首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite advances in data augmentation and transfer learning, convolutional neural networks (CNNs) difficultly generalise to unseen domains. When segmenting brain scans, CNNs are highly sensitive to changes in resolution and contrast: even within the same MRI modality, performance can decrease across datasets. Here we introduce SynthSeg, the first segmentation CNN robust against changes in contrast and resolution. SynthSeg is trained with synthetic data sampled from a generative model conditioned on segmentations. Crucially, we adopt a domain randomisation strategy where we fully randomise the contrast and resolution of the synthetic training data. Consequently, SynthSeg can segment real scans from a wide range of target domains without retraining or fine-tuning, which enables straightforward analysis of huge amounts of heterogeneous clinical data. Because SynthSeg only requires segmentations to be trained (no images), it can learn from labels obtained by automated methods on diverse populations (e.g., ageing and diseased), thus achieving robustness to a wide range of morphological variability. We demonstrate SynthSeg on 5,000 scans of six modalities (including CT) and ten resolutions, where it exhibits unparallelled generalisation compared with supervised CNNs, state-of-the-art domain adaptation, and Bayesian segmentation. Finally, we demonstrate the generalisability of SynthSeg by applying it to cardiac MRI and CT scans.  相似文献   

2.
Three-dimensional (3D) integrated renal structures (IRS) segmentation targets segmenting the kidneys, renal tumors, arteries, and veins in one inference. Clinicians will benefit from the 3D IRS visual model for accurate preoperative planning and intraoperative guidance of laparoscopic partial nephrectomy (LPN). However, no success has been reported in 3D IRS segmentation due to the inherent challenges in grayscale distribution: low contrast caused by the narrow task-dependent distribution range of regions of interest (ROIs), and the networks representation preferences caused by the distribution variation inter-images. In this paper, we propose the Meta Greyscale Adaptive Network (MGANet), the first deep learning framework to simultaneously segment the kidney, renal tumors, arteries and veins on CTA images in one inference. It makes innovations in two collaborate aspects: 1) The Grayscale Interest Search (GIS) adaptively focuses segmentation networks on task-dependent grayscale distributions via scaling the window width and center with two cross-correlated coefficients for the first time, thus learning the fine-grained representation for fine segmentation. 2) The Meta Grayscale Adaptive (MGA) learning makes an image-level meta-learning strategy. It represents diverse robust features from multiple distributions, perceives the distribution characteristic, and generates the model parameters to fuse features dynamically according to image’s distribution, thus adapting the grayscale distribution variation. This study enrolls 123 patients and the average Dice coefficients of the renal structures are up to 87.9%. Fine selection of the task-dependent grayscale distribution ranges and personalized fusion of multiple representations on different distributions will lead to better 3D IRS segmentation quality. Extensive experiments with promising results on renal structures reveal powerful segmentation accuracy and great clinical significance in renal cancer treatment.  相似文献   

3.
High throughput nuclear segmentation and classification of whole slide images (WSIs) is crucial to biological analysis, clinical diagnosis and precision medicine. With the advances of CNN algorithms and the continuously growing datasets, considerable progress has been made in nuclear segmentation and classification. However, few works consider how to reasonably deal with nuclear heterogeneity in the following two aspects: imbalanced data distribution and diversified morphology characteristics. The minority classes might be dominated by the majority classes due to the imbalanced data distribution and the diversified morphology characteristics may lead to fragile segmentation results. In this study, a cost-Sensitive MultI-task LEarning (SMILE) framework is conducted to tackle the data heterogeneity problem. Based on the most popular multi-task learning backbone in nuclei segmentation and classification, we propose a multi-task correlation attention (MTCA) to perform feature interaction of multiple high relevant tasks to learn better feature representation. A cost-sensitive learning strategy is proposed to solve the imbalanced data distribution by increasing the penalization for the error classification of the minority classes. Furthermore, we propose a novel post-processing step based on the coarse-to-fine marker-controlled watershed scheme to alleviate fragile segmentation when nuclei are with large size and unclear contour. Extensive experiments show that the proposed method achieves state-of-the-art performances on CoNSeP and MoNuSAC 2020 datasets. The code is available at: https://github.com/panxipeng/nuclear_segandcls.  相似文献   

