首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study was undertaken to examine if glutathione S-transferase (GST) M1, M3, P1, and T1 genotypes affected breast cancer risk in Finnish women. The study population consisted of 483 incident breast cancer cases and 482 healthy population controls. Genotyping analyses were performed by PCR-based methods, and odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by unconditional logistic regression adjusting for known or suspected risk factors for breast cancer. When the genes were studied separately, the only significant finding was between GSTM1 null genotype and postmenopausal breast cancer risk (OR, 1.49; 95% CI, 1.03-2.15). Conversely, when the potential combined effects of the at-risk genotypes were examined, significant associations were observed only among premenopausal women. Although only a moderate risk of breast cancer was seen for premenopausal women concurrently carrying the GSTM3*B allele containing genotypes and the GSTP1 Ile/ Ile genotype (OR, 2.07; 95% CI, 1.02-4.18), the risk rose steeply if they simultaneously lacked the GSTT1 gene (OR, 9.93, 95% CI, 1.10-90.0). A borderline significant increase in the risk of breast cancer was also seen for premenopausal women with the combination of GSTM1 null, GSTP1 Ile/Ile, and GSTT1 null genotypes (OR, 3.96; 95% CI, 0.99-15.8). Our findings support the view that GST genotypes contribute to the individual breast cancer risk, especially in certain combinations.  相似文献   

2.
Sequence variation in the GSTM1, GSTT1, GSTP1, and CYP1A1 genes may potentially alter susceptibility to head and neck cancers, although evidence from previous studies has not been consistent. To explore these associations, we conducted a meta-analysis of 31 published case-control studies (4635 cases and 5770 controls) and a pooled analysis of original data from nine published and two unpublished case-control studies (2334 cases and 2766 controls). In the meta-analysis, the summary odds ratios (ORs) for head and neck cancer were 1.23 [95% confidence interval (95% CI), 1.06-1.42] for the GSTM1 null genotype, 1.17 (95% CI, 0.98-1.40) for the GSTT1 null genotype, 1.10 (95% CI, 0.92-1.31) for carrying the GSTP1 Val105 allele, and 1.35 (95% CI, 0.95-1.82) for carrying the CYP1A1 Val462 allele. The pooled analysis ORs were 1.32 (95% CI, 1.07-1.62) for the GSTM1 null genotype, 1.25 (95% CI, 1.00-1.57) for the GSTT1 null genotype, 1.15 (95% CI, 0.86-1.53) for carrying the GSTP1 Val105 allele, and 0.98 (95% CI, 0.75-1.29) for carrying the CYP1A1 Val462 allele. Increasing risk of head and neck cancer was observed with inheritance of increasing numbers of modest risk genotypes at the three GST loci (P for trend = 0.04), with the combination of carrying the GSTM1 null, GSTT1 null, and GSTP1 Val105 alleles conferring an OR of 2.06 (95% CI, 1.11-3.81). In conclusion, both the meta- and pooled analysis support modest associations of GSTM1 and GSTT1 genotypes with head and neck cancer risk, and our pooled analysis supports the notion of greater risk when genotypes at multiple GST loci are considered in a multigenic model.  相似文献   

3.
Glutathione S-transferases(GSTs) are detoxification enzymes that provide critical defense against carcinogens. Our hypothesis was that altered frequencies of GST genotypes and environmental exposures might be associated with increased susceptibility for the development of esophageal cancer. A total of 100 esophageal cancer patients and 137 age and gender matched healthy controls were analyzed for GST polymorphisms. Frequencies of GSTT1 null, GSTM1 null and GSTP1 genotypes did not differ between patients and controls. However, a two-fold risk was observed for GSTM1 null genotype in adenocarcinoma (OR(odds ratio) 2.1; 95% CI(confidence intervals)=0.53-8.6). Further, we used a case only design to study gene-environment interactions in esophageal cancer. In patients with smoking habits, GSTM1 null and GSTP1 ile/ile genotype were at higher risk for esophageal cancer (OR 1.5; 95% CI=0.50-4.4 and OR 1.3; 95% CI=0.40-3.5), respectively. A moderate risk for cancer was observed from alcohol usage along with GSTM1 null(OR 1.3; 95% CI=0.50-3.6) and GSTP1 val/val genotypes(OR 1.2; 95% CI=0.20-5.7). Interaction of GST genotypes with occupational exposure did not affect risk for esophageal cancer. These findings suggest that genetic polymorphisms of GSTT1, GSTM1, and GSTP1 are not associated with higher risk of esophageal cancer. However, interaction of smoking or alcohol with GSTM1 null or GSTP1 ile/ile moderately increases the risk for esophageal cancer in North Indian population.  相似文献   

