首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sleep deprivation (SD) can alter the intrinsic brain functional organization. However, its effects on intrinsic low-frequency connectivity in the whole brain have not been well characterized. In this study, we used voxel-based functional connectivity density (FCD) analysis to investigate the effects of SD on the spontaneous functional organization of the brain. Thirty-seven healthy participants underwent this within-subject crossover functional magnetic resonance imaging (fMRI) study during rested wakefulness (RW) and after 36 h of total sleep deprivation (TSD). Decreased long-/short-range FCDs were observed in the posterior cingulate cortex, precuneus, inferior parietal lobule, dorsolateral prefrontal cortex, dorsomedial prefrontal cortex, and ventromedial prefrontal cortex. Increased long-/short-range FCDs were found in the sensory integration and arousal regulating areas, including the postcentral gyrus, thalamus, superior temporal gyrus, and occipital-temporal cortex. Moreover, a significant negative correlation was found between the short-range FCD of the PCC and the reaction time of Psychomotor Vigilance Task. In the present study, spontaneous functional organization with significant group-wise differences between RW and TSD sessions was identified. Our findings extend our understanding of the neural mechanism of how brain activity is altered in sleep-deprived individuals.  相似文献   

2.
Neurobiological theories posit that schizophrenia relates to disturbances in connectivity between brain regions. Resting-state functional magnetic resonance imaging is a powerful tool for examining functional connectivity and has revealed several canonical brain networks, including the default mode, dorsal attention, executive control, and salience networks. The purpose of this study was to examine changes in these networks in schizophrenia. 42 patients with schizophrenia and 61 healthy subjects completed a RS-fMRI scanning session. Seed-based region-of-interest correlation analysis was used to identify the default mode, dorsal attention, executive control, and salience networks. Compared to healthy subjects, individuals with schizophrenia demonstrated greater connectivity between the posterior cingulate cortex, a key hub of the default mode, and the left inferior gyrus, left middle frontal gyrus, and left middle temporal gyrus. Interestingly, these regions were more strongly connected to the executive control network in healthy control subjects. In contrast to the default mode, patients demonstrated less connectivity in the executive control and dorsal attention networks. No differences were observed in the salience network. The results indicate that resting-state networks are differentially affected in schizophrenia. The alterations are characterized by reduced segregation between the default mode and executive control networks in the prefrontal cortex and temporal lobe, and reduced connectivity in the dorsal attention and executive control networks. The changes suggest that the process of functional specialization is altered in schizophrenia. Further work is needed to determine if the alterations are related to disturbances in white matter connectivity, neurodevelopmental abnormalities, and genetic risk for schizophrenia.  相似文献   

3.
目的 利用静息态fMRI探讨长期海洛因成瘾者前额叶功能连接的变化情况.方法 13例长期海洛因成瘾者和14例正常者接受静息态fMRI检查,对数据进行相关的预处理后,以前额叶为种子点与全脑每个体素进行相关分析,比较海洛因成瘾组与正常对照组前额叶功能连接的变化情况.结果 以左侧前额叶为种子点进行功能连接分析,海洛因成瘾组左侧前额叶与左侧海马、右侧前扣带回、左侧额中回、右侧额中回、右侧楔前叶功能连接明显低于正常对照组:以右侧前额叶为种子点进行功能连接分析,海洛因成瘾组右侧前额叶与左侧眶额叶、左侧额中回功能连接明显低于正常对照组.结论 长期海洛因成瘾者前额叶与相关脑区的功能连接减弱,前额叶可能参与了海洛因成瘾的维持与戒断后复吸.
Abstract:
Objective To explore the changes of functional connectivity of the prefrontal cortex in chronic heroin addicts under resting-state functional MRI (fMRI). Methods Resting fMRI examination was performed on 13 chronic heroin addicts and 14 healthy volunteers. After pre-processing the resting-state fMRI data, the prefrontal cortex was selected as the seed region, with which a whole-brain voxel temporal correlation in Iow frequency fMRI fluctuations was analyzed and the changes of functional connectivity of the prefrontal lobe in both chronic heroin addicts and healthy volunteers were calculated with SPM5 software. Results Compared with that in the control group, the functional connectivity between the left prefrontal cortex and the left hippocampus, right anterior cingulate, left middle frontal gyrus, right middle frontal gyrus, right precuneus in the heroin addiction group was significantly decreased. The functional connectivity between the right prefrontal cortex and the left orbital frontal cortex, left middle frontal gyrus in thc heroin addiction group was also significantly decreased as compared with that in the control group. Conclusion Functional connectivity of prefrontal cortex in chronic heroin addicts decreases, indicating that the prefrontal cortex may be involved in the maintenance of heroin addiction and relapse after withdrawal.  相似文献   

