首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate lung nodule segmentation from computed tomography (CT) images is of great importance for image-driven lung cancer analysis. However, the heterogeneity of lung nodules and the presence of similar visual characteristics between nodules and their surroundings make it difficult for robust nodule segmentation. In this study, we propose a data-driven model, termed the Central Focused Convolutional Neural Networks (CF-CNN), to segment lung nodules from heterogeneous CT images. Our approach combines two key insights: 1) the proposed model captures a diverse set of nodule-sensitive features from both 3-D and 2-D CT images simultaneously; 2) when classifying an image voxel, the effects of its neighbor voxels can vary according to their spatial locations. We describe this phenomenon by proposing a novel central pooling layer retaining much information on voxel patch center, followed by a multi-scale patch learning strategy. Moreover, we design a weighted sampling to facilitate the model training, where training samples are selected according to their degree of segmentation difficulty. The proposed method has been extensively evaluated on the public LIDC dataset including 893 nodules and an independent dataset with 74 nodules from Guangdong General Hospital (GDGH). We showed that CF-CNN achieved superior segmentation performance with average dice scores of 82.15% and 80.02% for the two datasets respectively. Moreover, we compared our results with the inter-radiologists consistency on LIDC dataset, showing a difference in average dice score of only 1.98%.  相似文献   

2.
Deep convolutional neural networks (CNNs) have been widely used for medical image segmentation. In most studies, only the output layer is exploited to compute the final segmentation results and the hidden representations of the deep learned features have not been well understood. In this paper, we propose a prototype segmentation (ProtoSeg) method to compute a binary segmentation map based on deep features. We measure the segmentation abilities of the features by computing the Dice between the feature segmentation map and ground-truth, named as the segmentation ability score (SA score for short). The corresponding SA score can quantify the segmentation abilities of deep features in different layers and units to understand the deep neural networks for segmentation. In addition, our method can provide a mean SA score which can give a performance estimation of the output on the test images without ground-truth. Finally, we use the proposed ProtoSeg method to compute the segmentation map directly on input images to further understand the segmentation ability of each input image. Results are presented on segmenting tumors in brain MRI, lesions in skin images, COVID-related abnormality in CT images, prostate segmentation in abdominal MRI, and pancreatic mass segmentation in CT images. Our method can provide new insights for interpreting and explainable AI systems for medical image segmentation. Our code is available on: https://github.com/shengfly/ProtoSeg.  相似文献   

3.
Recent work has shown that label-efficient few-shot learning through self-supervision can achieve promising medical image segmentation results. However, few-shot segmentation models typically rely on prototype representations of the semantic classes, resulting in a loss of local information that can degrade performance. This is particularly problematic for the typically large and highly heterogeneous background class in medical image segmentation problems. Previous works have attempted to address this issue by learning additional prototypes for each class, but since the prototypes are based on a limited number of slices, we argue that this ad-hoc solution is insufficient to capture the background properties. Motivated by this, and the observation that the foreground class (e.g., one organ) is relatively homogeneous, we propose a novel anomaly detection-inspired approach to few-shot medical image segmentation in which we refrain from modeling the background explicitly. Instead, we rely solely on a single foreground prototype to compute anomaly scores for all query pixels. The segmentation is then performed by thresholding these anomaly scores using a learned threshold. Assisted by a novel self-supervision task that exploits the 3D structure of medical images through supervoxels, our proposed anomaly detection-inspired few-shot medical image segmentation model outperforms previous state-of-the-art approaches on two representative MRI datasets for the tasks of abdominal organ segmentation and cardiac segmentation.  相似文献   

4.
Medical image segmentation based on deep-learning networks makes great progress in assisting disease diagnosis. However, currently, the training of most networks still requires a large amount of data with labels. In reality, labeling a considerable number of medical images is challenging and time-consuming. In order to tackle this challenge, a new one-shot segmentation framework for cardiac MRI images based on an inter-subject registration model called Alternating Union Network (AUN) is proposed in this study. The label of the source image is warped with deformation fields discovered from AUN to segment target images directly. Initially, the volumes are pre-processed by aligning affinely and adjusting the global intensity to simplify subsequent deformation registration. AUN consists of two kinds of subnetworks trained alternately to optimize segmentation gradually. The first kind of subnetwork takes a pair of volumes as inputs and registers them using global intensity similarity. The second kind of subnetwork, which takes the predicted labels generated from the previous subnetwork and the labels refined using the information of intrinsic anatomical structures of interest as inputs, is intensity-independent and focuses attention on registering structures of interest. Specifically, the input of AUN is a pair of a labeled image with the texture in regions of interest removed and a target image. Additionally, a new similarity measurement more appropriate for registering such image pair is defined as Local Squared Error (LSE). The proposed registration-based one-shot segmentation pays attention to the problem of the lack of labeled medical images. In AUN, only one labeled volume is required and a large number of unlabeled ones can be leveraged to improve segmentation performance, which has great advantages in clinical application. In addition, the intensity-independent subnetwork and LSE proposed in this study empower the framework to segment medical images with complicated intensity distribution.  相似文献   

