首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell invasion by Trypanosoma cruzi and its intracellular replication are essential for continuation of the parasite life cycle and for production of Chagas' disease. T. cruzi is able to replicate in nucleated cells and can be killed by activated macrophages. Gamma interferon (IFN-gamma) is one of the major stimuli for the activation of macrophages and has been shown to be a key activation factor for the killing of intracellular parasites through a mechanism dependent upon nitric oxide (NO) biosynthesis. We show that although the addition of exogenous tumor necrosis factor alpha (TNF-alpha) does not potentiate the trypanocidal activity of IFN-gamma in vitro, treatment of resistant C57BI/6 mice with an anti-TNF-alpha monoclonal antibody increased parasitemia and mortality. In addition, the anti-TNF-alpha-treated animals had decreased NO production, both in vivo and in vitro, suggesting an important role for TNF-alpha in controlling infection. In order to better understand the role of TNF-alpha in the macrophage-mediating killing of parasites, cultures of T. cruzi-infected macrophages were treated with an anti-TNF-alpha monoclonal antibody. IFN-gamma-activated macrophages failed to kill intracellular parasites following treatment with 100 micrograms of anti-TNF-alpha. In these cultures, the number of parasites released at various time points after infection was significantly increased while NO production was significantly reduced. We conclude that IFN-gamma-activated macrophages produce TNF-alpha after infection by T. cruzi and suggest that this cytokine plays a role in amplifying NO production and parasite killing.  相似文献   

2.
构建了含人乳头瘤病毒16型(HPV16)-E6E7ORFs(nt83-855)片段和HPV16长控制区(LCR)加E6E7ORFs片段(nt7007-7904/0-879)的逆转录病毒载体pH21和pH18质粒,利用Lipofectin分别将它们导入病毒包装细胞pA317中,经过筛选获得G418抗性的病毒包装细胞,产生的重组病毒H21和H18感染的NIH3T3细胞都具有恶性细胞的形态学特征,并能在裸鼠体内形成肿瘤。Southern杂交结果证明,上述两基因片段都整合到细胞基因组中。本实验结果说明HPV16-E6E7基因片段是HPV16转化NIH3T3细胞的关键早期区,其自身LCR区在该转化过程中没有显示出重要作用。  相似文献   

3.
The human CC chemokine CCL16, a liver-expressed chemokine, enhances the killing activity of mouse peritoneal macrophages by triggering their expression of tumor necrosis factor alpha (TNF-alpha) and Fas ligand. Macrophages also respond to CCL16 by enhancing their production of monocyte chemoattractant protein-1, regulated on activation, normal T cells expressed and secreted chemokines, and interleukin (IL)-1 beta, TNF-alpha, and IL-12. The effect of CCL16 is almost as strong as that of lipopolysaccharide and interferon-gamma, two of the best macrophage activators. Moreover, CCL16-activated macrophages overexpress membrane CD80, CD86, and CD40 costimulatory molecules and extensively phagocytose tumor cell debris. On exposure to such debris, they activate a strong, tumor-specific, cytolytic response in virgin T cells. Furthermore, cytolytic T cells generated in the presence of CCL16 display a higher cytotoxicity and activate caspase-8 in tumor target cells. This ability to activate caspase-8 depends on their overexpression of TNF-alpha and Fas ligand induced by CCL16. These data reveal a new function for CCL16 in the immune-response scenario. CCL16 significantly enhances the effector and the antigen-presenting function of macrophages and augments T cell lytic activity.  相似文献   