4.
Isothiocyanates are anticarcinogenic phytochemicals found in cruciferous vegetables that both induce and are substrates for the gluthatione S-transferases (GSTs). The GSTs are phase II metabolizing enzymes involved in metabolism of various bioactive compounds. Functional polymorphisms in GST genes have been identified and may interact with cruciferous vegetable intake to affect cancer risk. We examined this hypothesis using data from the Long Island Breast Cancer Study Project, a population-based case-control study conducted in Long Island, NY, from 1996 to 1997. Cruciferous vegetable intake in the previous year was assessed via modified Block food frequency questionnaire. DNA was extracted from blood samples (n = 1052 cases and n = 1098 controls) and genotyped for GSTM1 deletion, GSTT1 deletion and GSTP1 Ile105Val using multiplex polymerase chain reaction and Taqman assays. Unconditional logistic regression was used to estimate adjusted odds ratios (ORs) and 95% confidence intervals (CI). We found an 86% increase in the OR for breast cancer among carriers of the GSTM1 null, GSTT1 null and GSTP 105Ile/Ile genotypes (OR = 1.86, 95% CI = 1.12, 3.08) and a 36% decrease in the OR among carriers of GSTM1 present, GSTT1 null and GSTP1 105Ile/Val + Val/Val genotypes (OR = 0.64, 95% CI = 0.42, 0.97) compared with GSTM1 present, GSTT1 present and GSTP1 105Ile/Ile carriers. We found no joint effects among GST polymorphisms and cruciferous vegetable intake and breast cancer risk. In conclusion, we found associations between specific combinations of three GST gene polymorphisms and breast cancer risk but these did not modify the association between cruciferous vegetable intake and breast cancer. Additional studies are needed to confirm the associations observed.  相似文献   

5.
We have previously found marine n-3 fatty acids to be inversely related to post-menopausal breast cancer in Chinese women from Singapore. Post-menopausal women with high [quartiles 2-4 (Q2-Q4)] versus low [quartile 1 (Q1)] intake exhibited a statistically significant reduction in risk of breast cancer after adjustment for potential confounders [relative risk (RR) = 0.66, 95% confidence interval (CI) = 0.50, 0.87]. Experimental studies have demonstrated a direct role for the peroxidation products of marine n-3 fatty acids in breast cancer protection. There is a suggestion that the glutathione S-transferases (GSTs) may be major catalysts in the elimination of these beneficial by-products. Therefore, we hypothesized that individuals possessing the low activity genotypes of GSTM1, GSTT1 and/or GSTP1 (i.e. the GSTM1 null, GSTT1 null and GSTP1 AB/BB genotypes, respectively) may exhibit a stronger marine n-3 fatty acid-breast cancer association than their high activity counterparts. The Singapore Chinese Health Study is a prospective investigation involving 35,298 middle-aged and older women, who were enrolled between April 1993 and December 1998. In this case-control analysis, nested within the Singapore Chinese Health Study, we compared 258 incident breast cancer cases with 670 cohort controls. Overall, breast cancer risk was unrelated to GSTM1 and GSTP1 genotypes. However, the GSTT1 null genotype was associated with a 30% reduced risk of breast cancer [odds ratio (OR) = 0.71, 95% CI = 0.52, 0.96]. Among women with high activity GST genotypes (i.e. GSTM1 positive, GSTT1 positive and GSTP1 AA), no marine n-3 fatty acid-breast cancer relationships were observed in either pre-menopausal or post-menopausal women at baseline. However, post-menopausal women possessing the combined GSTM1 null and GSTP1 AB/BB genotypes showed a statistically significant reduction in risk after adjustment for potential confounders (Q2-Q4 versus Q1, OR = 0.36, 95% CI = 0.14, 0.94). A similar relationship was observed among women with the combined GSTT1 null and GSTP1 AB/BB genotypes (OR = 0.26, 95% CI = 0.08, 0.78).  相似文献   

