首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent months, a series of chemically diverse antagonists has been identified for the ATP-gated P2X(7) receptor. In particular, two classes of highly-selective competitive P2X(7) antagonists have been developed by Michael Jarvis and his colleagues at Abbott Laboratories. These di-substituted tetrazole and cyanoguanidine derivatives are outstanding for a number of reasons (not least their stability, selectivity, potency and, of course, reversibility); most exciting is their near equal potency at human and rodent P2X(7) isoforms. Armed with drugs such as A740003 and newer A438079, Jarvis and colleagues have explored the role of P2X(7) receptors in the onset and persistence of chronic pain in animal models. Their findings - and applicability to the human condition - are reviewed in this current issue of British Journal of Pharmacology. This accompanying Commentary describes the progress made by Jarvis and others in developing novel P2X(7) antagonists for pain relief.  相似文献   

2.
3.
Journal of Natural Medicines - Retinoid X receptor (RXR) ligands have a wide range of beneficial effects in mouse models of Alzheimer’s disease (AD). Recently accumulated evidence suggests...  相似文献   

4.
A series of tetrahydrobenzofuranyl and tetrahydrobenzothienyl propenoic acids that showed potent agonist activity against RXRalpha were synthesized via a structure-based design approach. Among the compounds studied, 46a,b showed not only very good potency against RXRalpha (K(i) = 6 nM) but was also found to be greater than 167-fold selective vs RARalpha (K(i) > 1000 nM). This compound profiled out as a full agonist in a cell-based transient transfection assay (EC(50) = 3 nM). The two antipodes were separated via chiral chromatography, and 46b was found to be 40-fold more potent than 46a. Interestingly, cocrystallization of 46a,b with the RXRalpha protein generated a liganded structure whereby the (S)-antipode was found in the binding pocket. Given orally in db/db mice or ZDF rats, 46a,b showed a significant glucose-lowering effect and an increase in liver mass. Triglycerides decreased significantly in db/db mice but increased in the ZDF rats. A dose-dependent decrease of nonesterified free fatty acids was seen in ZDF rats but not in db/db mice. These differences indicate a species specific effect of RXR agonists on lipid metabolism.  相似文献   

5.
IntroductionRetinoic acids are essential for embryonic development, tissue organization, and homeostasis and act via retinoic acid receptors (RARs) that form heterodimers with retinoid X receptors (RXRs). Human RARs and RXRs include the three subtypes α, β, and γ, which have varying distributions and physiological functions among human tissues. Recent reports show that subtype-specific binding of several chemicals to RARs or RXRs may lead to endocrine disruption. To evaluate these ligand-like chemicals, convenient assay systems for each receptor subtype are required.MethodsWe developed reporter assay yeasts to screen ligands for RXR subtype receptor homodimers. To screen RAR ligands, yeasts were engineered to express RAR subtypes with defective RXRα, which fails to bind to coactivators because of its shortened c-terminus.ResultsThese assay yeasts were validated using known RXR- and RAR-specific ligands and subtype-specific responses were clearly shown. Subtype-specific ligand activities of the suspected chemical RAR or RXR ligands o-t-butylphenol, triphenyltin chloride, tributyltin chloride, and 4-nonylphenol were determined.DiscussionThe present assay yeasts may be valuable tools for subtype-specific assessments of unidentified environmental ligand chemicals and receptor-specific pharmaceuticals.  相似文献   

