首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca(2+)-activated and Ca(2+)-independent protein kinase Cs (PKCs) are present in the nervous system of the marine mollusk Aplysia californica (Kruger et al., 1991). Sensitizing stimuli or application of the facilitatory transmitter 5-HT to intact isolated ganglia produces the presynaptic facilitation of sensory-to-motor neuron synapses that underlies behavioral sensitization, which is a simple form of learning. Activation of PKC can also produce this presynaptic facilitation (Braha et al., 1990). To determine which type of PKC is activated, we developed a sensitive and selective assay to measure both Ca(2+)-activated and Ca(2+)-independent PKC activities in crude supernatant and membrane fractions of nervous tissue. This assay is based on the specific binding of the Ca(2+)-activated PKCs to phosphatidylserine vesicles in the presence of Ca2+ and makes use of a novel synthetic peptide with sequences conforming to phylogenetically conserved pseudosubstrate regions of the Ca(2+)-independent kinases. We provide evidence that the presynaptic facilitation is produced by a Ca(2+)-activated isoform: application of 5-HT increases the amount of the Ca(2+)-activated PKC activity associated with the membrane. Under these conditions, no increase in Ca(2+)-independent kinase activity is seen.  相似文献   

2.
Hahn J  Jung W  Kim N  Uhm DY  Chung S 《Glia》2000,31(2):118-124
We measured the activity of the Ca(2+) release-activated Ca(2+) (CRAC) channel present in cultured rat microglia, using the whole-cell mode of patch clamp technique. When the concentration of divalent cations in external solution was reduced to the micromolar range, and Ca(2+) chelating agent BAPTA was included in the pipette solution, we were able to record Na(+) current through CRAC channels in single-channel levels. The unitary Na(+) conductance through CRAC channel was 42.5 pS, which was similar to that of Jurkat cell. The Na(+) current activated slowly, reaching the maximal current level in about 10 min after whole-cell patches were made. The time required for the half-maximal activation of the current was 205 s (+/-31), while it was reduced to 84.3 s (+/-17.7) by including IP(3) in the pipette solution as well. The peak currents ranged from 320 to 985 pA, which corresponded to 64-197 channels per cell. We studied the regulation of the current by protein kinase A (PKA) and protein kinase C (PKC). The current was enhanced by the addition of membrane-permeant analogue of cAMP, dibutyryl cAMP. Pretreating cells with PKA inhibitor, H-89, prevented the effect of dibutyryl cAMP. By contrast, the addition of PKC activator, PDBu, reduced the current. Staurosporine, a PKC inhibitor, prevented the effect of PDBu. These results suggest that CRAC channel in rat microglia is under the regulation of PKA and PKC in opposite directions.  相似文献   

3.
Parafollicular (PF) cells secrete 5-HT in response to stimulation of a G-protein-coupled Ca(2+) receptor (CaR) by increased extracellular Ca(2+) (upward arrow[Ca(2+)](e)). We tested the hypothesis that protein kinase C (PKC) participates in stimulus-secretion coupling. Immunoblots from membrane and cytosolic fractions of isolated PF cells revealed conventional (alpha, betaI, and gamma), novel (delta and epsilon), and atypical (iota/lambda and zeta) PKCs. Only PKCgamma was found to have been translocated to the membrane fraction when secretion of 5-HT was evoked by upward arrow[Ca(2+)](e) or phorbol esters. Although phorbol downregulation caused PKCgamma to disappear, secretion was only partially inhibited. A similar reduction of upward arrow[Ca(2+)](e)-evoked secretion was produced by inhibitors of conventional and/or novel PKCs (G? 6976, calphostin C, and pseudoA), and these compounds did not inhibit secretion at all when applied to phorbol-downregulated cells. In contrast, the phorbol downregulation-resistant component of secretion was abolished by pseudoZ, which inhibits the atypical PKCzeta. Stimulation of PF cells with upward arrow[Ca(2+)](e) increased the activity of immunoprecipitated PKCzeta (but not PKCiota/lambda), and the activity of this PKCzeta was inhibited by pseudoZ. PF cells were found to express regulatory (p85) and catalytic (p110alpha and p110beta) subunits of phosphatidylinositol 3'-kinase (PI3'-kinase). upward arrow[Ca(2+)](e) increased the activity of immunoprecipitated PI3'-kinase; moreover, PI3'-kinase inhibitors (wortmannin and LY294002) antagonized secretion. We suggest that PKC isoforms mediate secretion of 5-HT by PF cells in response to stimulation of the CaR. PKC involvement can be accounted for by PKCgamma and an isoform sensitive to inhibition by pseudoZ, probably PKCzeta, which is activated via PI3'-kinase.  相似文献   