6.
The glutathione S-transferase (GST) genes are involved in the metabolism of various carcinogens. Deletion polymorphisms in the GSTM1 and GSTT1 genes and an A-G polymorphism in the GSTP1 gene were investigated in relation to breast cancer risk in 500 breast cancer patients and 395 controls. The effects of the GST genotypes on the frequency and pattern of p53 mutations in 388 breast carcinomas were also studied. A suggestive trend of increasing risk of breast cancer with increasing number of G alleles of the GSTP1 was observed (P for trend, 0.11). The GSTM1 and GSTT1 polymorphisms did not show an association with breast cancer. No increase in risk was observed with a combination of genotypes. A statistically significant association was observed between the GSTT1 genotype and p53 mutation status of the tumors, with patients carrying the GSTT1 null genotype more frequently having mutations in the p53 gene compared with patients with a GSTT1 gene present (24.6% versus 12.4%; P = 0.019). There was also a suggestive trend for the GG genotype of the GSTP1 gene, but it was not statistically significant (P = 0.19). No association was observed with the type or location of mutations. We conclude that the GSTP1 and GSTT1 genes could play a role in carcinogenesis in the breast, possibly through increased frequency of mutations in tumor suppressor genes such as p53.  相似文献   

7.
The glutathione S-transferases (GSTs) are a superfamily of genes whose products are phase II enzymes, catalyzing the conjugation of reactive intermediates to soluble glutathione. Some of the GSTs are polymorphic and may play a role in lung cancer susceptibility. We investigated whether genetic polymorphisms of GSTM1, GSTP1 and GSTT1 genes modulated lung cancer risk and affect survival among lung cancer patients. We determined the GST genotypes in 422 study subjects, using polymerase chain reaction (PCR) and reverse PCR and restriction fragment length polymorphism (RFLP). Logistic Regression analysis was carried out to find the association of various polymorphisms and GSTs and lung cancer. The influence of the genetic polymorphisms on patient survival was estimated using the method of Kaplan-Meier survival function. Cox Proportional Hazard models were used to estimate hazard ratios (HR) for deaths. GSTT1 -/- genotype conferred a higher odds ratio of 2.9 (P = 0.001) compared to the GSTT1+/+. So also, the GSTP1 GG genotype too had higher risk compared to the GSTP1 AA genotype (OR = 2.3, P = 0.033). When the combined GST M1, GSTT1 and GSTP1 genotypes were examined, patients with the combinations GSTM1 null and GSTT1 null had a significant OR of 3.6. So also the combinations GSTT1-/- GSTP1 AA (P = 0.005) and GSTT1-/- GSTP1 AG/GG (P = 0.001) came out to be significant. There were some significant interactions between GST genotypes with tobacco smoking and also for clinicopathological factors. Regarding survival analysis, no association of GSTM1 or GSTP1 genes with survival was noted. The GSTT1 -/- genotype along with stage was significantly associated with overall survival and found to be an independent prognostic factors for shorter lung cancer survival.  相似文献   