4.
High performance of deep learning models on medical image segmentation greatly relies on large amount of pixel-wise annotated data, yet annotations are costly to collect. How to obtain high accuracy segmentation labels of medical images with limited cost (e.g. time) becomes an urgent problem. Active learning can reduce the annotation cost of image segmentation, but it faces three challenges: the cold start problem, an effective sample selection strategy for segmentation task and the burden of manual annotation. In this work, we propose a Hybrid Active Learning framework using Interactive Annotation (HAL-IA) for medical image segmentation, which reduces the annotation cost both in decreasing the amount of the annotated images and simplifying the annotation process. Specifically, we propose a novel hybrid sample selection strategy to select the most valuable samples for segmentation model performance improvement. This strategy combines pixel entropy, regional consistency and image diversity to ensure that the selected samples have high uncertainty and diversity. In addition, we propose a warm-start initialization strategy to build the initial annotated dataset to avoid the cold-start problem. To simplify the manual annotation process, we propose an interactive annotation module with suggested superpixels to obtain pixel-wise label with several clicks. We validate our proposed framework with extensive segmentation experiments on four medical image datasets. Experimental results showed that the proposed framework achieves high accuracy pixel-wise annotations and models with less labeled data and fewer interactions, outperforming other state-of-the-art methods. Our method can help physicians efficiently obtain accurate medical image segmentation results for clinical analysis and diagnosis.  相似文献   

5.
White matter (WM) tract segmentation based on diffusion magnetic resonance imaging (dMRI) provides an important tool for the analysis of brain development, function, and disease. Deep learning based methods of WM tract segmentation have been proposed, which greatly improve the accuracy of the segmentation. However, the training of the deep networks usually requires a large number of manual delineations of WM tracts, which can be especially difficult to obtain and unavailable in many scenarios. Therefore, in this work, we explore how to perform deep learning based WM tract segmentation when annotated training data is scarce. To this end, we seek to exploit the abundant unannotated dMRI data in the self-supervised learning framework. From the unannotated data, knowledge about image context can be learned with pretext tasks that do not require manual annotations. Specifically, a deep network can be pretrained for the pretext task, and the knowledge learned from the pretext task is then transferred to the subsequent WM tract segmentation task with only a small number of annotated scans via fine-tuning. We explore two designs of pretext tasks that are related to WM tracts. The first pretext task predicts the density map of fiber streamlines, which are representations of generic WM pathways, and the training data can be obtained automatically with tractography. The second pretext task learns to mimic the results of registration-based WM tract segmentation, which, although inaccurate, is more relevant to WM tract segmentation and provides a good target for learning context knowledge. Then, we combine the two pretext tasks and develop a nested self-supervised learning strategy. In the nested self-supervised learning strategy, the first pretext task provides initial knowledge for the second pretext task, and the knowledge learned from the second pretext task with the initial knowledge is transferred to the target WM tract segmentation task via fine-tuning. To evaluate the proposed method, experiments were performed on brain dMRI scans from the Human Connectome Project dataset with various experimental settings. The results show that the proposed method improves the performance of WM tract segmentation when tract annotations are scarce.  相似文献   

6.
Recently, segmentation methods based on Convolutional Neural Networks (CNNs) showed promising performance in automatic Multiple Sclerosis (MS) lesions segmentation. These techniques have even outperformed human experts in controlled evaluation conditions such as Longitudinal MS Lesion Segmentation Challenge (ISBI Challenge). However, state-of-the-art approaches trained to perform well on highly-controlled datasets fail to generalize on clinical data from unseen datasets. Instead of proposing another improvement of the segmentation accuracy, we propose a novel method robust to domain shift and performing well on unseen datasets, called DeepLesionBrain (DLB). This generalization property results from three main contributions. First, DLB is based on a large group of compact 3D CNNs. This spatially distributed strategy aims to produce a robust prediction despite the risk of generalization failure of some individual networks. Second, we propose a hierarchical specialization learning (HSL) by pre-training a generic network over the whole brain, before using its weights as initialization to locally specialized networks. By this end, DLB learns both generic features extracted at global image level and specific features extracted at local image level. Finally, DLB includes a new image quality data augmentation to reduce dependency to training data specificity (e.g., acquisition protocol). DLB generalization was validated in cross-dataset experiments on MSSEG’16, ISBI challenge, and in-house datasets. During experiments, DLB showed higher segmentation accuracy, better segmentation consistency and greater generalization performance compared to state-of-the-art methods. Therefore, DLB offers a robust framework well-suited for clinical practice.  相似文献   