4.
W Wang  K Keller    K Chadee 《Immunology》1994,83(4):601-610
Nitric oxide (NO) is the major cytotoxic molecule produced by activated macrophages for cytotoxicity against Entamoeba histolytica trophozoites. In the present study, we determined whether E. histolytica infection and soluble amoebic proteins affected macrophage cytotoxicity against amoebae and tumour cells by modulating the inducible NO synthase gene (iNOS) and NO (measured as nitrite, NO2-) and tumour necrosis factor-alpha (TNF-alpha) production. Amoebic liver abscess-derived macrophages [days 10, 20, 30 post-infection (p.i.)] stimulated with interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS) showed increased cytotoxicity against L929 cells (TNF-alpha-sensitive), but were refractory for killing amoebae and P815 cells (both NO-sensitive), concomitant with low NO2- production (< 4 microM/10(6) cells). In contrast, peritoneal and spleen macrophages at 10 and 20 days p.i. activated with IFN-gamma and LPS demonstrated increased killing of amoebae, and L929 and P815 cells concomitant with high NO2- production (> 12 microM/10(6) cells). Pretreatment of mouse bone marrow-derived macrophages with amoebic proteins suppressed IFN-gamma and LPS-induced amoebicidal (33%) and tumoricidal (44-49%) activities, with a corresponding decrease in TNF-alpha (56%) and NO (41%) production as well as TNF-alpha (41%) and iNOS (27%) mRNA by Northern blot analyses as compared to untreated activated controls. Inhibition of prostaglandin E2 (PGE2) biosynthesis in abscess and naive macrophages pretreated with amoebic proteins augmented IFN-gamma- and LPS-induced killing of L929 cells and TNF-alpha production, but failed to increase killing of P815 cells and amoebae as well as iNOS mRNA levels or NO production. These results suggest that E. histolytica selectively induces dysfunction of macrophage cytotoxicity by modulating iNOS mRNA expression and NO production independent from TNF-alpha and PGE2 allowing the parasites to survive within the host by impairing host immune responses.  相似文献   

5.
6.
To clarify the mechanisms underlying the antiproliferative effects of jasplakinolide, a cyclic depsipeptide from marine sponges, we examined whether jasplakinolide induces apoptosis in a variety of transformed and nontransformed cells. Jasplakinolide inhibited proliferation of human Jurkat T cells, resulting in cell death. This was accompanied by chromatin condensation and DNA cleavage at the linker regions between the nucleosomes. When caspase-3-like activity in the cytosolic extracts of Jurkat T cells was examined with a fluorescent substrate, DEVD-MAC (N-acetyl-Asp-Glu-Val-Asp-4-methyl-coumaryl-7-amide), the activity in the cells treated with jasplakinolide was remarkably increased in a time-dependent manner. Pretreatment of Jurkat T cells with the caspase inhibitor zVAD [benzyloxycarbonyl(Cbz)-Val-Ala-beta-Asp(OMe)-fluoromethylketone] or DEVD-CHO (N-acetyl-Asp-Glu-Val-Asp-1-aldehyde) prevented the induction of apoptosis by jasplakinolide. Moreover, exposure of various murine transformed cell lines to jasplakinolide resulted in cell death, which was inhibited by zVAD. Although it has been well established that murine immature thymocytes are sensitive to apoptosis when exposed to various apoptotic stimuli, these cells as well as mature T lymphocytes were resistant to jasplakinolide-induced apoptosis. The results suggest that jasplakinolide induces apoptotic cell death through a caspase-3-like protease-dependent pathway. Another important outcome is that transformed cell lines were more susceptible to jasplakinolide-induced apoptosis than normal nontransformed cells.  相似文献   

7.
To ensure invading pathogens are eliminated with minimal damage to host tissues it is essential that macrophage activation be tightly regulated. Previously we demonstrated that a subset of gammadelta T cells (Vgamma1(+)) contributes to resolving pathogen-induced immune responses by killing activated macrophages. However, the exaggerated macrophage response seen in infected Vgamma1(+) T cell-deficient mice suggests that gammadelta T cells play a broader role in macrophage homeostasis and other subsets might promote macrophage activation. Using a macrophage:gammadelta T cell co-culture system we have shown that gammadelta T cells increase the activity of macrophages activated in vivo by Listeria monocytogenes infection. In a dose-dependent manner, gammadelta T cells up-regulated production of cytokines (TNF-alpha, IL-6, IL-10) and chemokines (MIP-1alpha, MIP-1beta) by Listeria-elicited macrophages. The ability to increase macrophage cytokine production was prominent among Vgamma4(+) gammadelta T cells. Reciprocally, Vgamma4(+) gammadelta T cells were activated by Listeria-elicited macrophages, resulting in production of the anti-inflammatory cytokine, IL-10. gammadelta T cell adoptive transfer experiments showed that Vgamma4(+) T cells protected TCRdelta(-/-) mice against Listeria-induced liver injury and necrosis. These findings identify distinct and non-overlapping roles for gammadelta T cell subsets in regulating macrophage function during pathogen-induced immune responses.  相似文献   