8.
PURPOSE: We studied the relation of breast cancer to common deletion mutations in GSTM1 and GSTT1 and the functional Ile(105)Val polymorphism in GSTP1 in a large, population-based case-control study conducted in China and performed a meta-analysis to summarize the literature. EXPERIMENTAL DESIGN: In the case-control study, a total of 1144 breast cancer cases and 1221 community controls were genotyped for GSTM1, GSTP1, and GSTT1 using PCR-based methods. Associations of genotypes and breast cancer were evaluated in logistic regression models. Meta-analysis odds ratios (ORs) were estimated using a fixed effects model. RESULTS: In the case-control study, associations were null for GSTM1 [age-adjusted OR 0.97, 95% confidence interval (CI): 0.82-1.14] and GSTT1 (OR 0.97, 95% CI: 0.83-1.15). A significant increase in risk was observed among homozygotes for the variant Ile(105)Val polymorphism (OR 1.92, 95% CI: 1.21-3.04). No combined effects of GSTM1, GSTP1, and GSTT1 genotypes or interactions with potential effect modifiers were detected. All results were similar in pre- and postmenopausal women and for early versus advanced stage breast cancer. The meta-analysis, based predominantly on Caucasian women, supported null results for the homozygous deletion variant in GSTM1 (summary OR 1.05; combining 19 studies) and GSTT1 (summary OR 1.11; 15 studies). Meta-analysis results for the homozygous GSTP1 variant indicated no overall association (summary OR 1.04; 10 studies), although results varied significantly across studies (P = 0.009). CONCLUSIONS: This large case-control study provides strong support for earlier studies showing no overall association of the GSTM1 and GSTT1 deletion polymorphisms with breast cancer risk. The GSTP1 variant may be relevant to breast cancer risk in Asian populations.  相似文献   

9.
The glutathione S-transferase (GST) genes are involved in the metabolism of various carcinogens. Deletion polymorphisms in the genes GSTM1 and GSTT1 and a base transition polymorphism at codon 105 (Ile-->Val) in GSTP1 were investigated in relation to breast cancer risk. Tobacco smoking and reproductive factors were examined as potential effect modifiers. Individual data from seven case-control studies were pooled within the International Collaborative Study on Genetic Susceptibility to Environmental Carcinogens. To measure the effect of GSTs on breast cancer risk, odds ratios and 95% confidence intervals were computed adjusting for study center and age. The modifying effect was investigated by stratification on variables of smoking habits and reproductive history. A total of 2,048 cases with breast cancer and 1,969 controls were analyzed. The relative odds ratio (95% confidence interval) of breast cancer was 0.98 (0.86-1.12) with the GSTM1 null, 1.11 (0.87-1.41) with the GSTT1 null, 1.01 (0.79-1.28) with GSTP1 heterozygous mutants, and 0.93 (0.62-1.38) with GSTP1 homozygous mutants. Stratification by smoking or reproductive factors did not reveal a modifying effect of these variables, nor was there any association between GSTM1 and age at diagnosis of breast cancer. This is the largest study investigating susceptibility to breast cancer due to polymorphisms in the GST genes. The results conclusively show that single gene GST polymorphisms do not confer a substantial risk of breast cancer to its carriers. Furthermore, GSTs did not interact with smoking or reproductive history to modify cancer risk.  相似文献   

10.
Glutathione s-transferase (GST) polymorphisms (GSTM1, GSTP1 and GSTT1) have been considered as risk factors for developing acute leukaemia in a number of studies; however the overall results of such studies are inconsistent. To investigate a putative association of GST polymorphisms with the risk of acute leukaemia, we performed a systematic review and meta-analysis of 30 published case-control studies. To take into account the possibility of heterogeneity across the studies, a statistical test was performed. The pooled odds ratios (ORs) were assessed using both a fixed-effects and a random-effects model. The pooled OR of acute leukaemia risks associated with GSTM1 null genotype, GSTP1 Val105 allele and GSTT1 null genotype were 1.22 (95% confidence interval (CI) 1.07-1.38), 1.07 (95% CI 1.00-1.13) and 1.19 (95% CI 1.00-1.41), respectively. Significantly increased risk of acute lymphoblastic leukaemia associated with GSTM1 and GSTT1 null genotypes was observed. Their pooled ORs were 1.24 (95% CI 1.17-1.31) and 1.30 (95% CI 1.06-1.60), respectively. We also found substantial evidence of heterogeneity between the studies. Our results suggest that GSTM1 and GSTT1, but not GSTP1 polymorphisms, appear to be associated with a modest increase in the risk of acute lymphoblastic leukaemia. It is conceivable that GSTM1 and GSTT1 null genotypes may thus play a role in leukemogenesis. A review of the 30 case-control studies indicates that greater attention should be paid to the design of future studies.  相似文献   

