that is associated with psychological stress.  相似文献   

20.
本研究应用神经元Fos样蛋白的表达作为对伤害性传人信息反应的标志,将少量Formalin分别注入大鼠一侧面部软组织或导入胃肠道作为伤害性刺激,然后用免疫细胞化学双重标记法,显示其延髓神经元对面部和胃肠道化学伤害性信息传人的反应及其与几条酚胺递质的关系。结果表明:(1)胃肠道伤害性刺激诱导延髓内大量神经元的c-fos表达,其Fos样免疫反应(Fos-LI)神经元主要位于孤束核(NIS)、延髓腹外侧区(VLM)和最后区(AP),少数分布于NIS与VLM之间的网状结构(RF)、三叉神经旁核(PaV);(2)面部伤害性信息传人诱导的Fos-LI神经元除大量分布在三叉神经脊束核尾侧亚核(nSpVc)浅层和PaV外.也分布于NTS、VLM和RF;(3)两种不同区域伤害性刺激所诱导的Fos表达神经元在延髓NIS和VLM的分布明显重叠,其中许多Fos—LI神经元同时呈酪氨酸羟化酶(TH)-LI.Fos/TH双重阳性神经元约占TH—LI神经元总数的50%。本结果提示延髓NTS和VLM是面部和胃肠道伤害性传入信息所汇聚的主要区域,其儿茶酚胺能神经元是所汇聚的重要成分,并讨论了它们参与面部穴位针刺对胃肠道功能调节的中枢弥漫性伤害抑制性控制(DiffuseNoxiousInhibitoryControls,DNIC)过程的可能性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号