4.
The insular cortex is located in the centre of the cerebral hemisphere, having connections with the primary and secondary somatosensory areas, anterior cingulate cortex, amygdaloid body, prefrontal cortex, superior temporal gyrus, temporal pole, orbitofrontal cortex, frontal and parietal opercula, primary and association auditory cortices, visual association cortex, olfactory bulb, hippocampus, entorhinal cortex, and motor cortex. Accordingly, dense connections exist among insular cortex neurons. The insular cortex is involved in the processing of visceral sensory, visceral motor, vestibular, attention, pain, emotion, verbal, motor information, inputs related to music and eating, in addition to gustatory, olfactory, visual, auditory, and tactile data. In this article, the literature on the relationship between the insular cortex and neuropsychiatric disorders was summarized following a computer search of the Pub-Med database. Recent neuroimaging data, including voxel based morphometry, PET and fMRI, revealed that the insular cortex was involved in various neuropsychiatric diseases such as mood disorders, panic disorders, PTSD, obsessive-compulsive disorders, eating disorders, and schizophrenia. Investigations of functions and connections of the insular cortex suggest that sensory information including gustatory, olfactory, visual, auditory, and tactile inputs converge on the insular cortex, and that these multimodal sensory information may be integrated there.  相似文献   

5.
The functional neuroanatomy and connectivity of reward processing in adults are well documented, with relatively less research on adolescents, a notable gap given this developmental period's association with altered reward sensitivity. Here, a large sample (n = 1,510) of adolescents performed the monetary incentive delay (MID) task during functional magnetic resonance imaging. Probabilistic maps identified brain regions that were reliably responsive to reward anticipation and receipt, and to prediction errors derived from a computational model. Psychophysiological interactions analyses were used to examine functional connections throughout reward processing. Bilateral ventral striatum, pallidum, insula, thalamus, hippocampus, cingulate cortex, midbrain, motor area, and occipital areas were reliably activated during reward anticipation. Bilateral ventromedial prefrontal cortex and bilateral thalamus exhibited positive and negative activation, respectively, during reward receipt. Bilateral ventral striatum was reliably active following prediction errors. Previously, individual differences in the personality trait of sensation seeking were shown to be related to individual differences in sensitivity to reward outcome. Here, we found that sensation seeking scores were negatively correlated with right inferior frontal gyrus activity following reward prediction errors estimated using a computational model. Psychophysiological interactions demonstrated widespread cortical and subcortical connectivity during reward processing, including connectivity between reward‐related regions with motor areas and the salience network. Males had more activation in left putamen, right precuneus, and middle temporal gyrus during reward anticipation. In summary, we found that, in adolescents, different reward processing stages during the MID task were robustly associated with distinctive patterns of activation and of connectivity.  相似文献   

6.
This study examined the effects of total sleep deprivation (TSD) on cerebral responses to a verbal learning task with two levels of word difficulty. A total of 32 subjects were studied with functional magnetic resonance imaging (FMRI) after normal sleep and following 36 h of TSD. Cerebral responses to EASY words were identical on both nights, but several brain regions showed increased activation to HARD words following TSD compared with following a normal night of sleep (NORM). These regions included bilateral inferior frontal gyrus, bilateral dorsolateral prefrontal cortex, and bilateral inferior parietal lobe. Better free recall performance on the HARD words after TSD was related to increased cerebral responses within the left inferior and superior parietal lobes and left inferior frontal gyrus. Recall was negatively related to activation within the right inferior frontal gyrus. Overall, the findings support the predictions of the compensatory recruitment hypothesis that task demands influence both the likelihood and location of increased cerebral activation during task performance following TSD, and refine that hypothesis by identifying a specific task demand that plays a role. The performance relationships suggest increased activation may be both beneficial (compensatory) and interfere with task performance, depending on the brain regions involved.  相似文献   