11.
The glutathione S-transferase (GST) gene superfamily encodes for enzymes involved in conjugation of electrophilic compounds to glutathione. Several polymorphisms in the GST genes have been implicated as risk factors for prostate cancer. We did a meta-analysis of 11 studies with GSTM1 genotyping (2,063 prostate cancer cases and 2,625 controls), 10 studies with GSTT1 genotyping (1,965 cases and 2,554 controls), and 12 studies with GSTP1 genotyping (2,528 cases and 3,076 controls). The random effects odds ratio was 1.08 [95% confidence interval (95% CI), 0.93-1.25, no significant between-study heterogeneity] for the GSTM1 null versus nondeleted genotype and 0.90 (95% CI, 0.73-1.12; P = 0.03 for heterogeneity) for the GSTT1 null versus nondeleted genotype. Overall, the random effects odds ratio was 1.05 (95% CI, 0.90-1.21; P < 0.01 for heterogeneity) for the GSTP1-Val versus GSTP1-Ile allele. For all three polymorphisms, there was a trend for the presence of an association in the earliest published studies, but this did not seem to be validated in subsequent research. For GSTT1, larger studies gave different results than smaller ones. The meta-analysis shows that these three polymorphisms are unlikely to be major determinants of susceptibility to prostate cancer on a wide population basis.  相似文献   

12.
Resistance to chemotherapy represents one of the most important causes of treatment failure in patients with ovarian cancer. Common polymorphisms in the glutathione-S-transferase (GSTM1, GSTP1 and GSTT1) family have been implicated in chemoresistence and ovarian cancer survival. In this study, we have analysed Australian women diagnosed with primary invasive epithelial ovarian cancer between 1985 and 1997, using DNA extracted from peripheral blood and archival uninvolved (normal) tissues. GSTP1 genotypes were determined using ABI Prism 7700 Sequence Detection System methodology (n=448) and GSTT1 and GSTM1 genotypes using PCR-agarose methodology (n=239). We observed a significant survival advantage among carriers of GSTP1 Ile105Val GG/GA genotype (HR 0.77, 95% confidence interval (CI) 0.61-0.99,p=0.04) and a non-significant survival advantage among women who were homozygous for the GSTM1 and GSTT1 deletion variants. There was also evidence of an additive effect, with a stronger survival benefit in women carrying three low function GST genotypes (GSTM1 null, GSTT1 null and GSTP1 GA/GG) (HR 0.47, 95% CI 0.22-1.02). The results of this study, the largest to date, are consistent with a number of previous smaller studies which have also observed that reduced GST function was associated with better survival outcomes in patients with ovarian cancer.  相似文献   

13.
Glutathione S-transferases (GSTs) catalyse reactions between glutathione and lipophilic compounds with electrophilic centres, leading to neutralisation of toxic compounds, xenobiotics and products of oxidative stress. Controversy exists about whether GST polymorphisms (GSTM1 null/present genotype, GSTT1 null/present genotype, GSTP1 Ile105Val and GSTA11A/1B) represent risk factors for colorectal cancer. This meta-analysis aims to examine the associations between the above-mentioned polymorphisms and colorectal cancer risk. Forty-four studies were eligible for GSTM1 (11,998 colorectal cancer cases, 17,552 controls), 34 studies for GSTT1 (8596 cases, 13,589 controls), 19 studies for GSTP1 (5421 cases, 7671 controls) and four studies for GSTA1 polymorphism (1648 cases, 2039 controls). Pooled odds ratios (ORs) were appropriately derived from fixed-effects or random-effects models. Separate analyses were conducted on Caucasian and Chinese populations. Where appropriate, sensitivity analysis concerning the deviation of genotype frequencies in controls from the Hardy–Weinberg equilibrium was performed. GSTM1 null allele carriers exhibited increased colorectal cancer risk in Caucasian populations (pooled OR = 1.150, 95% confidence interval (CI): 1.060–1.248, random effects); no significant association was detected for Chinese subjects (pooled OR = 1.025, 95% CI: 0.903–1.163, fixed effects). Similarly, GSTT1 null allele carriers exhibited increased colorectal cancer risk in Caucasian populations (pooled OR = 1.312, 95% CI: 1.119–1.538, random effects); the association in Chinese subjects was not significant (pooled OR = 1.068, 95% CI: 0.788–1.449, random effects). Concerning GSTP1 Ile105Val no significant associations were demonstrated in either race. GSTA11A/1B polymorphism was not associated with colorectal cancer risk. GSTM1 and GSTT1 null genotypes confer additional risk for colorectal cancer in Caucasian populations.  相似文献   

