首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ankyrin is a cytoskeletal adaptor protein that controls important cellular functions, including Ca(2+) efflux at inositol 1,4,5-trisphosphate receptors (IP(3)R) on the endoplasmic reticulum. The present study found that sigma-1 receptors (Sig-1R), unique endoplasmic reticulum proteins that bind certain steroids, neuroleptics, and psychotropic drugs, form a trimeric complex with ankyrin B and IP(3)R type 3 (IP(3)R-3) in NG-108 cells. The trimeric complex could be coimmunoprecipitated by antibodies against any of the three proteins. Sig-1R agonists such as pregnenolone sulfate and cocaine caused the dissociation of an ankyrin B isoform (ANK 220) from IP(3)R-3. This effect caused by Sig-1R agonists was blocked by a Sig-1R antagonist. The degree of dissociation of ANK 220 from IP(3)R-3 caused by Sig-1R ligands correlates excellently with the ligands' efficacies in potentiating the bradykinin-induced increase in cytosolic free Ca(2+) concentration. Immunocytohistochemistry showed that Sig-1R, ankyrin B, and IP(3)R-3 are colocalized in NG-108 cells in perinuclear areas and in regions of cell-to-cell communication. These results suggest that Sig-1R and associated ligands may play important roles in cells by controlling the function of cytoskeletal proteins and that the Sig-1R/ANK220/IP(3)R-3 complex regulating Ca(2+) signaling may represent a site of action for neurosteroids and cocaine.  相似文献   

2.
3.
Proapoptotic BCL-2 family members BAX and BAK are required for the initiation of mitochondrial dysfunction during apoptosis and for maintaining the endoplasmic reticulum (ER) Ca(2+) stores necessary for Ca(2+)-dependent cell death. Conversely, antiapoptotic BCL-2 has been shown to decrease Ca(2+) concentration in the ER. We found that Bax(-/-)Bak(-/-) double-knockout (DKO) cells have reduced resting ER Ca(2+) levels because of increased Ca(2+) leak and an increase in the Ca(2+)-permeable, hyperphosphorylated state of the inositol trisphosphate receptor type 1 (IP3R-1). The ER Ca(2+) defect of DKO cells is rescued by RNA interference reduction of IP3R-1, supporting the argument that this channel regulates the increased Ca(2+) leak in these cells. BCL-2 and IP3R-1 physically interact at the ER, and their binding is increased in the absence of BAX and BAK. Moreover, knocking down BCL-2 decreases IP3R-1 phosphorylation and ER Ca(2+) leak rate in the DKO cells. These findings support a model in which BCL-2 family members regulate IP3R-1 phosphorylation to control the rate of ER Ca(2+) leak from intracellular stores.  相似文献   

4.
Mitochondrial Ca(2+) signal activates metabolism by boosting pyridine nucleotide reduction and ATP synthesis or, if Ca(2+) sequestration is supraphysiological, may even lead to apoptosis. Although the molecular background of mitochondrial Ca(2+) uptake has recently been elucidated, the regulation of Ca(2+) handling is still not properly clarified. In human adrenocortical H295R cells we found a regulatory mechanism involving p38 MAPK and novel-type PKC isoforms. Upon stimulation with angiotensin II (AII) these kinases are activated typically prior to the release of Ca(2+) and - most probably by reducing the Ca(2+) permeation through the outer mitochondrial membrane - attenuate mitochondrial Ca(2+) uptake in a feed-forward manner. The biologic significance of the kinase-mediated reduction of mitochondrial Ca(2+) signal is also reflected by the attenuation of AII-mediated aldosterone secretion. As another feed-forward mechanism, we found in HEK-293T and H295R cells that Ca(2+) signal evoked either by IP(3) or by voltage-gated influx is accompanied by a concomitant cytosolic Mg(2+) signal. In permeabilized HEK-293T cells Mg(2+) was found to be a potent inhibitor of mitochondrial Ca(2+) uptake in the physiologic [Mg(2+)] and [Ca(2+)] range. Thus, these inhibitory mechanisms may serve not only as protection against mitochondrial Ca(2+) overload and subsequent apoptosis but also have the potential to substantially alter physiological responses.  相似文献   