5.
Conditional Random Fields (CRFs) are often used to improve the output of an initial segmentation model, such as a convolutional neural network (CNN). Conventional CRF approaches in medical imaging use manually defined features, such as intensity to improve appearance similarity or location to improve spatial coherence. These features work well for some tasks, but can fail for others. For example, in medical image segmentation applications where different anatomical structures can have similar intensity values, an intensity-based CRF may produce incorrect results. As an alternative, we propose Posterior-CRF, an end-to-end segmentation method that uses CNN-learned features in a CRF and optimizes the CRF and CNN parameters concurrently. We validate our method on three medical image segmentation tasks: aorta and pulmonary artery segmentation in non-contrast CT, white matter hyperintensities segmentation in multi-modal MRI, and ischemic stroke lesion segmentation in multi-modal MRI. We compare this with the state-of-the-art CNN-CRF methods. In all applications, our proposed method outperforms the existing methods in terms of Dice coefficient, average volume difference, and lesion-wise F1 score.  相似文献   

6.
Semantic instance segmentation is crucial for many medical image analysis applications, including computational pathology and automated radiation therapy. Existing methods for this task can be roughly classified into two categories: (1) proposal-based methods and (2) proposal-free methods. However, in medical images, the irregular shape-variations and crowding instances (e.g., nuclei and cells) make it hard for the proposal-based methods to achieve robust instance localization. On the other hand, ambiguous boundaries caused by the low-contrast nature of medical images (e.g., CT images) challenge the accuracy of the proposal-free methods. To tackle these issues, we propose a proposal-free segmentation network with discriminative deep supervision (DDS), which at the same time allows us to gain the power of the proposal-based method. The DDS module is interleaved with a carefully designed proposal-free segmentation backbone in our network. Consequently, the features learned by the backbone network become more sensitive to instance localization. Also, with the proposed DDS module, robust pixel-wise instance-level cues (especially structural information) are introduced for semantic segmentation. Extensive experiments on three datasets, i.e., a nuclei dataset, a pelvic CT image dataset, and a synthetic dataset, demonstrate the superior performance of the proposed algorithm compared to the previous works.  相似文献   

7.
Domain shift, a phenomenon when there exists distribution discrepancy between training dataset (source domain) and test dataset (target domain), is very common in practical applications and may cause significant performance degradation, which hinders the effective deployment of deep learning models to clinical settings. Adaptation algorithms to improve the model generalizability from source domain to target domain has significant practical value. In this paper, we investigate unsupervised domain adaptation (UDA) technique to train a cross-domain segmentation method which is robust to domain shift, and which does not require any annotations on the test domain. To this end, we propose Cycle-consistent Cross-domain Medical Image Segmentation, referred as CyCMIS, integrating online diverse image translation via disentangled representation learning and semantic consistency regularization into one network. Different from learning one-to-one mapping, our method characterizes the complex relationship between domains as many-to-many mapping. A novel diverse inter-domain semantic consistency loss is then proposed to regularize the cross-domain segmentation process. We additionally introduce an intra-domain semantic consistency loss to encourage the segmentation consistency between the original input and the image after cross-cycle reconstruction. We conduct comprehensive experiments on two publicly available datasets to evaluate the effectiveness of the proposed method. Results demonstrate the efficacy of the present approach.  相似文献   