7.
ObjectiveApathy is common in late-life depression and is associated with poor response to antidepressant drugs. In depressed older adults, apathy may be characterized by neuroanatomical abnormalities of the salience network. The current study examined whether cortical thickness of select salience network structures predicted change in apathy following a 12-week treatment with escitalopram.MethodsA sample of 46 older adults with major depressive disorder received 12 weeks of escitalopram treatment at a daily target dose of 20 mg. All participants underwent a structural brain MRI scan at baseline, and cortical thickness was estimated in key cortical nodes of the salience network: the caudal anterior cingulate cortex and the insula. We measured baseline and post-treatment symptoms using the Apathy Evaluation Scale and the Hamilton Depression Rating Scale.ResultsA thicker insula at baseline predicted reduction in apathy symptoms following 12 weeks of treatment with escitalopram, even when controlling for age, baseline depression severity and change in depressive symptoms.ConclusionReduced insular thickness predicted residual apathetic symptoms following escitalopram treatment. These results converge with our previous findings of abnormal functional connectivity of the insular cortex in older depressed individuals with apathy. Older depressed adults with apathy may benefit from alternative treatment approaches or augmentative interventions that target abnormalities of the salience network.  相似文献   

8.
Reminders of mortality influence human social cognition, but whether and how reminders of mortality affect brain activity underlying social cognition remains unclear. To test whether increasing mortality salience modulates neural responses to others’ suffering, we scanned healthy adults who viewed video clips showing others in pain using functional magnetic resonance imaging. One group of participants were primed to increase mortality salience and another group were primed with negative affect in terms of fear/anxiety. We found that perceiving painful vs non-painful stimuli in the pre-priming session activated the midcingulate/dorsal medial prefrontal cortex (MCC/dMPFC), bilateral anterior insula/inferior frontal cortex, bilateral secondary somatosensory cortex and left middle temporal gyrus. However, MCC/dMPFC activity in response to perceived pain in others was significantly decreased in the post-priming session by the mortality salience priming, but was not influenced by the negative affect priming. Moreover, subjective fear of death induced by the priming procedures mediated the change in MCC/dMPFC activity across the priming procedures. Subjective fear of death also moderated the co-variation of MCC/dMPFC and left insular activity during perception of others in pain. Our findings indicate that reminders of mortality decrease neural responses to others’ suffering and this effect is mediated by the subjective fear of death.  相似文献   

9.
The afferent connections of the insula in the rhesus monkey were studied with axonal transport methods. Injections of horseradish peroxidase (HRP) in the insula revealed labeled neurons in the prefrontal cortex, the lateral orbital region, the frontopariefal operculum, the cingulate gyrus and adjacent medial cortex, the prepiriforrn olfactory cortex, the temporal pole, the cortex of the superior temporal sulcus, the rhinal cortex, the supratem-poral plane, and the posterior parietal lobe. Tritiated amino acid (TAA) injections in some of the cortical regions which contained retrogradely labeled neurons confirmed projections to the insula from prefrontal granular cortex, orbital frontal cortex, prepiriform cortex, temporal pole, rhinal cortex, cingulate gyrus, frontal operculum, and parietal cortex. In these studies, cortical areas that projected to the insula also projected to the claustrum. However, the topographic and quantitative relationships between the projections into the insula and those into the claustrum were inconsistent. Moreover, the claustrum has additional connections which it does not share with the insula. A selected review of the literature suggests that the claustrum and insula differ widely also with respect to ontogenesis and functional specialization.  相似文献   

10.
This resting-state functional magnetic resonance imaging (rs-fMRI) study investigated intrinsic brain abnormalities in irritable bowel syndrome (IBS) and effect of anxiety and depression. Thirty IBS patients and 31 matched healthy controls underwent rs-fMRI scanning. Regional brain activity was evaluated by measuring the amplitude of low-frequency fluctuation (ALFF) and compared between IBS patients and healthy controls with a two-sample t-test. Areas with abnormal ALFF were further used as seeds in subsequent inter-regional functional connectivity (FC) analysis. Statistical analyses were also performed by including anxiety and depression as covariates to evaluate their effect. Compared to healthy controls, IBS patients showed decreased ALFF in several core default mode network regions (medial prefrontal cortex [MPFC], posterior cingulate cortex [PCC], bilateral inferior parietal cortices [IPC]), and in middle frontal cortex, right orbital part of the superior frontal gyrus (ORBsup), dorsal anterior cingulate cortex (dACC), and ventral anterior cingulated cortex (vACC), while they showed increased ALFF in bilateral posterior insula and cuneus. In addition, IBS patients revealed decreased inter-regional positive FC between MPFC and right ORBsup, between vACC and PCC, as well as decreased negative FC between MPFC and left posterior insula, while they showed increased negative FC between MPFC and cuneus. The inclusion of anxiety and depression as covariates abolished ALFF differences in dACC and vACC, but none of the FC differences. In conclusion: IBS patients had disturbed intrinsic brain function. High levels of anxiety and depression in IBS patients could account for their decreased intrinsic brain activity in regions (the ACC) involved in affective processing.  相似文献   