4.
Although Ca(2+)-dependent signaling pathways are important for skeletal muscle plasticity, the sources of Ca(2+) that activate these signaling pathways are not completely understood. Influx of Ca(2+) through surface membrane Ca(2+) channels may activate these pathways. We examined expression of two L-type Ca(2+) channels in adult skeletal muscle, the Ca(V) 1.1 and Ca(V) 1.2, with isoform-specific antibodies in Western blots and immunocytochemistry assays. Consistent with a large body of work, expression of the Ca(V) 1.1 was restricted to skeletal muscle where it was expressed in T-tubules. Ca(V) 1.2 was also expressed in skeletal muscle, in the sarcolemma of type I and IIa myofibers. Exercise-induced alterations in muscle fiber types cause a concomitant increase in the number of both Ca(V) 1.2 and type IIa-positive fibers. Taken together, these data suggest that the Ca(V) 1.2 Ca(2+) channel is expressed in adult skeletal muscle in a fiber type-specific manner, which may help to maintain oxidative muscle phenotype.  相似文献   

5.
Neuronal Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II) plays important roles in the control of nerve functions in response to intracellular Ca(2+) (for reviews [Annu. Rev. Physiol. 57 (1995) 417-445; Trends Neurosci. 17 (1994) 406-412]). Brief Ca(2+) signals activate CaM kinase II, and stimulate an autophosphorylation of Thr-286 which allows the kinase to maintain its activated state even after the Ca(2+) concentration has returned to basal levels [J. Biol. Chem. 264 (1989) 16759-16763; Neuron 3 (1989) 59-70; J. Biochem. 109 (1991) 137-143]. Autophosphorylation of CaM kinase II occurs in situ, but it occurs relatively quickly, within just a few minutes [Endocrinology 134 (1994) 2245-2250; J. Biol. Chem. 268 (1993) 7863-7867; J. Biol. Chem. 265 (1990) 18055-18058]. In the present study, we investigated the involvement of the autophosphorylated/Ca(2+)-independent form of CaM kinase II in neurite outgrowth. When neuroblastoma Neruo2a (Nb2a) cells expressing the alpha isoform of CaM kinase II (Nb2a/alpha cells) were stimulated by plating, they formed neurites. The autophosphorylation of Thr-286 and appearance of Ca(2+)-independent activity preceded the neurite formation. The effect of mutating of the kinase autophosphorylation site replacing Thr-286 with Ala (alpha T286A kinase) or Asp (alpha T286D kinase) was examined. alpha T286A kinase was not converted to a Ca(2+)-independent form, and alpha T286D kinase had Ca(2+)-independent activity significantly as an autophosphorylated kinase. Cells expressing alpha T286D kinase had much longer neurites than Nb2a/alpha cells, whereas cells with alpha T286A kinase did not form neurites. These results indicated that the Ca(2+)-independent form of CaM kinase II autophosphorylated at Thr-286 is involved in neurite outgrowth.  相似文献   