8.
Although having achieved great success in medical image segmentation, deep learning-based approaches usually require large amounts of well-annotated data, which can be extremely expensive in the field of medical image analysis. Unlabeled data, on the other hand, is much easier to acquire. Semi-supervised learning and unsupervised domain adaptation both take the advantage of unlabeled data, and they are closely related to each other. In this paper, we propose uncertainty-aware multi-view co-training (UMCT), a unified framework that addresses these two tasks for volumetric medical image segmentation. Our framework is capable of efficiently utilizing unlabeled data for better performance. We firstly rotate and permute the 3D volumes into multiple views and train a 3D deep network on each view. We then apply co-training by enforcing multi-view consistency on unlabeled data, where an uncertainty estimation of each view is utilized to achieve accurate labeling. Experiments on the NIH pancreas segmentation dataset and a multi-organ segmentation dataset show state-of-the-art performance of the proposed framework on semi-supervised medical image segmentation. Under unsupervised domain adaptation settings, we validate the effectiveness of this work by adapting our multi-organ segmentation model to two pathological organs from the Medical Segmentation Decathlon Datasets. Additionally, we show that our UMCT-DA model can even effectively handle the challenging situation where labeled source data is inaccessible, demonstrating strong potentials for real-world applications.  相似文献   

9.
Despite recent progress of automatic medical image segmentation techniques, fully automatic results usually fail to meet clinically acceptable accuracy, thus typically require further refinement. To this end, we propose a novel Volumetric Memory Network, dubbed as VMN, to enable segmentation of 3D medical images in an interactive manner. Provided by user hints on an arbitrary slice, a 2D interaction network is firstly employed to produce an initial 2D segmentation for the chosen slice. Then, the VMN propagates the initial segmentation mask bidirectionally to all slices of the entire volume. Subsequent refinement based on additional user guidance on other slices can be incorporated in the same manner. To facilitate smooth human-in-the-loop segmentation, a quality assessment module is introduced to suggest the next slice for interaction based on the segmentation quality of each slice produced in the previous round. Our VMN demonstrates two distinctive features: First, the memory-augmented network design offers our model the ability to quickly encode past segmentation information, which will be retrieved later for the segmentation of other slices; Second, the quality assessment module enables the model to directly estimate the quality of each segmentation prediction, which allows for an active learning paradigm where users preferentially label the lowest-quality slice for multi-round refinement. The proposed network leads to a robust interactive segmentation engine, which can generalize well to various types of user annotations (e.g., scribble, bounding box, extreme clicking). Extensive experiments have been conducted on three public medical image segmentation datasets (i.e., MSD, KiTS19, CVC-ClinicDB), and the results clearly confirm the superiority of our approach in comparison with state-of-the-art segmentation models. The code is made publicly available at https://github.com/0liliulei/Mem3D.  相似文献   

10.
In recent years, deep learning technology has shown superior performance in different fields of medical image analysis. Some deep learning architectures have been proposed and used for computational pathology classification, segmentation, and detection tasks. Due to their simple, modular structure, most downstream applications still use ResNet and its variants as the backbone network. This paper proposes a modular group attention block that can capture feature dependencies in medical images in two independent dimensions: channel and space. By stacking these group attention blocks in ResNet-style, we obtain a new ResNet variant called ResGANet. The stacked ResGANet architecture has 1.51–3.47 times fewer parameters than the original ResNet and can be directly used for downstream medical image segmentation tasks. Many experiments show that the proposed ResGANet is superior to state-of-the-art backbone models in medical image classification tasks. Applying it to different segmentation networks can improve the baseline model in medical image segmentation tasks without changing the network architecture. We hope that this work provides a promising method for enhancing the feature representation of convolutional neural networks (CNNs) in the future.  相似文献   

11.
Segmentation of organs or lesions from medical images plays an essential role in many clinical applications such as diagnosis and treatment planning. Though Convolutional Neural Networks (CNN) have achieved the state-of-the-art performance for automatic segmentation, they are often limited by the lack of clinically acceptable accuracy and robustness in complex cases. Therefore, interactive segmentation is a practical alternative to these methods. However, traditional interactive segmentation methods require a large number of user interactions, and recently proposed CNN-based interactive segmentation methods are limited by poor performance on previously unseen objects. To solve these problems, we propose a novel deep learning-based interactive segmentation method that not only has high efficiency due to only requiring clicks as user inputs but also generalizes well to a range of previously unseen objects. Specifically, we first encode user-provided interior margin points via our proposed exponentialized geodesic distance that enables a CNN to achieve a good initial segmentation result of both previously seen and unseen objects, then we use a novel information fusion method that combines the initial segmentation with only a few additional user clicks to efficiently obtain a refined segmentation. We validated our proposed framework through extensive experiments on 2D and 3D medical image segmentation tasks with a wide range of previously unseen objects that were not present in the training set. Experimental results showed that our proposed framework 1) achieves accurate results with fewer user interactions and less time compared with state-of-the-art interactive frameworks and 2) generalizes well to previously unseen objects.  相似文献   