11.
Acute sleep restriction heavily influences cognitive function, affecting executive processes such as attention, response inhibition, and memory. Previous neuroimaging studies have suggested a link between hippocampal activity and short-term memory function. However, the specific contribution of the hippocampus to the decline of short-term memory following sleep restriction has yet to be established. In the current study, we utilized resting-state functional magnetic resonance imaging (fMRI) to examine the association between hippocampal functional connectivity (FC) and the decline of short-term memory following total sleep deprivation (TSD). Twenty healthy adult males aged 20.9 ± 2.3 years (age range, 18–24 years) were enrolled in a within-subject crossover study. Short-term memory and FC were assessed using a Delay-matching short-term memory test and a resting-state fMRI scan before and after TSD. Seed-based correlation analysis was performed using fMRI data for the left and right hippocampus to identify differences in hippocampal FC following TSD. Subjects demonstrated reduced alertness and a decline in short-term memory performance following TSD. Moreover, fMRI analysis identified reduced hippocampal FC with the superior frontal gyrus (SFG), temporal regions, and supplementary motor area. In addition, an increase in FC between the hippocampus and bilateral thalamus was observed, the extent of which correlated with short-term memory performance following TSD. Our findings indicate that the disruption of hippocampal–cortical connectivity is linked to the decline in short-term memory observed after acute sleep restriction. Such results provide further evidence that support the cognitive impairment model of sleep deprivation.  相似文献   

12.
The insular cortex is one of the brain regions that show consistent abnormalities in both structural and functional neuroimaging studies of schizophrenia. In healthy individuals, the insula has been implicated in a myriad of physiologic functions. The anterior cingulate cortex (ACC) and insula together constitute the salience network, an intrinsic large-scale network showing strong functional connectivity. Considering the insula as a functional unit along with the ACC provides an integrated understanding of the role of the insula in information processing. In this review, we bring together evidence from imaging studies to understand the role of the salience network in schizophrenia and propose a model of insular dysfunction in psychosis.  相似文献   

13.
BackgroundSystemic inflammation and immune dysregulation have been considered as risk factors in the pathophysiology of mood disorders including bipolar disorder (BD). Previous neuroimaging studies have demonstrated metabolic, structural and functional abnormalities in the insula in BD, proposed that the insula played an important role in BD. We herein aimed to explore neural mechanisms underlying inflammation-induced in the insular subregions functional connectivity (FC) in patients with BD.MethodsBrain resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired from 41 patients with unmedicated BD II (current episode depressed), 68 healthy controls (HCs). Three pairs of insular seed regions were selected: the bilateral anterior insula (AI), the bilateral middle insula (MI) and the bilateral posterior insula (PI), and calculated the whole-brain FC for each subregion. Additionally, the serum levels of pro-inflammatory cytokines in patients and HCs, including IL-6 and TNF-α, were detected. Then the partial correlation coefficients between the abnormal insular subregions FC values and pro-inflammatory cytokines levels in patients with BD II depression were calculated.ResultsThe BD II depression group exhibited decreased FC between the right PI and the left postcentral gyrus, and increased FC between the left AI and the bilateral insula (extended to the right putamen) when compared with the HC group. Moreover, the patients with BD II depression showed higher IL-6 and TNF-α levels than HCs, and IL-6 level was negatively correlated with FC of the right PI to the left postcentral gyrus.ConclusionsOur results demonstrated that abnormal FC between the bilateral insula, and between the insula and sensorimotor areas in BD. Moreover, disrupted FC between the insula and sensorimotor areas was associated with elevated pro-inflammatory cytokine levels of IL-6 in BD.  相似文献   