6.
Since Pb(2+) substitutes for Ca(2+) in essential steps leading to exocytosis, we have investigated whether Ca(2+) and Pb(2+) induce exocytosis through similar pathways. Vesicular catecholamine release was measured from dexamethasone-differentiated PC12 cells using carbon fiber microelectrode amperometry. Effects of drugs known to modulate PKC (PMA, staurosporine), calcineurin (cyclosporin A), calmodulin (W7), and CaM kinase II (KN-62) activity were investigated in intact and in ionomycin-permeabilized PC12 cells. Activation of PKC and inhibition of calmodulin decrease the frequency of exocytotic events evoked by high K(+) stimulation in intact cells. In addition, inhibition of calmodulin enhances the frequency of basal exocytosis from intact cells. Activation of PKC and inhibition of calcineurin enhance the frequency of basal exocytosis in intact as well as in ionomycin-permeabilized cells. Inhibition of PKC and of CaM kinase II cause no significant effects. None of the treatments has a significant effect on vesicle contents. The combined results indicate that PKC and calcineurin enhance and inhibit exocytosis through direct effects on the exocytotic machinery, whereas calmodulin and CaM kinase II exert indirect effects only. Conversely, Pb(2+)-evoked exocytosis in permeabilized cells is strongly reduced by inhibition of CaM kinase II, but is not sensitive to modulation of PKC and calcineurin activity. Inhibition of calmodulin only reduces the delay to onset of Pb(2+)-evoked exocytosis. Synaptotagmin I- and II-deficient PC12-F7 cells exhibit vesicular catecholamine release following depolarization or superfusion with Pb(2+). However, the frequency of exocytosis and the contents of vesicles released are strongly reduced as compared to PC12 cells. It is concluded that Ca(2+)-evoked exocytosis is modulated mainly by PKC and calcineurin, whereas Pb(2+)-evoked exocytosis is mainly modulated by CaM kinase II.  相似文献   

7.
There is growing evidence that E-type voltage dependent Ca(2+) channels (Ca(v)2.3) are involved in triggering and controlling pivotal cellular processes like neurosecretion and long-term potentiation. The mechanism underlying a novel Ca(2+) dependent stimulation of E-type Ca(2+) channels was investigated in the context of the recent finding that influx of Ca(2+) through other voltage dependent Ca(2+) channels is necessary and sufficient to directly activate protein kinase C (PKC). With Ba(2+) as charge carrier through Ca(v)2.3 channel alpha(1) subunits expressed in HEK-293 cells, activation of PKC by low concentrations of phorbol ester augmented peak I(Ba) by approximately 60%. In addition, the non-inactivating fraction of I(Ba) was increased by more than three-fold and recovery from short-term inactivation was accelerated. The effect of phorbol ester on I(Ba) was inhibited by application of the specific PKC inhibitor bisindolylmaleimide I. With Ca(2+) as charge carrier, application of phorbol ester did not change the activity of Ca(v)2.3 currents but they were modified by the PKC inhibitor bisindolylmaleimide I. These results suggest that with Ca(2+) as charge carrier the incoming Ca(2+) can activate PKC, thereby augmenting Ca(2+) influx into the cytosol. No modulation of Ca(v)2.3 channels by PKC was observed when an arginine rich region in the II-III loop of Ca(v)2.3 was eliminated. Receptor independent stimulation of PKC and its interaction with Ca(v)2.3 channels therefore represents an important positive feedback mechanism to decode electrical signals into a variety of cellular functions.  相似文献   