7.
Skin lesion segmentation from dermoscopic image is essential for improving the quantitative analysis of melanoma. However, it is still a challenging task due to the large scale variations and irregular shapes of the skin lesions. In addition, the blurred lesion boundaries between the skin lesions and the surrounding tissues may also increase the probability of incorrect segmentation. Due to the inherent limitations of traditional convolutional neural networks (CNNs) in capturing global context information, traditional CNN-based methods usually cannot achieve a satisfactory segmentation performance. In this paper, we propose a novel feature adaptive transformer network based on the classical encoder-decoder architecture, named FAT-Net, which integrates an extra transformer branch to effectively capture long-range dependencies and global context information. Furthermore, we also employ a memory-efficient decoder and a feature adaptation module to enhance the feature fusion between the adjacent-level features by activating the effective channels and restraining the irrelevant background noise. We have performed extensive experiments to verify the effectiveness of our proposed method on four public skin lesion segmentation datasets, including the ISIC 2016, ISIC 2017, ISIC 2018, and PH2 datasets. Ablation studies demonstrate the effectiveness of our feature adaptive transformers and memory-efficient strategies. Comparisons with state-of-the-art methods also verify the superiority of our proposed FAT-Net in terms of both accuracy and inference speed. The code is available at https://github.com/SZUcsh/FAT-Net.  相似文献   

8.
Purpose Manual segmentation of CT datasets for preoperative planning and intraoperative navigation is a time-consuming procedure. The purpose of this study was to develop an automated segmentation procedure for the facial skeleton based on a virtual anatomic atlas of the skull, to test its practicability, and to evaluate the accuracy of the segmented objects. Materials and methods The atlas skull was created by manually segmenting an unaffected skull CT dataset. For automated segmentation of cases via IPlan cranial (BrainLAB, Germany), the atlas skull underwent projection, controlled deformation, and a facultative threshold segmentation within the individual datasets, of which 16 routine CT (13 pathologies, 3 without) were processed. The variations of the no-threshold versus threshold segmentation results compared to the original were determined. The clinical usability of the results was assessed in a multicentre evaluation. Results Compared to the original dataset, the mean accuracy was $\le 0.6$ mm for the threshold segmentation and 0.6–1.4 mm for the no-threshold segmentation. Comparing both methods together, the deviation was $\le 0.2$ mm. An isolated no-threshold segmentation of the orbital cavity alone resulted in a mean accuracy of $\le 0.6$ mm. With regard to clinical usability, the no-threshold method was clearly preferred, reaching modal scores of “good” to “moderate” in most areas. Limitations were seen in segmenting the TMJ, mandibular fractures, and thin bone in general. Conclusion The feasibility of automated skull segmentation was demonstrated. The virtual anatomic atlas can improve the preprocessing of skull CT scans for computer assisted craniomaxillofacial surgery planning.  相似文献   

9.
The success of neural networks on medical image segmentation tasks typically relies on large labeled datasets for model training. However, acquiring and manually labeling a large medical image set is resource-intensive, expensive, and sometimes impractical due to data sharing and privacy issues. To address this challenge, we propose AdvChain, a generic adversarial data augmentation framework, aiming at improving both the diversity and effectiveness of training data for medical image segmentation tasks. AdvChain augments data with dynamic data augmentation, generating randomly chained photo-metric and geometric transformations to resemble realistic yet challenging imaging variations to expand training data. By jointly optimizing the data augmentation model and a segmentation network during training, challenging examples are generated to enhance network generalizability for the downstream task. The proposed adversarial data augmentation does not rely on generative networks and can be used as a plug-in module in general segmentation networks. It is computationally efficient and applicable for both low-shot supervised and semi-supervised learning. We analyze and evaluate the method on two MR image segmentation tasks: cardiac segmentation and prostate segmentation with limited labeled data. Results show that the proposed approach can alleviate the need for labeled data while improving model generalization ability, indicating its practical value in medical imaging applications.  相似文献   

10.
Radiotherapy is a treatment where radiation is used to eliminate cancer cells. The delineation of organs-at-risk (OARs) is a vital step in radiotherapy treatment planning to avoid damage to healthy organs. For nasopharyngeal cancer, more than 20 OARs are needed to be precisely segmented in advance. The challenge of this task lies in complex anatomical structure, low-contrast organ contours, and the extremely imbalanced size between large and small organs. Common segmentation methods that treat them equally would generally lead to inaccurate small-organ labeling. We propose a novel two-stage deep neural network, FocusNetv2, to solve this challenging problem by automatically locating, ROI-pooling, and segmenting small organs with specifically designed small-organ localization and segmentation sub-networks while maintaining the accuracy of large organ segmentation. In addition to our original FocusNet, we employ a novel adversarial shape constraint on small organs to ensure the consistency between estimated small-organ shapes and organ shape prior knowledge. Our proposed framework is extensively tested on both self-collected dataset of 1,164 CT scans and the MICCAI Head and Neck Auto Segmentation Challenge 2015 dataset, which shows superior performance compared with state-of-the-art head and neck OAR segmentation methods.  相似文献   