14.
Irritable bowel syndrome (IBS) is characterized by visceral hypersensitivity likely related to altered processing of sensory stimuli along the brain-gut axis. Previous neuroimaging studies demonstrated structural and functional alteration of several brain areas involved in bodily representation, e.g. the insula, in patients with IBS. By means of resting-state functional magnetic resonance imaging (rs-fMRI) we searched for alteration of functional connectivity within the network involved in self-bodily consciousness. We found significant inverse correlation between hypochondriasis assessed through a clinical questionnaire and connectivity between posterior cingulate cortex and left supramarginal gyrus, extending into the adjacent superior temporal gyrus. Moreover, we observed a significant and positive correlation between a clinical questionnaire assessing interoception and connectivity between left anterior ventral insula and two clusters located in supramarginal gyrus bilaterally.Our findings highlight an “abnormal network synchrony” reflecting functional alteration, in the absence of structural and micro-structural changes, which might represent a possible therapeutic target for Irritable Bowel Syndrome.  相似文献   

15.
The insular cortex of macaques has a wide spectrum of anatomical connections whose distribution is related to its heterogeneous cytoarchitecture. Although there is evidence of a similar cytoarchitectural arrangement in humans, the anatomical connectivity of the insula in the human brain has not yet been investigated in vivo. In the present work, we used in vivo probabilistic white-matter tractography and Laplacian eigenmaps (LE) to study the variation of connectivity patterns across insular territories in humans. In each subject and hemisphere, we recovered a rostrocaudal trajectory of connectivity variation ranging from the anterior dorsal and ventral insula to the dorsal caudal part of the long insular gyri. LE suggested that regional transitions among tractography patterns in the insula occur more gradually than in other brain regions. In particular, the change in tractography patterns was more gradual in the insula than in the medial premotor region, where a sharp transition between different tractography patterns was found. The recovered trajectory of connectivity variation in the insula suggests a relation between connectivity and cytoarchitecture in humans resembling that previously found in macaques: tractography seeds from the anterior insula were mainly found in limbic and paralimbic regions and in anterior parts of the inferior frontal gyrus, while seeds from caudal insular territories mostly reached parietal and posterior temporal cortices. Regions in the putative dysgranular insula displayed more heterogeneous connectivity patterns, with regional differences related to the proximity with either putative granular or agranular regions.  相似文献   

16.
Failure to recognize insular cortex seizures has recently been identified as a cause of epilepsy surgeries targeting the temporal, parietal, or frontal lobe. Such failures are partly due to the fact that current noninvasive localization techniques fare poorly in recognizing insular epileptic foci. Our group recently demonstrated that magnetoencephalography (MEG) is sensitive to epileptiform spikes generated by the insula. In this study, we assessed the potential of distributed source imaging and functional connectivity analyses to distinguish insular networks underlying the generation of spikes. Nineteen patients with operculo‐insular epilepsy were investigated. Each patient underwent MEG as well as T1‐weighted magnetic resonance imaging (MRI) as part of their standard presurgical evaluation. Cortical sources of MEG spikes were reconstructed with the maximum entropy on the mean algorithm, and their time courses served to analyze source functional connectivity. The results indicate that the anterior and posterior subregions of the insula have specific patterns of functional connectivity mainly involving frontal and parietal regions, respectively. In addition, while their connectivity patterns are qualitatively similar during rest and during spikes, couplings within these networks are much stronger during spikes. These results show that MEG can establish functional connectivity‐based signatures that could help in the diagnosis of different subtypes of insular cortex epilepsy. Hum Brain Mapp 37:3250–3261, 2016. © 2016 Wiley Periodicals, Inc .  相似文献   

17.
以前额叶为种子点,利用静息态fMRI进行全脑时域相关的功能连接分析,观察长期海洛因成瘾者前额叶功能连接的变化。结果发现相比于正常对照,以左侧前额叶为种子点进行功能连接分析,海洛因成瘾者左侧前额叶与左侧海马、右侧前扣带回、左侧额中回、右侧额中回、右侧楔前叶功能连接明显降低;以右侧前额叶为种子点进行功能连接分析,海洛因成瘾者右侧前额叶与左侧眶额叶、左侧额中回功能连接明显降低。提示长期海洛因成瘾者前额叶与相关脑区的功能连接减弱,可能与海洛因成瘾的维持与戒断后复吸相关。  相似文献   