14.
A deletion polymorphism for glutathione S-transferase M1 (GSTM1) has been related to risk for lung cancer among smokers in some studies but not in others. We examined GSTM1, a GSTT1 deletion polymorphism and a common GSTP1 gene variant (isoval), as risk factors for lung cancer in a population-based case-control study of men. Cases (N=274) were males identified from 1993 to 1996 through the Fred Hutchinson Cancer Research Center Cancer Surveillance System registry for western Washington State. Male age-matched controls (N=501) were selected by random-digit dialing. Subjects participated in a telephone interview and blood draw. GSTM1 and GSTT1 were genotyped with a multiplex PCR assay using beta-globin as a positive control, and GSTP1 single nucleotide variant determined with PCR-based oligonucleotide ligation assays. GSTM1 absence was associated with a modest elevation in risk among all cases (odds RATIO=1.27, 95% CI 0.91–1.77) and among non-small cell cancers (adenocarcinoma OR=1.58, 95% CI 0.99–2.52; squamous cell OR=1.40, 95% CI 0.83–2.34). Risk associated with GSTM1 null was increased two to sixfold among heavy smokers. GSTT1 was not associated with lung cancer risk and GSTP1 val was non-significantly associated with a modest reduction in risk, particularly among heavy smokers. No specific combination of GST genotypes was particularly associated with risk. These results support previous reports that the GSTM1 null genotype is associated with a modest increase in risk for lung cancer, particularly among heavy smokers, suggest no role for GSTT1 and the need for further study of GSTP1.  相似文献   

15.
OBJECTIVE: To study the potential role of genetic polymorphisms of glutathione-S-transferases GSTM1, GSTT1 and GSTP1 in susceptibility to lung cancer in Hong Kong Chinese. METHODS: 229 consecutive incident patients with a histological diagnosis of lung cancer from a regional hospital and 197 healthy population-based controls were recruited for this study between July 1999 and June 2001. Genetic polymorphisms of GSTT1 and GSTM1 were determined using PCR-based technique. RESULTS: The frequencies of GSTT1 and GSTM1 null genotypes were 51.8 and 59.4% in healthy controls and 63 and 54.7%, respectively, in lung cancer patients. GSTP1 Val105/Val105 genotype was found in only 1% of healthy controls. The risk for lung cancer with GSTT1 null genotype was significantly higher, adjusted odds ratio (OR) 1.69, 95% confidence interval (CI) 1.12-2.56, compared with those with the GSTT1 genotype; the increase in risk was found only in non-smokers. GSTM1 null genotype, combined GSTT1 and GSTM1 null genotype and GSTP1 Val105/Val105 genotype did not confer any increase risk for lung cancer. CONCLUSION: GSTT1 null genotype is associated with an increased risk for lung cancer in non-smoking Chinese in Hong Kong.  相似文献   