8.
The macrophage cell line, IC-21, was found to be incapable of producing the oxygen products associated with the respiratory burst. However, IC-21 cells were activated by lymphokine (LK) to kill intracellular (Leishmania donovani amastigotes) and extracellular (Schistosoma mansoni larvae) parasites, as well as tumor cells. In each case, the cytotoxicity exhibited by activated IC-21 cells and activated peritoneal macrophages was indistinguishable. However, nonactivated IC-21 cells were unable to kill L. donovani log-growth phase promastigotes, while nonactivated peritoneal macrophages destroyed greater than 90% of the initial infection. These results indicate that amastigotes and schistosome larvae are susceptible to killing by nonoxidative cytotoxic mechanism induced by lymphokine activation but, on the other hand, support the concept that the killing of log-growth phase promastigotes by nonactivated cells is dependent upon the respiratory burst. We propose that the IC-21 cell line may be a useful model for studying nonoxidative killing functions of activated macrophages.  相似文献   

9.
Expression of activated macrophage resistance to infection requires the cooperative interaction of interferon-gamma (IFN-gamma) and either interleukin-2 (IL-2), interleukin-4 or granulocyte/macrophage-colony-stimulating factor: no single cytokine is effective. For IFN-gamma and IL-2, the effector activity can be suppressed by the presence of anti-tumor necrosis factor-alpha (TNF-alpha) antibodies in the reaction mixture. IFN-gamma and IL-2, only in combination, induce TNF-alpha-specific mRNA and secretion of this cytokine by macrophages. Development of intracellular killing activity by activated macrophages also requires the autocrine effects of TNF-alpha. IFN-gamma provides the first signal for the production of nitric oxide (NO), the effector molecule for intracellular destruction of parasites. When IFN-gamma-treated cells are infected with pathogens, they are stimulated to make TNF-alpha. Expression of intracellular killing, as well as production of NO, is inhibited by anti-TNF-alpha antibody.  相似文献   

10.
Revertant clones of murine sarcoma virus transformed nonproducer BALB/3T3 cells have been isolated by selection of iododeoxyuridine-resistant colonies in methylcellulose. Each revertant contained a rescuable sarcoma virus but demonstrated both in vitro and in vivo biologic properties of nontransformed BALB/3T3 cells. Further, each clone was highly susceptible to retransformation by added sarcoma virus. The evidence indicates that these lines comprise a new class of morphologic revertants of murine sarcoma virus transformed cells.  相似文献   

11.
To clarify the mechanisms underlying the antiproliferative effects of jasplakinolide, a cyclic depsipeptide from marine sponges, we examined whether jasplakinolide induces apoptosis in a variety of transformed and nontransformed cells. Jasplakinolide inhibited proliferation of human Jurkat T cells, resulting in cell death. This was accompanied by chromatin condensation and DNA cleavage at the linker regions between the nucleosomes. When caspase-3-like activity in the cytosolic extracts of Jurkat T cells was examined with a fluorescent substrate, DEVD-MAC (N-acetyl-Asp-Glu-Val-Asp-4-methyl-coumaryl-7-amide), the activity in the cells treated with jasplakinolide was remarkably increased in a time-dependent manner. Pretreatment of Jurkat T cells with the caspase inhibitor zVAD [benzyloxycarbonyl(Cbz)-Val-Ala-β-Asp(OMe)-fluoromethylketone] or DEVD-CHO (N-acetyl-Asp-Glu-Val-Asp-1-aldehyde) prevented the induction of apoptosis by jasplakinolide. Moreover, exposure of various murine transformed cell lines to jasplakinolide resulted in cell death, which was inhibited by zVAD. Although it has been well established that murine immature thymocytes are sensitive to apoptosis when exposed to various apoptotic stimuli, these cells as well as mature T lymphocytes were resistant to jasplakinolide-induced apoptosis. The results suggest that jasplakinolide induces apoptotic cell death through a caspase-3-like protease-dependent pathway. Another important outcome is that transformed cell lines were more susceptible to jasplakinolide-induced apoptosis than normal nontransformed cells.  相似文献   