11.
In this paper, we consider image quality assessment (IQA) as a measure of how images are amenable with respect to a given downstream task, or task amenability. When the task is performed using machine learning algorithms, such as a neural-network-based task predictor for image classification or segmentation, the performance of the task predictor provides an objective estimate of task amenability. In this work, we use an IQA controller to predict the task amenability which, itself being parameterised by neural networks, can be trained simultaneously with the task predictor. We further develop a meta-reinforcement learning framework to improve the adaptability for both IQA controllers and task predictors, such that they can be fine-tuned efficiently on new datasets or meta-tasks. We demonstrate the efficacy of the proposed task-specific, adaptable IQA approach, using two clinical applications for ultrasound-guided prostate intervention and pneumonia detection on X-ray images.  相似文献   

12.
General movement assessment (GMA) of infant movement videos (IMVs) is an effective method for early detection of cerebral palsy (CP) in infants. We demonstrate in this paper that end-to-end trainable neural networks for image sequence recognition can be applied to achieve good results in GMA, and more importantly, augmenting raw video with infant body parsing and pose estimation information can significantly improve performance. To solve the problem of efficiently utilizing partially labeled IMVs for body parsing, we propose a semi-supervised model, termed SiamParseNet (SPN), which consists of two branches, one for intra-frame body parts segmentation and another for inter-frame label propagation. During training, the two branches are jointly trained by alternating between using input pairs of only labeled frames and input of both labeled and unlabeled frames. We also investigate training data augmentation by proposing a factorized video generative adversarial network (FVGAN) to synthesize novel labeled frames for training. FVGAN decouples foreground and background generation which allows for generating multiple labeled frames from one real labeled frame. When testing, we employ a multi-source inference mechanism, where the final result for a test frame is either obtained via the segmentation branch or via propagation from a nearby key frame. We conduct extensive experiments for body parsing using SPN on two infant movement video datasets; on these partially labeled IMVs, we show that SPN coupled with FVGAN achieves state-of-the-art performance. We further demonstrate that our proposed SPN can be easily adapted to the infant pose estimation task with superior performance. Last but not least, we explore the clinical application of our method for GMA. We collected a new clinical IMV dataset with GMA annotations, and our experiments show that our SPN models for body parsing and pose estimation trained on the first two datasets generalize well to the new clinical dataset and their results can significantly boost the convolutional recurrent neural network (CRNN) based GMA prediction performance when combined with raw video inputs.  相似文献   

13.
Despite recent progress of automatic medical image segmentation techniques, fully automatic results usually fail to meet clinically acceptable accuracy, thus typically require further refinement. To this end, we propose a novel Volumetric Memory Network, dubbed as VMN, to enable segmentation of 3D medical images in an interactive manner. Provided by user hints on an arbitrary slice, a 2D interaction network is firstly employed to produce an initial 2D segmentation for the chosen slice. Then, the VMN propagates the initial segmentation mask bidirectionally to all slices of the entire volume. Subsequent refinement based on additional user guidance on other slices can be incorporated in the same manner. To facilitate smooth human-in-the-loop segmentation, a quality assessment module is introduced to suggest the next slice for interaction based on the segmentation quality of each slice produced in the previous round. Our VMN demonstrates two distinctive features: First, the memory-augmented network design offers our model the ability to quickly encode past segmentation information, which will be retrieved later for the segmentation of other slices; Second, the quality assessment module enables the model to directly estimate the quality of each segmentation prediction, which allows for an active learning paradigm where users preferentially label the lowest-quality slice for multi-round refinement. The proposed network leads to a robust interactive segmentation engine, which can generalize well to various types of user annotations (e.g., scribble, bounding box, extreme clicking). Extensive experiments have been conducted on three public medical image segmentation datasets (i.e., MSD, KiTS19, CVC-ClinicDB), and the results clearly confirm the superiority of our approach in comparison with state-of-the-art segmentation models. The code is made publicly available at https://github.com/0liliulei/Mem3D.  相似文献   