5.
6.
Stimulation of G protein- or tyrosine kinase-coupled receptors regulates cell proliferation through intracellular Ca(2+) ([Ca(2+)](i)) signaling. In A7r5 cells, we confirmed that inositol 1,4,5-trisphosphate (IP(3)) mediates vasopressin (VP)-evoked Ca(2+) release from intracellular stores and showed that types 1 (IP(3)R(1)) and 3 (IP(3)R(3)) IP(3) receptors were expressed. Using antisera selective for IP(3)R(1) or IP(3)R(3) and another that interacted equally well with both subtypes, together with membranes from SF:9 cells expressing only single IP(3)R subtypes to calibrate immunoblotting, we established that A7r5 cells express 81% IP(3)R(1) and 19% IP(3)R(3). To elucidate the contributions of IP(3)R(1) and IP(3)R(3) to Ca(2+) signaling and proliferation, stable clones expressing promoter-inducible antisense cDNA fragments (-90 to +9) corresponding to the two IP(3)R subtypes were selected. Mild inhibition of IP(3)R(1) (71+/-8% of control level) slightly attenuated the IP(3)-evoked Ca(2+) release (IICR) induced by VP but significantly decreased the subsequent capacitative Ca(2+) entry (CCE) and proliferation. Moderate inhibition (34+/-6%) strongly decreased both IICR and CCE and further blocked proliferation. Complete inhibition almost abolished IICR and CCE and arrested proliferation entirely. Complete inhibition of IP(3)R(3) expression slightly attenuated IICR without affecting CCE or proliferation. In cells microinjected with a low dose of heparin, VP-induced CCE was more susceptible than IICR to mild inhibition of both IP(3)R(1) and IP(3)R(3). A high dose of heparin had a similar effect to complete inhibition of IP(3)R(1) expression: it blocked VP-evoked IICR entirely and CCE by 90%. We conclude that IP(3)R(1), but not IP(3)R(3), is crucial for IICR, CCE, and proliferation of vascular smooth muscle cells.  相似文献   

7.
Ca(2+)-release from the sarcoplasmic or endoplasmic reticulum, the intracellular Ca(2+) store, is mediated by the ryanodine receptor (RyR) and/or the inositol trisphosphate receptor (IP3R). While IP3R is a ligand(IP3)-operated channel, RyR can be gated by a ligand (Ca(2+)) and/or mechanical coupling with the voltage sensor. There are three genetically distinct isoforms among RyR in mammals: RyR1-3. RyR1, the primary isoform in the skeletal muscle, can be gated by direct or indirect coupling with the conformation change of the alpha 1S subunit of dihydropyridine receptor (DHPR) on the T-tubules (transversely invaginated sarcolemma) upon depolarization of skeletal muscles or by the increased cytoplasmic Ca(2+) (Ca(2+)-induced Ca(2+) release, CICR). RyR2, the primary isoform in the cardiac ventricular muscle (and, in a lesser amount, the brain), can be gated by Ca(2+) which flows in through DHPR, especially the alpha1C subunit on depolarization. RyR3 is distributed ubiquitously in various tissues and may be coexpressed with RyR1 and RyR2. RyR3 is considered to be similar to RyR2 in the respect that it can be activated by Ca(2+), in view of the lack of available evidence to show the activation by the alpha1S subunit. Therefore, it is anticipated that RyR3 might take part through CICR in Ca(2+) signaling in smooth muscle and other non-muscle cells. To address the possible involvement of the CICR mechanism in the Ca(2+) signal transduction, it is critical to assess the effect of Mg(2+) on the CICR activity and the cytoplasmic concentration of Mg(2+). In this brief review, our discussion focuses on the effects of Ca(2+) and Mg(2+) on the activity of RyR3.  相似文献   