12.
目的 建立人类风湿性关节炎滑膜细胞永生细胞系。 方法 用重组有HPV16病毒E6 E7基因阅读框架的逆转录病毒载体转染原代培养的人类风湿性关节炎滑膜细胞 ,经G418筛选 ,获取细胞克隆RASB ,并从形态学、生长特性、核型组成、致瘤性和分泌功能等多方面对建系细胞RASB进行生物学观察。 结果 实验和观察证实 ,转化滑膜细胞染色体整合HPV病毒DNA ,表达HPVE6蛋白 ,基本保留了B型滑膜细胞特征形态、细胞骨架和分泌功能 ,倍增时间缩短一半 ,对裸鼠无致瘤性 ,软琼脂培养形成细小集落。已稳定传代大于 10 0代。 结论 建立了能长期体外稳定传代的人类风湿性关节炎滑膜细胞系。此细胞系的建立将为类风湿关节炎致病机理的研究和治疗提供极有意义的体外细胞模型。  相似文献   

13.
The protozoan parasite Trypanosoma cruzi is able to replicate in the cytoplasm of primary resident macrophages, but is killed by activated macrophages. Pretreatment of human macrophages with recombinant IFN-gamma and to a lesser extent with TNF-alpha, induced a significant trypanocidal activity. Furthermore, TNF-alpha had a synergistic effect with IFN-gamma on macrophage activation in T. cruzi killing. Similarly, IFN-gamma triggered the production of nitric oxide (NO) by macrophages, whereas TNF-alpha was less effective, although it was also synergistic with IFN-gamma. Both NO production and trypanocidal activity, but not superoxide (O2-) generation, induced in macrophages by TNF-alpha or IFN-gamma alone or in combination, were inhibited by N-monomethyl-L-arginine (N-MMLA), a competitive inhibitor of NO synthase activity. Furthermore, a strong correlation was found between the levels of NO production and trypanocidal activity induced by different lymphokine preparations. These results suggest that IFN-gamma and TNF-alpha are involved in the activation of the trypanocidal activity of human macrophages through a NO-dependent mechanism.  相似文献   

14.
Current evidence suggests that the gut is the chief portal of entry for organisms of the Mycobacterium avium complex (MAC) in AIDS patients. Bacterial invasion of intestinal mucosa presumably occurs through epithelial cells, and M cells in the Peyer's patches, where the bacteria have contact with immunocompetent cells such as macrophages and T and B lymphocytes. As mucosal macrophages are probably the first line of defense against MAC, we examined their ability to inhibit intracellular growth of MAC when properly stimulated. Mouse intestinal macrophages were purified, infected with MAC 101, serovar 1, and MAC 86-2686, serovar 16, and subsequently stimulated with recombinant tumor necrosis factor alpha (TNF-alpha), gamma interferon (IFN-gamma), granulocyte-macrophage colony-stimulating factor (GM-CSF), or macrophage colony-stimulating factor (M-CSF). Viable intracellular bacteria were quantitated at 24 h after infection and again after 4 days of infection. Stimulation with TNF-alpha, IFN-gamma, and GM-CSF, but not M-CSF, was associated with mycobacteriostatic and/or mycobactericidal activity in macrophages. Treatment with 10(3) U of TNF-alpha, GM-CSF, and IFN-gamma per ml at 24 h prior to infection with MAC resulted in a significant enhancement in killing of MAC at 4 days after infection, compared with that observed for macrophages exposed to cytokines after infection. When stimulated with lipopolysaccharide or live MAC, intestinal macrophages had produced significantly less TNF-alpha and transforming growth factor beta than had splenic and peritoneal macrophages, although the levels of production of interleukin 6 and interleukin 10 among the three populations of cells were similar. Intestinal macrophages can be stimulated with cytokines to inhibit the intracellular growth of MAC, but they have differentiated abilities to produce cytokines which can modulate the anti-MAC immune response.  相似文献   