16.
Background: We aimed to evaluate the role of genetic polymorphisms in tobacco carcinogen-metabolizinggenes and their interactions with smoking in a hospital-based case-control study of Japanese subjects. Materialsand Methods: We examine the associations of pancreatic cancer risk with genetic polymorphisms in GSTM1,GSTT1 and GSTP1, phase II enzymes that catalyze the conjugation of toxic and carcinogenic electrophilicmolecules. The study population consisted of 360 patients and 400 control subjects, who were recruited fromseveral medical facilities in Japan. Unconditional logistic regression methods were used to estimate odds ratios(ORs) and 95% confidence intervals (CIs) for the associations between genotypes and pancreatic cancer risk.Results: Among the control subjects, the prevalence of the GSTM1-null genotype and the GSTT1-null genotypewas approximately 56% and 48%, respectively. Cases and controls were comparable in terms of GSTM1 andGSTT1 genotype distributions. Neither of the deleted polymorphisms in GSTM1 and GSTT1 was associated withthe risk of pancreatic cancer, with an age- and sex-adjusted OR of 0.99 (95%CI: 0.74-1.32) for the GSTM1-nullgenotype, and 0.98 (95%CI: 0.73-1.31) for the GSTT1-null genotype. The OR was 0.97 (95%CI: 0.64-1.47) forindividuals with the GSTM1 and GSTT1-null genotypes compared with those with the GSTM1 and GSTT1-present genotypes. No synergistic effects of smoking or GST genotypes were observed. Conclusions: Our resultsindicate no overall association between the GSTM1 and GSTT1 deletion polymorphisms and pancreatic cancerrisk in the Japanese subjects in our study.  相似文献   

17.
OBJECTIVE: We undertook a case-control study in an Australian Caucasian population-based sample of 1,246 cases and 664 controls to assess the roles of detoxification gene polymorphisms EPHX T>C Tyr(113)His, GSTT1 deletion, GSTM1 deletion, and GSTP1 A>G Ile(105)Val on risk of breast cancer. METHODS: We systematically addressed the main effects and possible gene-gene interactions using unconditional logistic regression to estimate odds ratios (OR) adjusted for potential confounders and using standard model building approaches based on likelihood theory. RESULTS: There was a decreased risk associated with the EPHX CC genotype [OR, 0.60; 95% confidence interval (95% CI), 0.43-0.84; P = 0.003], marginally significant evidence of increased risk with GSTM1 null genotype (OR, 1.21; 95% CI, 1.00-1.47; P = 0.05), but no association with GSTT1 null genotype (OR, 1.12; 95% CI, 0.86-1.45; P = 0.4) or GSTP1 (OR, 0.95; 95% CI, 0.82-1.10; P = 0.5) genotype. The full model with all interactions gave a significantly better fit than a main-effects-only model (P < 0.001), providing evidence for gene-gene interactions. The most parsimonious model included main effects for EPHX, GSTT1, and GSTM1; a two-way interaction between EPHX and GSTM1; and a three-way interaction between EPHX, GSTM1, and GSTT1. Predicted risks were greatest for women carrying deletions of both GSTT1 and GSTM1, with either the EPHX TC genotype (OR, 2.02; 95% CI, 1.19-3.45; P = 0.009) or EPHX CC genotype (OR, 3.54; 95% CI, 1.29-9.72; P = 0.14). CONCLUSION: Detoxification gene polymorphisms may interact with each other to result in small groups of individuals at modestly increased risk. We caution against overinterpretation and suggest that pooling of similarly large studies is needed to clarify the possible role of such complex gene-gene interactions on breast cancer risk. 2007;16(4):769-74).  相似文献   

18.
Objective: It has been suggested that functional polymorphisms in genes encoding tobacco carcinogen-metabolizing enzymes may modify the relationship between tobacco smoking and breast cancer risk. We sought to determine if there is a gene–environment interaction between GSTM1 (GSTM1A and GSTM1B), and GSTT1 genotypes and cigarette smoking in the risk of breast cancer. Methods: Cases and controls were recruited in a case–control study conducted in Connecticut from 1994 to 1998. Cases were histologically confirmed, incident breast cancer patients, and controls were randomly selected from women histologically confirmed to be without breast cancer. A total of 338 cases and 345 controls were genotyped for GSTM1 and GSTT1. Results: None of the GSTM1 genotypes, either alone or in combination with cigarette smoking, was associated with breast cancer risk. There was, however, a significantly increased risk of breast cancer among postmenopausal women with a GSTT1 null genotype (OR = 1.9, 95% CI 1.2–2.9). There were also indications of increased risk of breast cancer associated with cigarette smoking for postmenopausal women with GSTT1-null genotype, especially for those who commenced smoking before age 18 (OR = 2.9, 95% CI 1.0–8.8). Conclusion: Women with a GSTT1-null genotype may have an increased breast cancer risk, especially postmenopausal women who started smoking at younger ages.  相似文献   