6.
Stereoselective delivery and actions of beta receptor antagonists   总被引:1,自引:0,他引:1  
These studies have revealed that the delivery and actions of beta receptor antagonist drugs are controlled by a cascade of stereoselective processes involving multiple enzymes, transport proteins and receptors. In essence, the free concentration of the pharmacologically active (-)-enantiomer species of these drugs presented to cell surface beta receptors appears to be a function of the stereoselective clearance by hepatic cytochrome P-450 isoenzymes, enantiomer selective binding to alpha 1-acid glycoprotein and albumin and perhaps predominantly by stereoselective sequestration (and release) by the vesicular amine transport protein within adrenergic neurons. Stereoselectivity in the clearance of beta blocking drugs, which can favor either the (+)- or (-)-enantiomer, only appears to be important for the lipophilic drugs which are cleared by hepatic metabolism. Such stereoselectivity is due to differential stereochemical substrate requirements of individual hepatic cytochrome P-450 isoenzymes. Interindividual variations in the stereoselectivity can occur as a result of differences in the amount and expression of cytochrome P-450 isoenzymes due to genetic predisposition or other factors. In the same context, we have observed a significant correlation between the extent and stereoselectivity of binding of beta blocking drugs to plasma proteins. This is another finding which suggests that variability in the expression of individual proteins involved in the beta blocking drug-protein cascade determines the free concentration of the pharmacologically active enantiomer. However, since most observations have been made in young normal subjects, the extent of stereoselectivity in metabolism, binding and other processes is unknown in the general population where steady-state plasma concentrations can vary widely due to multiple biological factors. The observations from neural studies support the concept that adrenergic nerve endings provide a depot for the stereoselective storage and release of the active enantiomer of beta receptor antagonists. The mechanism of this release appears to involve exocytotic secretion of drug that has been stereoselectively accumulated by the neurotransmitter storage vesicles. In terms of this idea, beta receptor antagonists released during nerve stimulation may achieve concentrations of the (-)-enantiomer within the adrenergic synapse greatly in excess of those found in plasma. Such a mechanism could significantly influence both the intensity and duration of beta receptor blockade in the heart, blood vessels, brain and other target tissues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Novel 2-(alkylaminoalkyl)amino-3-aryl-6,7-dichloroquinoxalines are claimed that act as selective antagonists of IL-8. Specified examples inhibit IL-8 induced chemotaxis of human neutrophils with IC50 values in the 80 to 400 nM range. Such compounds provide a novel class of anti-inflammatory agents especially suitable for the treatment of neutrophil mediated inflammatory diseases.  相似文献   

8.
9.
10.
The purpose of the present studies was to compare a novel series of alkoxy-oxazolyl-tetrahydropyridines (A-OXTPs) as muscarinic receptor antagonists. The affinity of these compounds for muscarinic receptors was determined by inhibition of [3H]pirenzepine to M1 receptors in hippocampus, [3H]QNB to M2 receptors in brainstem, and [3H]oxotremorine-M to high affinity muscarinic agonist binding sites in cortex. All of the compounds had higher affinity for [3H]pirenzepine than for [3H]QNB or [3H]oxotremorine-M labeled receptors, consistent with an interpretation that they are relatively selective M1 receptor antagonists, although none were as selective as pirenzepine. In addition, dose-response curves were determined for antagonism of oxotremorine-induced salivation (mediated by M3 receptors) and tremor (mediated by non-M1 receptors) in mice. In general, the A-OXTPs were equipotent and equieffective in antagonizing both salivation and tremor, although there were modest differences for some compounds. Dose-response curves also were determined on behavior maintained under a spatial-alternation schedule of food presentation in rats as a measure of effects on working memory. The A-OXTPs produced dose-related decreases in percent correct responding at doses three- to ten-fold lower than those which decreased rates of responding. However, only one compound, MB-OXTP, produced effects on percent correct responding consistent with a selective effect on memory as opposed to non-memory variables. The present results provide evidence that these alkoxy-oxazolyltetrahydropyridines are a novel series of modestly M1-selective muscarinic receptor antagonists, and that one member of the series, MB-OXTP, appears to be more selective in its effects on memory than previously studied muscarinic antagonists.  相似文献   

11.
12.
The socio-economic costs of caring for patients with Alzheimer’s disease (AD), both in institutions and in the community, are immense. Since increasing age is a significant risk factor for the development of AD, these costs are set to rise commensurate with demographic changes in the age structure of the population. The need for effective treatments to combat the decline in cognitive functions in AD is therefore obvious. The realisation over the past decade of the importance of the amyloid precursor protein (APP) and its metabolites, the amyloid β-peptides (Aβ), in the pathogenesis of AD has suggested that these may be likely therapeutic targets, at several points along their synthetic and metabolic pathways. This review will cover patenting activity concerning APP and Aβ for the period 1995 - 1996. Special emphasis is placed on the patent applications aimed at preventing Aβ aggregation since this seems to be a key event in potentiating Aβ neurotoxicity.  相似文献   