18.
The insula cortex and hypothalamus are implicated in eating behaviour, and contain receptor sites for peptides and hormones controlling energy balance. The insula encompasses multi‐functional subregions, which display differential anatomical and functional connectivities with the rest of the brain. This study aimed to analyse the effect of fasting and satiation on the functional connectivity profiles of left and right anterior, middle, and posterior insula, and left and right hypothalamus. It was hypothesized that the profiles would be altered alongside changes in homeostatic energy balance. Nineteen healthy participants underwent two 7‐min resting state functional magnetic resonance imaging scans, one when fasted and one when satiated. Functional connectivity between the left posterior insula and cerebellum/superior frontal gyrus, and between left hypothalamus and inferior frontal gyrus was stronger during fasting. Functional connectivity between the right middle insula and default mode structures (left and right posterior parietal cortex, cingulate cortex), and between right hypothalamus and superior parietal cortex was stronger during satiation. Differences in blood glucose levels between the scans accounted for several of the altered functional connectivities. The insula and hypothalamus appear to form a homeostatic energy balance network related to cognitive control of eating; prompting eating and preventing overeating when energy is depleted, and ending feeding or transferring attention away from food upon satiation. This study provides evidence of a lateralized dissociation of neural responses to energy modulations.  相似文献   

19.
ObjectiveDisruptions in cognition are a clinically significant feature of bipolar disorder (BD). The effects of different treatments on these deficits and the brain systems that support them remain to be established.MethodA continuous performance test was administered to 55 healthy controls and 71 acutely ill youths with mixed/manic BD to assess vigilance and working memory during task-based functional magnetic resonance imaging studies. Patients, who were untreated for at least 7 days at baseline, and controls were scanned at pretreatment baseline and at weeks 1 and 6. After baseline testing, patients (n = 71) were randomly assigned to 6-week double-blind treatment with lithium (n = 26; 1.0-1.2 mEq/L) or quetiapine (n = 45; 400-600 mg). Weighted seed-based connectivity (wSBC) was used to assess regional brain interactions during the attention task compared with the control condition.ResultsAt baseline, youths with BD showed reduced connectivity between bilateral anterior cingulate cortex and both left ventral lateral prefrontal cortex and left insula and increased connectivity between left ventral lateral prefrontal cortex and left temporal pole, left orbital frontal cortex and right postcentral gyrus, and right amygdala and right occipital pole compared with controls. At 1-week follow-up, quetiapine, but not lithium, treatment led to a significant shift of connectivity patterns toward those of the controls. At week 6, compared with baseline, there was no difference between treatment conditions, at which time both patient groups showed significant normalization of brain connectivity toward that of controls.ConclusionFunctional alterations in several brain regions associated with cognitive processing and the integration of cognitive and affective processing were demonstrated in untreated youths with BD before treatment. Treatment reduced several of these alterations, with significant effects at week 1 only in the quetiapine treatment group. Normalization of functional connectivity might represent a promising biomarker for early target engagement in youth with BD.Clinical trial registration informationMultimodal Neuroimaging of Treatment Effects in Adolescent Mania; https://clinicaltrials.gov/; NCT00893581.  相似文献   

20.
Functional magnetic resonance imaging studies have shown that the insular cortex has a significant role in pain identification and information integration, while the default mode network is associated with cognitive and memory-related aspects of pain perception. However, changes in the functional connectivity between the default mode network and insula during pain remain unclear. This study used 3.0 T functional magnetic resonance imaging scans in 12 healthy subjects aged 24.8 ± 3.3 years to compare the differences in the functional activity and connectivity of the insula and default mode network between the baseline and pain condition induced by intramuscular injection of hypertonic saline. Compared with the baseline, the insula was more functionally connected with the medial prefrontal and lateral temporal cortices, whereas there was lower connectivity with the posterior cingulate cortex, precuneus and inferior parietal lobule in the pain condition. In addition, compared with baseline, the anterior cingulate cortex exhibited greater connectivity with the posterior insula, but lower connectivity with the anterior insula, during the pain condition. These data indicate that experimental low back pain led to dysfunction in the connectivity between the insula and default mode network resulting from an impairment of the regions of the brain related to cognition and emotion, suggesting the importance of the interaction between these regions in pain processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号