8.
M A Verity 《Neurotoxicology》1992,13(1):139-147
The Ca2+ ion exerts a profound influence on cellular processes and an understanding of control mechanisms of intracellular Ca2 homeostasis while complex is mandatory in this discussion. The identification and recognition of prolonged sustained increase in [Ca2+]i as a manifestation of neurotoxin-induced destabilization of [Ca2+]i homeostasis will be related to a variety of neurotoxicant-induced cell injuries. The sites of toxicant interaction with ATP-regulated Ca2+ pumps located in the neuronal/glial membrane and/or calciosomes; availability of Ca2+ proteins; disruption in mitochondrial mechanisms for Ca2+ storage; triggers of voltage-dependent Ca2+ channels and modulation of the Na+/Ca2+ exchanger will be identified and related to presumptive toxin action. Failure of one or more of these systems will result in continuous elevation of ionized [Ca2+]i--a reflection of Ca2+ destabilization. The targets resulting from Ca2+ destabilization will be identified, to include phospholipase C activation, PLA2 activation, protein kinase C (PKC) translocation, and activation of Ca(2+)-dependent calpain 1. The use of specific inhibitors of neurotoxicity, e.g., natural sphingolipids, sphingosine, down regulation of PKC, inhibitors and activators of adenylate cyclase, and antiprotease agents will allow for investigation of the role of these final common pathways in the evolution of neurotoxicity.  相似文献   

9.
The aim of this study was to obtain further understanding of the mechanism by which activation of muscarinic M(1) receptors inhibits K(+)-evoked noradrenaline (NA) release in the human neuroblastoma SH-SY5Y. Previous studies have found that muscarinic M(1) and M(3) receptors couple to the activation of phospholipase C in SH-SY5Y cells leading to an increase in (a) intracellular calcium ([Ca(2+)](i)) and (b) activation of protein kinase C (PKC). This study used specific inhibitors of PKC and conditions which deplete Ca(2+)(i) stores to examine the role of protein kinase C and changes in [Ca(2+)](i) in mediating the inhibition of K(+)-evoked NA release by muscarine. Our data show that pretreatment of SH-SY5Y cell layers with bisindolylmaleimide I (BIM-I) (i) failed to reverse inhibition of K(+)-evoked NA release by muscarine but (ii) did overcome the attenuation of muscarine inhibition following pretreatment with TPA. Furthermore pretreating cell layers with Ca(2+)-free Hepes buffered saline in the presence of thapsigargin, conditions which prevented muscarine induced increases in [Ca(2+)](i), failed to prevent inhibition of K(+)-evoked NA release by muscarine. The effect of muscarine on K(+)-evoked uptake of Ca(2+)(e) was examined in SH-SY5Y cells loaded with Fura-2. Muscarine inhibited Ca(2+)(e)-uptake by decreasing the rate at which Ca(2+) entered SH-SY5Y cells via voltage sensitive Ca(2+)-channels. Thus this study shows that muscarine inhibits depolarisation-evoked NA release by a mechanism which is not dependent on activation of PKC or release of Ca(2+) from internal stores.  相似文献   

10.
The immunocytochemical and subcellular localization of the Ca(2+)-dependent protein kinase C (cPKC) isoforms (PKCalpha, beta1, beta2, and gamma) was examined in rabbit hippocampus of young (3 months of age; n = 11) and aging (36 months of age; n = 14) subjects. Detailed immunocytochemical analyses revealed a significant increase in PKCbeta1, beta2, and gamma immunoreactivity in principal cell bodies and associated dendrites, and interneurons of the hilar region in the aging rabbits. The number of PKCalpha- and gamma-positive interneurons in the aging stratum oriens declined significantly. PKCalpha was least affected in principal cells, showing an increase in immunostaining in granule cells only. Weakly PKC-positive principal cells intermingled between densely stained ones were seen in parts of the hippocampus in most of the aging rabbits, showing that the degree of aging-related alterations in PKC-immunoreactivity varies between neurons. Changes in PKC expression in the molecular and subgranular layer of the aging dentate gyrus suggested a reorganization of PKC-positive afferents to this region. Western blot analysis revealed a significant loss of PKC in the pellet fraction for all isoforms, and a tendency for increased levels of cytosolic PKC. However, no significant changes were found in total PKC content for any PKC isoform. A concurrent dramatic loss of the PKC anchoring protein receptor for activated C kinase (RACK1) in the pellet fraction was shown by Western blotting. These findings suggest that the loss of RACK1 contributes to the dysregulation of the PKC system in the aging rabbit hippocampus. The enhanced PKC-immunoreactivity might relate to reduced protein-protein interactions of PKC with the anchoring protein RACK1 leading to increased access of the antibodies to the antigenic site. In conclusion, the results suggest that memory deficits in aging rabbits are (in part) caused by dysregulation of subcellular PKC localization in hippocampal neurons.  相似文献   