13.
14.
CCR2B receptor antagonists based upon a 1,3dimethylpyrazolo[5,4-b]pyridin-5-yl-N-phenylaminocarbonyl)carboxamide template are claimed. These represent a structurally novel class of CCR2B receptor antagonists. They were shown to be effective in animal models of inflammatory diseases including atherosclerosis and rheumatoid arthritis. This class of antagonist defines the chemical strategy of Telik in pursuing inhibitors of the effects of MCP-1.  相似文献   

15.
In this report we show that submicromolar concentrations of dexamethasone enhance pregnane X receptor (PXR) activator-mediated CYP3A4 gene expression in cultured human hepatocytes. Because this result is only observed after 24 h of cotreatment and is inhibited by pretreatment with cycloheximide, we further investigated which factor(s), induced by dexamethasone, might be responsible for this effect. We report that dexamethasone increases both retinoid X receptor-alpha (RXRalpha) and PXR mRNA expression in cultured human hepatocytes, whereas PXR activators such as rifampicin and clotrimazole do not. Accumulation of RXRalpha and PXR mRNA reaches a maximum at a concentration of 100 nM dexamethasone after treatment for 6 to 12 h and is greatly diminished by RU486. A similar pattern of expression is observed with tyrosine aminotransferase mRNA. Moreover, the effect of dexamethasone on PXR mRNA accumulation seems to be through direct action on the glucocorticoid receptor (GR) because the addition of cycloheximide has no effect, and dexamethasone does not affect the degradation of PXR mRNA. Furthermore, dexamethasone induces the accumulation of a RXRalpha-immunoreactive protein and increases the nuclear level of RXRalpha:PXR heterodimer as shown by gel shift assays with a CYP3A4 ER6 PXRE probe. This accumulation of latent PXR and RXRalpha in the nucleus of hepatocytes explains the synergistic effect observed with dexamethasone and PXR activators together on CYP3A4 induction. These results reveal the existence of functional cross talk between the GR and PXR, and may explain some controversial aspects of the role of the GR in CYP3A4 induction.  相似文献   

16.
17.
18.
Retinoid X receptor (RXR) interfering activity has been detected in different water resources. To study RXR disruptor‐induced toxicological effects on vertebrates, embryos of zebrafish (Danio rerio) were exposed to a representative RXR antagonist UVI3003. Results showed that the teratogenic index (LC50/EC50) of UVI3003 was as high as 5.4. UVI3003 induced multiple malformations of embryos, including deformed fins, reduced brains, small jaws, bent tails and edema in hearts, the degree of which became more severe with increasing exposure concentration. Although no significant difference was observed in the hatching rates between the exposure group and control, the whole body length was significantly reduced by 6.5% and 8.9% when exposed to 200 and 300 µg l?1 of UVI3003, respectively. The heart rate also significantly decreased by 8.8–50.2% during exposure. Further experiments revealed that the pharyngula stage was the most sensitive development phase in terms of embryo response to UVI3003. The results demonstrated severe teratogenicity of RXR antagonist in zebrafish embryos and provided important data for ecotoxicological evaluation of RXR antagonists. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The 8-substituted 9-ethyladenine derivatives: 8-bromo-9-ethyladenine (ANR 82), 8-ethoxy- 9-ethyladenine (ANR 94), and 8-furyl-9-ethyladenine (ANR 152) have been characterized in vitro as adenosine receptor antagonists. Adenosine is deeply involved in the control of motor behaviour and substantial evidences indicate that adenosine A(2A) receptor antagonists improve motor deficits in animal models of Parkinson's disease. On this basis, the efficacy of ANR 82, ANR 94, and ANR 152 in rat models of Parkinson's disease was evaluated. All compounds tested reversed the catalepsy induced by haloperidol. However, in unilaterally 6-hydroxydopamine-lesioned rats, only ANR 94 and ANR 152 potentiated l-dihydroxy-phenylalanine (l-DOPA) effect on turning behaviour and induced contralateral turning behaviour in rats sensitised to l-DOPA. Taken together the results of this study indicate that some 8-substituted 9-ethyladenine derivatives ameliorate motor deficits in rat models of Parkinson's disease, suggesting a potential therapeutic role of these compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号