8.
Acetylcholine potentiates secretin-stimulated ductal secretion by Ca(2+)-calcineurin-mediated modulation of adenylyl cyclase. D2 dopaminergic receptor agonists inhibit secretin-stimulated ductal secretion via activation of protein kinase C (PKC)-gamma. No information exists regarding the effect of adrenergic receptor agonists on ductal secretion in a model of cholestasis induced by bile duct ligation (BDL). We evaluated the expression of alpha-1A/1C, -1beta and beta-1 adrenergic receptors in liver sections and cholangiocytes from normal and BDL rats. We evaluated the effects of the alpha-1 and beta-1 adrenergic receptor agonists (phenylephrine and dobutamine, respectively) on bile and bicarbonate secretion and cholangiocyte IP(3) and Ca(2+) levels in normal and BDL rats. We measured the effect of phenylephrine on lumen expansion in intrahepatic bile duct units (IBDUs) and cyclic adenosine monophosphate (cAMP) levels in cholangiocytes from BDL rats in the absence or presence of BAPTA/AM and G?6976 (a PKC-alpha inhibitor). We evaluated if the effects of phenylephrine on ductal secretion were associated with translocation of PKC isoforms leading to increased protein kinase A activity. Alpha-1 and beta-1 adrenergic receptors were present mostly in the basolateral domain of cholangiocytes and, following BDL, their expression increased. Phenylephrine, but not dobutamine, increased secretin-stimulated choleresis in BDL rats. Phenylephrine did not alter basal but increased secretin-stimulated IBDU lumen expansion and cAMP levels, which were blocked by BAPTA/AM and Go6976. Phenylephrine increased IP(3) and Ca(2+) levels and activated PKC-alpha and PKC-beta-II. In conclusion, coordinated regulation of ductal secretion by secretin (through cAMP) and adrenergic receptor agonist activation (through Ca(2+)/PKC) induces maximal ductal bicarbonate secretion in liver diseases. (Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience.wiley.com/jpages/0270-9139/suppmat/index.html).  相似文献   

9.
Members of the Bcl-2 family of proteins regulate apoptosis, with some of their physiological effects mediated by their modulation of endoplasmic reticulum (ER) Ca(2+) homeostasis. Antiapoptotic Bcl-x(L) binds to the inositol trisphosphate receptor (InsP(3)R) Ca(2+) release channel to enhance Ca(2+)- and InsP(3)-dependent regulation of channel gating, resulting in reduced ER [Ca(2+)], increased oscillations of cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), and apoptosis resistance. However, it is controversial which InsP(3)R isoforms mediate these effects and whether reduced ER [Ca(2+)] or enhanced [Ca(2+)](i) signaling is most relevant for apoptosis protection. DT40 cell lines engineered to express each of the three mammalian InsP(3)R isoforms individually displayed enhanced apoptosis sensitivity compared with cells lacking InsP(3)R. In contrast, coexpression of each isoform with Bcl-x(L) conferred enhanced apoptosis resistance. In single-channel recordings of channel gating in native ER membranes, Bcl-x(L) increased the apparent sensitivity of all three InsP(3)R isoforms to subsaturating levels of InsP(3). Expression of Bcl-x(L) reduced ER [Ca(2+)] in type 3 but not type 1 or 2 InsP(3)R-expressing cells. In contrast, Bcl-x(L) enhanced spontaneous [Ca(2+)](i) signaling in all three InsP(3)R isoform-expressing cell lines. These results demonstrate a redundancy among InsP(3)R isoforms in their ability to sensitize cells to apoptotic insults and to interact with Bcl-x(L) to modulate their activities that result in enhanced apoptosis resistance. Furthermore, these data suggest that modulation of ER [Ca(2+)] is not a specific requirement for ER-dependent antiapoptotic effects of Bcl-x(L). Rather, apoptosis protection is conferred by enhanced spontaneous [Ca(2+)](i) signaling by Bcl-x(L) interaction with all isoforms of the InsP(3)R.  相似文献   

10.
Cytosolic Ca(2+) (Ca(i)(2+)) regulates secretion of bicarbonate and other ions in the cholangiocyte. In other cell types, this second messenger acts through Ca(2+) waves, Ca(2+) oscillations, and other subcellular Ca(2+) signaling patterns, but little is known about the subcellular organization of Ca(2+) signaling in cholangiocytes. Therefore, we examined Ca(2+) signaling and the subcellular distribution of Ca(2+) release channels in cholangiocytes and in a model cholangiocyte cell line. The expression and subcellular distribution of inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) isoforms and the ryanodine receptor (RyR) were determined in cholangiocytes from normal rat liver and in the normal rat cholangiocyte (NRC) polarized bile duct cell line. Subcellular Ca(2+) signaling in cholangiocytes was examined by confocal microscopy. All 3 InsP(3)R isoforms were expressed in cholangiocytes, whereas RyR was not expressed. The type III InsP(3)R was the most heavily expressed isoform at the protein level and was concentrated apically, whereas the type I and type II isoforms were expressed more uniformly. The type III InsP(3)R was expressed even more heavily in NRC cells but was concentrated apically in these cells as well. Adenosine triphosphate (ATP), which increases Ca(2+) via InsP(3) in cholangiocytes, induced Ca(2+) oscillations in both cholangiocytes and NRC cells. Acetylcholine (ACh) induced apical-to-basal Ca(2+) waves. In conclusion, Ca(2+) signaling in cholangiocytes occurs as polarized Ca(2+) waves that begin in the region of the type III InsP(3)R. Differential subcellular localization of InsP(3)R isoforms may be an important molecular mechanism for the formation of Ca(2+) waves and oscillations in cholangiocytes. Because Ca(i)(2+) is in part responsible for regulating ductular secretion, these findings also may have implications for the molecular basis of cholestatic disorders.  相似文献   