11.
Disturbed intracellular calcium (Ca(2+)) homeostasis has been implicated in bipolar disorder, which mechanisms may be involved in the dysregulation of protein kinase C (PKC) and calmodulin systems. In this study, we investigated a transient intracellular Ca(2+) increase induced by thapsigargin, an inhibitor of sarco/endoplasmic reticulum Ca(2+)-ATPase pump (SERCA), and a capacitative Ca(2+) entry followed by addition of extracellular Ca(2+), in the presence or absence of PKC/calmodulin modulators in the platelets of healthy subjects in order to elucidate the role of SERCA in Ca(2+) homeostasis and to assess how both PKC and calmodulin systems regulate the two Ca(2+) responses. Moreover, we also examined the thapsigargin-elicited transient Ca(2+) increase and capacitative Ca(2+) entry in patients with mood disorders. PKC and calmodulin systems have opposite regulatory effects on the transient Ca(2+) increase and capacitative Ca(2+) entry in the platelets of normal subjects. The inhibitory effect of PKC activation on capacitative Ca(2+) entry is significantly increased and the stimulatory effect of PKC inhibition is significantly decreased in bipolar disorder compared to major depressive disorder and normal controls. These results suggest the possibility that increased PKC activity may activate the inhibitory effect of capacitative Ca(2+) entry in bipolar disorder. However, this is a preliminary study using a small sample, thus further studies are needed to examine the PKC and calmodulin modulators on the capacitative Ca(2+) entry in a larger sample.  相似文献   

12.
Golovina VA  Blaustein MP 《Glia》2000,31(1):15-28
Signaling by two classes of endoplasmic reticulum (ER) Ca(2+) stores was studied in primary cultured rat astrocytes. Cytosolic and intra-ER Ca(2+) concentrations ([Ca(2+)](CYT) and [Ca(2+)](ER)) were measured with, respectively, Fura-2 and Furaptra, in separate experiments. The agonists, glutamate and ATP, released Ca(2+) primarily from cyclopiazonic acid (CPA)-sensitive ER Ca(2+) stores (CPA inhibits ER Ca(2+) pumps). Agonist-evoked release was abolished by prior treatment with CPA but was unaffected by prior depletion of caffeine/ryanodine (CAF/RY)-sensitive ER Ca(2+) stores. Conversely, prior depletion of the CPA-sensitive stores did not interfere with Ca(2+) release or reuptake in the CAF/RY-sensitive stores. Unloading of the CPA-sensitive stores, but not the CAF/RY-sensitive stores, promoted Ca(2+) entry through "store-operated channels." Resting [Ca(2+)](ER) averaged 153 microM (based on in situ calibration of Furaptra: K(D) = 76 microM, vs 53 microM in solution). The releasable Ca(2+) in both types of ER Ca(2+) stores was increased by Na(+) pump inhibition with 1 mM ouabain or K(+)-free medium. Using high spatial resolution imaging and image subtraction methods, we observed that some regions of the ER (45-58% of the total ER) unloaded and refilled when CPA was added and removed. Other regions of the ER (24-38%) unloaded and refilled when CAF was added and removed. The overlap between these two classes of ER was only 10-18%. These data indicate that there are two structurally separate, independent components of the ER and that they are responsible for the functional independence of the CPA-sensitive and CAF/RY-sensitive ER Ca(2+) stores.  相似文献   