12.
High performance of deep learning models on medical image segmentation greatly relies on large amount of pixel-wise annotated data, yet annotations are costly to collect. How to obtain high accuracy segmentation labels of medical images with limited cost (e.g. time) becomes an urgent problem. Active learning can reduce the annotation cost of image segmentation, but it faces three challenges: the cold start problem, an effective sample selection strategy for segmentation task and the burden of manual annotation. In this work, we propose a Hybrid Active Learning framework using Interactive Annotation (HAL-IA) for medical image segmentation, which reduces the annotation cost both in decreasing the amount of the annotated images and simplifying the annotation process. Specifically, we propose a novel hybrid sample selection strategy to select the most valuable samples for segmentation model performance improvement. This strategy combines pixel entropy, regional consistency and image diversity to ensure that the selected samples have high uncertainty and diversity. In addition, we propose a warm-start initialization strategy to build the initial annotated dataset to avoid the cold-start problem. To simplify the manual annotation process, we propose an interactive annotation module with suggested superpixels to obtain pixel-wise label with several clicks. We validate our proposed framework with extensive segmentation experiments on four medical image datasets. Experimental results showed that the proposed framework achieves high accuracy pixel-wise annotations and models with less labeled data and fewer interactions, outperforming other state-of-the-art methods. Our method can help physicians efficiently obtain accurate medical image segmentation results for clinical analysis and diagnosis.  相似文献   

13.
We present our novel deep multi-task learning method for medical image segmentation. Existing multi-task methods demand ground truth annotations for both the primary and auxiliary tasks. Contrary to it, we propose to generate the pseudo-labels of an auxiliary task in an unsupervised manner. To generate the pseudo-labels, we leverage Histogram of Oriented Gradients (HOGs), one of the most widely used and powerful hand-crafted features for detection. Together with the ground truth semantic segmentation masks for the primary task and pseudo-labels for the auxiliary task, we learn the parameters of the deep network to minimize the loss of both the primary task and the auxiliary task jointly. We employed our method on two powerful and widely used semantic segmentation networks: UNet and U2Net to train in a multi-task setup. To validate our hypothesis, we performed experiments on two different medical image segmentation data sets. From the extensive quantitative and qualitative results, we observe that our method consistently improves the performance compared to the counter-part method. Moreover, our method is the winner of FetReg Endovis Sub-challenge on Semantic Segmentation organised in conjunction with MICCAI 2021. Code and implementation details are available at:https://github.com/thetna/medical_image_segmentation.  相似文献   

14.
Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques.  相似文献   

15.
医学影像是放射科医生做出医学诊断的重要依据。但随着医学影像技术的快速发展, 逐渐增多的影像图像和复杂的图像信息对医生的工作产生了巨大的挑战。而深度学习是人工智能研究中最热门的领域, 在处理大数据和提取有效信息方面具有优势, 因此逐渐成为分析医学影像方面的首选方法。本文阐述了深度学习的概念, 并简要总结深度学习在医学影像中的常见模型, 包括卷积神经网络、循环神经网络、深度置信网络和自动编码器。卷积神经网络的基本结构是卷积层、池化层和全连接层; 循环神经网络由输入层、隐藏层和输出层组成; 深度置信网络的基础是玻尔兹曼机; 自动编码器包含编码层、隐藏层和解码层。通过对CT肺结节和MRI脑部疾病的分类, 阐明目前深度学习在疾病自动分类上准确性较高; 通过分割左心室、椎旁肌肉和肝脏的结构, 可见深度学习方法在医学图像分割上与人为分割具有一致性; 深度学习在肺结节和乳腺癌疾病的检测上已相对成熟。但目前为止, 仍存在标注的样本量少和过拟合的问题, 希望通过共享图像数据库来解决此问题。总之, 深度学习在医学影像中具有广阔前景, 且对临床医生的工作具有重大意义。   相似文献   