15.
In mice infected withTrypanosoma brucei, splenic and peritoneal macrophages release substantial amounts of nitric oxide (NO). The production of NO by activated macrophages has been reported to be a nonspecific immune-effector mechansism against several parasites, and in this work we investigate the role of NO in killingT. brucei. Addition of bloodstream trypanosomes to peritoneal macrophages activated in vitro resulted in an NO-dependent inhibition of parasite growth. This effect was totally abrogated when dilutions of whole blood were included in the cultures, suggesting that bloodstream parasites such asT. brucei are not susceptible to NO-mediated killing in vivo.  相似文献   

16.
Mice infected with a macrophagotropic strain of Trypanosoma cruzi develop progressive splenomegaly due to reactive hyperplasia with increased number of lymphocytes and macrophages, culminating in parasite disintegration and necrosis of parasitized cells. Necrotic changes have been attributed to the liberation of toxic cytokines, including TNF-alpha, from parasitized macrophages. In the present study, the presence of TNF-alpha was investigated in situ. In addition the participation of destroyed parasites in inducing the liberation of TNF-alpha was examined in two highly susceptible mice strains (C3H and Swiss) and a more resistant strain (DBA). Swiss (90) C3H/He (83) and DBA (30) mice were infected with the Peruvian strain of T. cruzi. Nineteen infected Swiss mice, and 22 infected C3H/He were treated with Benznidazole (one or two doses, 100 mg/kg bw/day), on the 8th and 9th days after infection. Necrotic splenic lesions occurred in both susceptible and resistant strains of mice. Although differing in degree, lesions were more intense in C3H and Swiss than in DBA mice. Comparing untreated and treated susceptible mice, necrotic lesions were significantly less intense in the latter. By specific monoclonal antibody immunolabelling, TNF-alpha was demonstrated in the cytoplasm of macrophages and within necrotic areas, from Swiss, C3H/He and DBA mouse spleens. In conclusion, TNF-alpha, probably synthesized by macrophages, was strongly expressed at the sites of parasite and cell destruction, thus appearing to play a pivotal role in splenic necrotic changes associated with severe experimental T. cruzi infection.  相似文献   

17.
BACKGROUND: Cytokine imbalance and cellular migration to inflammatory sites are critical components of allergic diseases. Redirecting cytokine imbalance and inhibiting cell migration therefore represent important therapeutic strategies for the treatment of these disorders. OBJECTIVES: To study the in vitro effect of ebastine, a novel non-sedating H1 receptor antagonist, on cytokine secretion and migration of activated T cells, as well as production of pro-inflammatory cytokines by macrophages. METHODS: Peripheral T cells obtained from healthy volunteers were cultured in wells coated with the combination of anti-CD3 monoclonal antibody (mAb) and anti-CD26 mAb, anti-CD3 mAb and anti-CD28 mAb, or anti-CD3 mAb with PMA, in the presence or absence of ebastine. T cell proliferation and the production of cytokines were measured by [3H]thymidine incorporation assay and ELISA, respectively. In addition, transendothelial migration of T cells and production of pro-inflammatory cytokines by macrophages were examined. RESULTS: Ebastine inhibited T cell proliferation and the production of IL-4, IL-5, IL-6, and TNF-alpha by T cells under each co-stimulatory condition tested, whereas it exhibited no effect on the production of IL-2 or IFN-gamma. In addition, T cell migration and the production of such pro-inflammatory cytokines as TNF-alpha and IL-6 by macrophages were inhibited by ebastine. CONCLUSIONS: These results indicate that ebastine has a specific inhibitory effect on Th2-type cytokine production. Moreover, ebastine inhibited T cell migration and pro-inflammatory cytokine production by T cells and macrophages, suggesting that ebastine might be useful for the treatment of T cell-mediated allergic inflammatory disorders, including asthma, atopic dermatitis, and Th2-type autoimmune diseases.  相似文献   