13.
The NMDA subtype of the glutamate-gated channel exhibits a high permeability to Ca(2+). The influx of Ca(2+) through NMDA channels is limited by a rapid and Ca(2+)/calmodulin (CaM)-dependent inactivation that results from a competitive displacement of cytoskeleton-binding proteins from the NR1 subunit of the receptor by Ca(2+)/CaM (Zhang et al., 1998; Krupp et al., 1999). The C terminal of this subunit can be phosphorylated by protein kinase C (PKC) (Tingley et al., 1993). The present study sought to investigate whether PKC regulates Ca(2+)-dependent inactivation of the NMDA channel in hippocampal neurons. Activation of endogenous PKC by 4beta-phorbol 12-myristate 13-acetate enhanced peak (I(p)) and depressed steady-state (I(ss)) NMDA-evoked currents, resulting in a reduction in the ratio of these currents (I(ss)/I(p)). We demonstrated previously that PKC activity enhances I(P) via a sequential activation of the focal adhesion kinase cell adhesion kinase beta/proline-rich tyrosine kinase 2 (CAKbeta/Pyk2) and the nonreceptor tyrosine kinase Src (Huang et al., 1999; Lu et al., 1999). Here, we report that the PKC-induced depression of I(ss) is unrelated to the PKC/CAKbeta/Src-signaling pathway but depends on the concentration of extracellular Ca(2+). Intracellular applications of CaM reduced I(ss)/I(p) and occluded the Ca(2+)-dependent effect of phorbol esters on I(ss.) Moreover, increasing the concentration of intracellular Ca(2+) buffer or intracellular application of the inhibitory CaM-binding peptide (KY9) greatly reduced the phorbol ester-induced depression of I(ss). Taken together, these results suggest that PKC enhances Ca(2+)/CaM-dependent inactivation of the NMDA channel, most likely because of a phosphorylation-dependent regulation of interactions between receptor subunits, CaM, and other postsynaptic density proteins.  相似文献   

14.
Currents through voltage-gated Ca(2+) channels (I(Ca)) may be regulated by cytoplasmic Ca(2+) levels ([Ca(2+)](c)), producing Ca(2+)-dependent inactivation (CDI) or facilitation (CDF). Since I(Ca) regulates sensory neuron excitability, altered CDI or CDF could contribute to pain generation after peripheral nerve injury. We explored this by manipulating [Ca(2+)](c) while recording I(Ca) in rat sensory neurons. In uninjured neurons, elevating [Ca(2+)](c) with a conditioning prepulse (-15 mV, 2 s) inactivated I(Ca) measured during subsequent test pulses (-15 mV, 5 ms). This inactivation was Ca(2+)-dependent (CDI), since it was decreased with elimination of Ca(2+) influx by depolarization to above the I(Ca) reversal potential, with high intracellular Ca(2+) buffering (EGTA 10 mm or BAPTA 20 mm), and with substitution of Ba(2+) for extracellular Ca(2+), revealing a residual voltage-dependent inactivation. At longer latencies after conditioning (>6 s), I(Ca) recovered beyond baseline. This facilitation also proved to be Ca(2+)-dependent (CDF) using the protocols limiting cytoplasmic Ca(2+) elevation. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) blockers applied by bath (KN-93, myristoyl-AIP) or expressed selectively in the sensory neurons (AIP) reduced CDF, unlike their inactive analogues. Protein kinase C inhibition (chelerythrine) had no effect. Selective blockade of N-type Ca(2+) channels eliminated CDF, whereas L-type channel blockade had no effect. Following nerve injury, CDI was unaffected, but CDF was eliminated in axotomized neurons. Excitability of sensory neurons in intact ganglia from control animals was diminished after a similar conditioning pulse, but this regulation was eliminated by injury. These findings indicate that I(Ca) in sensory neurons is subject to both CDI and CDF, and that hyperexcitability following injury-induced loss of CDF may result from diminished CaMKII activity.  相似文献   