14.
Pseudo-healthy synthesis is the task of creating a subject-specific ‘healthy’ image from a pathological one. Such images can be helpful in tasks such as anomaly detection and understanding changes induced by pathology and disease. In this paper, we present a model that is encouraged to disentangle the information of pathology from what seems to be healthy. We disentangle what appears to be healthy and where disease is as a segmentation map, which are then recombined by a network to reconstruct the input disease image. We train our models adversarially using either paired or unpaired settings, where we pair disease images and maps when available. We quantitatively and subjectively, with a human study, evaluate the quality of pseudo-healthy images using several criteria. We show in a series of experiments, performed on ISLES, BraTS and Cam-CAN datasets, that our method is better than several baselines and methods from the literature. We also show that due to better training processes we could recover deformations, on surrounding tissue, caused by disease. Our implementation is publicly available at https://github.com/xiat0616/pseudo-healthy-synthesis.  相似文献   

15.
Deep neural networks enable highly accurate image segmentation, but require large amounts of manually annotated data for supervised training. Few-shot learning aims to address this shortcoming by learning a new class from a few annotated support examples. We introduce, a novel few-shot framework, for the segmentation of volumetric medical images with only a few annotated slices. Compared to other related works in computer vision, the major challenges are the absence of pre-trained networks and the volumetric nature of medical scans. We address these challenges by proposing a new architecture for few-shot segmentation that incorporates ‘squeeze & excite’ blocks. Our two-armed architecture consists of a conditioner arm, which processes the annotated support input and generates a task-specific representation. This representation is passed on to the segmenter arm that uses this information to segment the new query image. To facilitate efficient interaction between the conditioner and the segmenter arm, we propose to use ‘channel squeeze & spatial excitation’ blocks – a light-weight computational module – that enables heavy interaction between both the arms with negligible increase in model complexity. This contribution allows us to perform image segmentation without relying on a pre-trained model, which generally is unavailable for medical scans. Furthermore, we propose an efficient strategy for volumetric segmentation by optimally pairing a few slices of the support volume to all the slices of the query volume. We perform experiments for organ segmentation on whole-body contrast-enhanced CT scans from the Visceral Dataset. Our proposed model outperforms multiple baselines and existing approaches with respect to the segmentation accuracy by a significant margin. The source code is available at https://github.com/abhi4ssj/few-shot-segmentation.  相似文献   

16.
Automatic and accurate segmentation of anatomical structures on medical images is crucial for detecting various potential diseases. However, the segmentation performance of established deep neural networks may degenerate on different modalities or devices owing to the significant difference across the domains, a problem known as domain shift. In this work, we propose an uncertainty-aware domain alignment framework to address the domain shift problem in the cross-domain Unsupervised Domain Adaptation (UDA) task. Specifically, we design an Uncertainty Estimation and Segmentation Module (UESM) to obtain the uncertainty map estimation. Then, a novel Uncertainty-aware Cross Entropy (UCE) loss is proposed to leverage the uncertainty information to boost the segmentation performance on highly uncertain regions. To further improve the performance in the UDA task, an Uncertainty-aware Self-Training (UST) strategy is developed to choose the optimal target samples by uncertainty guidance. In addition, the Uncertainty Feature Recalibration Module (UFRM) is applied to enforce the framework to minimize the cross-domain discrepancy. The proposed framework is evaluated on a private cross-device Optical Coherence Tomography (OCT) dataset and a public cross-modality cardiac dataset released by MMWHS 2017. Extensive experiments indicate that the proposed UESM is both efficient and effective for the uncertainty estimation in the UDA task, achieving state-of-the-art performance on both cross-modality and cross-device datasets.  相似文献   

17.
Left atrial (LA) and atrial scar segmentation from late gadolinium enhanced magnetic resonance imaging (LGE MRI) is an important task in clinical practice. The automatic segmentation is however still challenging due to the poor image quality, the various LA shapes, the thin wall, and the surrounding enhanced regions. Previous methods normally solved the two tasks independently and ignored the intrinsic spatial relationship between LA and scars. In this work, we develop a new framework, namely AtrialJSQnet, where LA segmentation, scar projection onto the LA surface, and scar quantification are performed simultaneously in an end-to-end style. We propose a mechanism of shape attention (SA) via an implicit surface projection to utilize the inherent correlation between LA cavity and scars. In specific, the SA scheme is embedded into a multi-task architecture to perform joint LA segmentation and scar quantification. Besides, a spatial encoding (SE) loss is introduced to incorporate continuous spatial information of the target in order to reduce noisy patches in the predicted segmentation. We evaluated the proposed framework on 60 post-ablation LGE MRIs from the MICCAI2018 Atrial Segmentation Challenge. Moreover, we explored the domain generalization ability of the proposed AtrialJSQnet on 40 pre-ablation LGE MRIs from this challenge and 30 post-ablation multi-center LGE MRIs from another challenge (ISBI2012 Left Atrium Fibrosis and Scar Segmentation Challenge). Extensive experiments on public datasets demonstrated the effect of the proposed AtrialJSQnet, which achieved competitive performance over the state-of-the-art. The relatedness between LA segmentation and scar quantification was explicitly explored and has shown significant performance improvements for both tasks. The code has been released via https://zmiclab.github.io/projects.html.  相似文献   