19.
The impact of genetic polymorphisms in GSTM1, GSTP1 or GSTT1 on susceptibility to lung cancer has received particular interest since these enzymes play a central role in detoxification of major classes of tobacco carcinogens. In the current German study we investigated the role of GSTM1, GSTT1 and GSTP1 polymorphisms as a genetic modifier of risk for individuals with lung cancer as susceptible genotypes especially in relation to tobacco smoking. The GSTM1, the GSTP1 as well as GSTT1-polymorphism were determined by real time PCR analysis in 446 lung cancer patients and 622 controls. The observed allele frequencies of the GSTP1 polymorphism in the population were within the range described for Caucasians. Multivariate analyses of lung cancer patients, who carried at least one mutant variant allele of GSTP1 (OR=1.03; 95%-CI: 0.76-1.39) did not show any elevated risks. GSTM1 or GSTT1 null-genotypes were found in 47.3% resp. 18.5% of the controls and in 52.5% resp. 16.8% of the cancer patients. The estimated risk of the GSTM1 null genotype for lung cancer was OR=1.34 (95%-CI: 0.99-1.81) and for the GSTT1 null genotype OR=0.88 (95%-CI: 0.59-1.32). When analyzed by histology no individual subtype of lung cancer was strongly associated with the polymorphisms. Lung cancer risk rose significantly with higher cumulative cigarette consumption confirming the association with smoking-related lung cancer risk. Stratified analysis between tobacco smoking and variant genotypes revealed for heavy smokers (>60 pack-years) increasing risks at the presence for at least one copy of the GSTP1 variant allele OR=50.56 (95%-CI: 15.52-164.79). The corresponding risks for GSTM1 null genotypes were OR=112.08 (95%-CI: 23.02-545.71) and for the GSTT1 null-genotype OR=158.49 (95%-CI: 17.75-1415.06) in smokers >60 pack-years. Analysing the interaction between tobacco smoking and the genotypes, combined smoking and having the susceptible genotypes did not show a joint effect. In this study polymorphisms of the GSTM1, GSTT1 or GSTP1 had no relevant modifying effect on lung cancer risk and cumulative smoking dose.  相似文献   

20.
The phase II glutathione S-transferases (GSTs) GSTT1, GSTM1 and GSTP1 catalyse glutathione-mediated reduction of exogenous and endogenous electrophiles. These GSTs have broad and overlapping substrate specificities and it has been hypothesized that allelic variants associated with less effective detoxification of potential carcinogens may confer an increased susceptibility to cancer. To assess the role of GST gene variants in ovarian cancer development, we screened 285 epithelial ovarian cancer cases and 299 unaffected controls for the GSTT1 deletion (null) variant, the GSTM1 deletion (null) variant and the GSTP1 codon 104 A-->G Ile-->Val amino acid substitution variant. The frequencies of the GSTT1, GSTM1 and GSTP1 polymorphic variants did not vary with tumour behaviour (low malignant potential or invasive) or p53 immunohistochemical status. There was a suggestion that ovarian cancers of the endometrioid or clear cell histological subtype had a higher frequency of the GSTT1 and GSTM1 deletion genotype than other histological subgroups. The GSTT1, GSTM1 and GSTP1 genotype distributions did not differ significantly between unaffected controls and ovarian cancer cases (overall or invasive cancers only). However, the GSTM1 null genotype was associated with increased risk of endometrioid/clear cell invasive cancer [age-adjusted OR (95% CI) = 2.04 (1.01-4.09), P = 0.05], suggesting that deletion of GSTM1 may increase the risk of ovarian cancer of these histological subtypes specifically. This marginally significant finding will require verification by independent studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号