15.
Protein kinase C (PKC) is an important family of kinases regulated by lipid second messengers and cofactors that interact with cellular membranes. Both Ca(2+)-dependent and -independent isoforms of PKC have been described in rat cerebrocortical presynaptic nerve terminals (synaptosomes). In the present study, synaptosomes were prepared from human cerebral cortex obtained from standard temporal lobe specimens removed due to epilepsy. In order to measure free cytosolic Ca(2+) ([Ca(2+)](i)) and PKC activity continuously, the synaptosomes were loaded with the fluorescent probes fura-2 and fim-1. Membrane depolarisation by 4-aminopyridine (4-AP) 1 mM increased the [Ca(2+)](i) fluorescence by 14.4+/-2.2% and the PKC activity fluorescence by 16.7+/-1.6%. Partial depolarisation with 4-AP 0.3 mM increased the [Ca(2+)](i) fluorescence by 9.0+/-1.5% and the PKC activity fluorescence by 4.5+/-0.7%. When CaCl(2) was omitted from the media, PKC activity fluorescence increased by 7.9+/-1.2% subsequent to stimulation with 4-AP 1 mM. This method is thus well suited for studying presynaptic [Ca(2+)](i) and PKC activity involved in neurotransmission, both under physiological conditions and under the influence of neuropharmacological agents.  相似文献   

16.
Ca(2+)-dependent mechanisms are important in regulating synaptic transmission. The results herein indicate that whole-cell perfusion of inositol 1,4,5-trisphosphate receptor (IP(3)R) agonists greatly enhanced excitatory postsynaptic current (EPSC) amplitudes in postsynaptic hippocampal CA1 neurons. IP(3)R agonist-mediated increases in synaptic transmission changed during development and paralleled age-dependent increases in hippocampal type-1 IP(3)Rs. IP(3)R agonist-mediated increases in EPSC amplitudes were inhibited by postsynaptic perfusion of inhibitors of Ca(2+)/calmodulin, PKC and Ca(2+)/calmodulin-dependent protein kinase II. Postsynaptic perfusion of inhibitors of smooth endoplasmic reticulum (SER) Ca(2+)-ATPases, which deplete intracellular Ca(2+) stores, also enhanced EPSC amplitudes. Postsynaptic perfusion of the IP(3)R agonist adenophostin (AdA) during subthreshold stimulation appeared to convert silent to active synapses; synaptic transmission at these active synapses was completely blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Postsynaptic IP(3)R-mediated Ca(2+) release also produced a significant increase in spontaneous EPSC frequency. These results indicate that Ca(2+) release from intracellular stores play a key role in regulating the function of postsynaptic AMPARs.  相似文献   

17.
18.
Our previous structure-activity relationship (SAR) studies indicated that the effects of polychlorinated biphenyls (PCBs) on neuronal Ca(2+) homeostasis and protein kinase C (PKC) translocation were associated with the extent of coplanarity. Chlorine substitutions at ortho position on the biphenyl, which increase the non-coplanarity, are characteristic of the most active congeners in vitro. In the present study, we investigated the effects of selected hydroxylated PCBs, which are major PCB metabolites identified in mammals, on the same measures where PCBs had differential effects based on structural configuration. These measures include PKC translocation as determined by [3H]phorbol ester ([3H]PDBu) binding in cerebellar granule cells, and Ca(2+) sequestration as determined by 45Ca(2+) uptake by microsomes isolated from adult rat cerebellum. All the selected hydroxy-PCBs with ortho-chlorine substitutions increased [3H]PDBu binding in a concentration-dependent manner and the order of potency as determined by E(50) (concentration that increases control activity by 50%) is 2',4',6'-trichloro-4-biphenylol (32 +/- 4 microM), 2',5'-dichloro-4-biphenylol (70 +/- 9 microM), 2,2',4',5,5'-pentachloro-4-biphenylol (80 +/- 7 microM) and 2,2',5'-trichloro-4-biphenylol (93 +/- 14 microM). All the selected hydroxy-PCBs inhibited microsomal 45Ca(2+) uptake to a different extent. Among the hydroxy-PCBs selected, 2',4',6'-trichloro-4-biphenylol is the most active in increasing [3H]PDBu binding as well as inhibiting microsomal 45Ca(2+) uptake. 3,5-Dichloro-4-biphenylol and 3,4',5-trichloro-4-biphenylol did not increase [3H]PDBu binding, but inhibited microsomal 45Ca(2+) uptake. This effect was not related to ionization of these two hydroxy-PCBs. Hydroxylated PCBs seemed to be as active as parent PCBs in vitro. These studies indicate that PCB metabolites such as hydroxy-PCBs might contribute significantly to the neurotoxic responses of PCBs.  相似文献   