18.
C3H/HeN mice infected intravenously with a dose of Rickettsia conorii (Malish 7 strain) that is sublethal for immunocompetent animals (1.1 x 10(3) PFU) developed disseminated infection of endothelial cells of the brain, lungs, heart, liver, kidney, testis, and testicular adnexa. In R. conorii-infected mice depleted of gamma interferon (IFN-gamma) and/or tumor necrosis factor alpha (TNF-alpha) by intravenous administration of neutralizing monoclonal antibodies on days 0, 2, and 4, the mortality rate was 100%. Death of the cytokine-depleted animals on days 5 and 6 was associated with overwhelming rickettsial infection documented by titration of rickettsial content in the brain and liver and by immunohistologic demonstration of massive quantities of R. conorii in endothelial cells of all organs examined, in macrophages of the liver and spleen, and in hepatocytes. Nondepleted, immunocompetent animals showed markedly reduced rickettsial content in the tissues on day 6, with rickettsial destruction in phagolysosomes not only in macrophages but also in endothelial cells and hepatocytes. All nondepleted, infected mice recovered and appeared completely healthy by day 9. Assay of liver infiltrated by lymphocytes and macrophages revealed mRNA of IFN-gamma and TNF-alpha, indicating that the host defenses were activated at the site of infection. Treatment of mice with an analog of L-arginine reduced the synthesis of nitric oxide and impaired rickettsial killing. Nitric oxide production was also impaired in cytokine-depleted infected mice. These observations support the hypothesis that IFN-gamma secreted by T lymphocytes and natural killer cells and TNF-alpha secreted by macrophages act in a synergistic, paracrine fashion on adjacent rickettsia-infected endothelial cells, hepatocytes, and macrophages to stimulate synthesis of nitric oxide, which kills intracellular R. conorii.  相似文献   

19.
Glomerulonephritis may be triggered by antibody deposits that activate macrophages to promote tissue damage. Macrophage-induced apoptosis of human vascular smooth muscle cells and rodent mesangial cells is potentially relevant to glomerulonephritis. Therefore, studies of macrophage-induced apoptosis were extended to antibody-activated macrophages. That is, we studied antibody dependent cellular cytotoxicity (ADCC). To corroborate results, we studied biochemical versus microscopic measurements, soluble or immobilized immunoglobulin and vascular smooth muscle cells (VSMCs) or mesangial cells (MCs). U937 macrophages and human peripheral blood macrophages provoked antibody-dependent killing of MCs and VSMCs. Macrophage-induced death was apoptotic based on electron microscopy, annexin-V, activated caspase-3 and hypodiploid DNA. ADCC was inhibited by antagonistic antibodies to Fas-L and to CD16 (Fc-gamma-RIII) but not to CD64 (Fc-gamma-RI). In conclusion, antibody-dependent killing of human MCs by human macrophages was via Fas-L and CD16.  相似文献   

20.
The capacity of mature bone-marrow-derived macrophages and resident peritoneal macrophages from Lshr versus Lshs congenic mice to kill intracellular Leishmania donovani amastigotes when activated by recombinant gamma interferon-lipopolysaccharide (rIFN-gamma-LPS) was examined. IFN-gamma alone in doses up to 100 U/ml was unable to activate macrophages to kill L. donovani amastigotes in vitro; LPS was a necessary secondary stimulus. Similarly, LPS alone in doses up to 100 ng/ml produced no leishmanicidal activity. In bone marrow macrophages, a dose-dependent increase in leishmanicidal activity was observed as increasing rIFN-gamma-LPS dose combinations were introduced, with Lshr macrophages maintaining a significant but not dramatic advantage within any particular dose combination. For peritoneal macrophages, the reverse was true, with macrophages from Lshs mice being more efficient at killing for doses of LPS up to 10 ng/ml with doses of rIFN-gamma in the range of 11 to 33 U/ml. The degree of killing in both bone marrow and peritoneal macrophages correlated well with the levels of nitrites measured in the supernatants at 72 h, and a highly significant correlation was observed between 4-, 24-, or 72-h tumor necrosis factor alpha (TNF-alpha) release and nitrite production measured at 72 h. Inclusion of 200 microM NG-monomethyl-L-arginine, a competitive inhibitor of the L-arginine-dependent pathway for the synthesis of inorganic nitrogen oxides, inhibited the killing, as did the addition of neutralizing anti-TNF-alpha antibody. These results are consistent with previous data showing an important autocrine role for TNF-alpha in enhancing production of inorganic nitrogen oxides by primed or activated macrophages. In addition, our results suggest that production of TNF-alpha and nitrites after priming or activation signals may be under a different regulatory control in mature bone marrow macrophages than in the resident peritoneal macrophage population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号