18.
Surgical workflow recognition is a fundamental task in computer-assisted surgery and a key component of various applications in operating rooms. Existing deep learning models have achieved promising results for surgical workflow recognition, heavily relying on a large amount of annotated videos. However, obtaining annotation is time-consuming and requires the domain knowledge of surgeons. In this paper, we propose a novel two-stage Semi-Supervised Learning method for label-efficient Surgical workflow recognition, named as SurgSSL. Our proposed SurgSSL progressively leverages the inherent knowledge held in the unlabeled data to a larger extent: from implicit unlabeled data excavation via motion knowledge excavation, to explicit unlabeled data excavation via pre-knowledge pseudo labeling. Specifically, we first propose a novel intra-sequence Visual and Temporal Dynamic Consistency (VTDC) scheme for implicit excavation. It enforces prediction consistency of the same data under perturbations in both spatial and temporal spaces, encouraging model to capture rich motion knowledge. We further perform explicit excavation by optimizing the model towards our pre-knowledge pseudo label. It is naturally generated by the VTDC regularized model with prior knowledge of unlabeled data encoded, and demonstrates superior reliability for model supervision compared with the label generated by existing methods. We extensively evaluate our method on two public surgical datasets of Cholec80 and M2CAI challenge dataset. Our method surpasses the state-of-the-art semi-supervised methods by a large margin, e.g., improving 10.5% Accuracy under the severest annotation regime of M2CAI dataset. Using only 50% labeled videos on Cholec80, our approach achieves competitive performance compared with full-data training method.  相似文献   

19.
Cone-beam computed tomography (CBCT) scans are commonly used in diagnosing and planning surgical or orthodontic treatment to correct craniomaxillofacial (CMF) deformities. Based on CBCT images, it is clinically essential to generate an accurate 3D model of CMF structures (e.g., midface, and mandible) and digitize anatomical landmarks. This process often involves two tasks, i.e., bone segmentation and anatomical landmark digitization. Because landmarks usually lie on the boundaries of segmented bone regions, the tasks of bone segmentation and landmark digitization could be highly associated. Also, the spatial context information (e.g., displacements from voxels to landmarks) in CBCT images is intuitively important for accurately indicating the spatial association between voxels and landmarks. However, most of the existing studies simply treat bone segmentation and landmark digitization as two standalone tasks without considering their inherent relationship, and rarely take advantage of the spatial context information contained in CBCT images. To address these issues, we propose a Joint bone Segmentation and landmark Digitization (JSD) framework via context-guided fully convolutional networks (FCNs). Specifically, we first utilize displacement maps to model the spatial context information in CBCT images, where each element in the displacement map denotes the displacement from a voxel to a particular landmark. An FCN is learned to construct the mapping from the input image to its corresponding displacement maps. Using the learned displacement maps as guidance, we further develop a multi-task FCN model to perform bone segmentation and landmark digitization jointly. We validate the proposed JSD method on 107 subjects, and the experimental results demonstrate that our method is superior to the state-of-the-art approaches in both tasks of bone segmentation and landmark digitization.  相似文献   

20.
Acquisition of high quality manual annotations is vital for the development of segmentation algorithms. However, to create them we require a substantial amount of expert time and knowledge. Large numbers of labels are required to train convolutional neural networks due to the vast number of parameters that must be learned in the optimisation process. Here, we develop the STAMP algorithm to allow the simultaneous training and pruning of a UNet architecture for medical image segmentation with targeted channelwise dropout to make the network robust to the pruning. We demonstrate the technique across segmentation tasks and imaging modalities. It is then shown that, through online pruning, we are able to train networks to have much higher performance than the equivalent standard UNet models while reducing their size by more than 85% in terms of parameters. This has the potential to allow networks to be directly trained on datasets where very low numbers of labels are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号