19.
Ceramide, which is an integral component of the sphingomyelin signaling pathway, can attenuate voltage-gated Ca(2+) channel (VGCC) activity in a number of cell types. The aim of the present study was to determine whether ceramide can also modulate VGCC activity, and as a consequence nicotinic receptor-dependent Ca(2+) signaling and catecholamine secretion, in rat adrenal chromaffin cells. Short-term C(6)-ceramide (CER) treatment dose-dependently inhibited nicotine (NIC)-induced peak intracellular Ca(2+) transients. Sphingomyelinase elicited similar responses, whereas the inactive ceramide analog C(2)-dihydroceramide had no effect on NIC-induced Ca(2+) transients. CER suppressed KCl- and NIC-induced Ca(2+) transients to a similar extent, suggesting that the voltage-gated Ca(2+) channel was a primary site of inhibition. In direct support of this concept, whole-cell patch-clamp analysis demonstrated that CER and sphingomyelinase significantly reduced peak Ca(2+) currents. Pretreatment with staurosporine significantly attenuated CER-dependent inhibition of both NIC-induced Ca(2+) transients and peak Ca(2+) current, suggesting that the effects of CER are mediated at least in part by protein kinase C. Consistent with suppressed Ca(2+) signaling, CER also significantly inhibited NIC-induced catecholamine secretion measured at the single-cell level by carbon fiber amperometry. This effect of CER was also significantly attenuated by pretreatment with staurosporine These data demonstrate that the sphingomyelin signaling pathway can modulate nicotinic receptor-dependent Ca(2+) signaling and catecholamine secretion in rat chromaffin cells.  相似文献   

20.
Astrocytes can modulate synaptic transmission by releasing glutamate in a Ca(2+)-dependent manner. Although the internal Ca(2+) stores have been implicated as the predominant source of Ca(2+) necessary for this glutamate release, the contribution of different classes of these stores is still not well defined. To address this issue, we cultured purified solitary cortical astrocytes and monitored changes in their internal Ca(2+) levels and glutamate release into the extracellular space. Ca(2+) levels were monitored by using the Ca(2+) indicator fluo-3 and quantitative fluorescence microscopy. Glutamate release was monitored by an L-glutamate dehydrogenase-linked detection system. Astrocytes were mechanically stimulated with a glass pipette, which reliably caused an increase in internal Ca(2+) levels and glutamate release into the extracellular space. Although we find that the presence of extracellular Cd(2+), a Ca(2+) channel blocker, significantly reduces mechanically induced glutamate release from astrocytes, we confirm that internal Ca(2+) stores are the predominant source of Ca(2+) necessary for this glutamate release. To test the involvement of different classes of internal Ca(2+) stores, we used a pharmacological approach. We found that diphenylboric acid 2-aminoethyl ester, a cell-permeable inositol 1,4,5-trisphosphate (IP(3)) receptor antagonist, greatly reduced mechanically induced glutamate release. Additionally, the preincubation of astrocytes with caffeine or ryanodine also reduced glutamate release. Taken together, our data are consistent with dual IP(3)- and caffeine/ryanodine-sensitive Ca(2+) stores functioning in the control of glutamate release from astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号