16.
Objectives Image processing tools are often embedded in larger systems. Validation of image processing methods is important because the performance of such methods can have an impact on the performance of the larger systems and consequently on decisions and actions based on the use of these systems. Most validation studies compare the direct or indirect results of a method with a reference that is assumed to be very close or equal to the correct solution. In this paper, we propose a model for defining and reporting reference-based validation protocols in medical image processing. Materials and methods The model was built using an ontological approach. Its components were identified from the analysis of initial publications (mainly reviews) on medical image processing, especially registration and segmentation, and from discussions with experts from the medical imaging community during international conferences and workshops. The model was validated by its instantiation for 38 selected papers that include a validation study, mainly for medical image registration and segmentation. Results The model includes the main components of a validation procedure and their inter-relationships. A checklist for reporting reference-based validation studies for medical image processing was also developed. Conclusion The proposed model and associated checklist may be used in formal reference-based validation studies of registration and segmentation and for the complete and accurate reporting of such studies. The model facilitates the standardization of validation terminology and methodology, improves the comparison of validation studies and results, provides insight into the validation process, and, finally, may lead to better quality image management and decision making.  相似文献   

17.
Automatic segmentation of organs at risk is crucial to aid diagnoses and remains a challenging task in medical image analysis domain. To perform the segmentation, we use multi-task learning (MTL) to accurately determine the contour of organs at risk in CT images. We train an encoder-decoder network for two tasks in parallel. The main task is the segmentation of organs, entailing a pixel-level classification in the CT images, and the auxiliary task is the multi-label classification of organs, entailing an image-level multi-label classification of the CT images. To boost the performance of the multi-label classification, we propose a weighted mean cross entropy loss function for the network training, where the weights are the global conditional probability between two organs. Based on MTL, we optimize the false positive filtering (FPF) algorithm to decrease the number of falsely segmented organ pixels in the CT images. Specifically, we propose a dynamic threshold selection (DTS) strategy to prevent true positive rates from decreasing when using the FPF algorithm. We validate these methods on the public ISBI 2019 segmentation of thoracic organs at risk (SegTHOR) challenge dataset and a private medical organ dataset. The experimental results show that networks using our proposed methods outperform basic encoder-decoder networks without increasing the training time complexity.  相似文献   

18.
Semi-Supervised classification and segmentation methods have been widely investigated in medical image analysis. Both approaches can improve the performance of fully-supervised methods with additional unlabeled data. However, as a fundamental task, semi-supervised object detection has not gained enough attention in the field of medical image analysis. In this paper, we propose a novel Semi-Supervised Medical image Detector (SSMD). The motivation behind SSMD is to provide free yet effective supervision for unlabeled data, by regularizing the predictions at each position to be consistent. To achieve the above idea, we develop a novel adaptive consistency cost function to regularize different components in the predictions. Moreover, we introduce heterogeneous perturbation strategies that work in both feature space and image space, so that the proposed detector is promising to produce powerful image representations and robust predictions. Extensive experimental results show that the proposed SSMD achieves the state-of-the-art performance at a wide range of settings. We also demonstrate the strength of each proposed module with comprehensive ablation studies.  相似文献   

19.
20.
Clinical diagnosis of the pediatric musculoskeletal system relies on the analysis of medical imaging examinations. In the medical image processing pipeline, semantic segmentation using deep learning algorithms enables an automatic generation of patient-specific three-dimensional anatomical models which are crucial for morphological evaluation. However, the scarcity of pediatric imaging resources may result in reduced accuracy and generalization performance of individual deep segmentation models. In this study, we propose to design a novel multi-task, multi-domain learning framework in which a single segmentation network is optimized over the union of multiple datasets arising from distinct parts of the anatomy. Unlike previous approaches, we simultaneously consider multiple intensity domains and segmentation tasks to overcome the inherent scarcity of pediatric data while leveraging shared features between imaging datasets. To further improve generalization capabilities, we employ a transfer learning scheme from natural image classification, along with a multi-scale contrastive regularization aimed at promoting domain-specific clusters in the shared representations, and multi-joint anatomical priors to enforce anatomically consistent predictions. We evaluate our contributions for performing bone segmentation using three scarce and pediatric imaging datasets of the ankle, knee, and shoulder joints. Our results demonstrate that the proposed approach outperforms individual, transfer, and shared segmentation schemes in Dice metric with statistically sufficient margins. The proposed model brings new perspectives towards intelligent use of imaging resources and better management of pediatric musculoskeletal disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号