11.
Differential activation of PKC isoforms by angiotensin II (AII) has been found in a variety of tissues in which this important octapeptide mediates its multitude of effects. To date, the PKC isoforms involved in mediating brain-specific effects are yet to be defined. In the present study, the identity of PKC isoforms coupled to AII stimulation was examined in the neuroblastoma X glioma hybrid cell line, NG108-15, by Western blot analysis. This cell line expresses both the AT1 and AT2 receptor subtypes, with the AT1 subtype predominating, and expression levels highly-upregulated when cells are in the differentiated state. Six PKC isoforms were examined in the present study, including three Ca(2+) dependent (alpha, beta, and gamma), and three Ca(2+) independent (delta, and zeta) isoforms. NG108-15 cells were found to express PKC alpha, delta, and zeta isoforms but not beta or gamma isoforms. Differential sensitivity of the PKC isoforms to AII stimulation was demonstrated, with AII causing a rapid and transient activation of the PKC alpha only in undifferentiated cells, whereas both PKC alpha and isoforms were responsive in differentiated cells. PKC activation was found to be both dose- and time-dependent. The data demonstrate the differential activation of PKC isoforms to AII stimulation in NG108-15 cells, with evidence supporting the involvement of the PKC alpha and isoforms in AII-mediated effects in the brain.  相似文献   

12.
13.
Activation of protein kinase C (PKC) by phorbol ester facilitates hormonal secretion and transmitter release, and phorbol ester-induced synaptic potentiation (PESP) is a model for presynaptic facilitation. A variety of PKC isoforms are expressed in the central nervous system, but the isoform involved in the PESP has not been identified. To address this question, we have applied immunocytochemical and electrophysiological techniques to the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB) of rat auditory brainstem. Western blot analysis indicated that both the Ca(2+)-dependent "conventional" PKC and Ca(2+)-independent "novel" PKC isoforms are expressed in the MNTB. Denervation of afferent fibers followed by organotypic culture, however, selectively decreased "novel" epsilon PKC isoform expressed in this region. The afferent calyx terminal was clearly labeled with the epsilon PKC immunofluorescence. On stimulation with phorbol ester, presynaptic epsilon PKC underwent autophosphorylation and unidirectional translocation toward the synaptic side. Chelating presynaptic Ca(2+), by using membrane permeable EGTA analogue or high concentration of EGTA directly loaded into calyceal terminals, had only a minor attenuating effect on the PESP. We conclude that the Ca(2+)-independent epsilon PKC isoform mediates the PESP at this mammalian central nervous system synapse.  相似文献   

14.
We have investigated the mechanism underlying the modulation of the cardiac L-type Ca(2+) current by protein kinase C (PKC). Using the patch-clamp technique, we found that PKC activation by 4-alpha-phorbol 12-myristate 13-acetate (PMA) or rac-1-oleyl-2-acetylglycerol (OAG) caused a substantial reduction in Ba(2+) current through Ca(v)1.2 channels composed of alpha(1)1.2, beta(1b), and alpha(2)delta(1) subunits expressed in tsA-201 cells. In contrast, Ba(2+) current through a cloned brain isoform of the Ca(v)1.2 channel (rbC-II) was unaffected by PKC activation. Two potential sites of PKC phosphorylation are present at positions 27 and 31 in the cardiac form of Ca(v)1.2, but not in the brain form. Deletion of N-terminal residues 2-46 prevented PKC inhibition. Conversion of the threonines at positions 27 and 31 to alanine also abolished the PKC sensitivity of Ca(v)1.2. Mutant Ca(v)1.2 channels in which the threonines were converted singly to alanines were also insensitive to PKC modulation, suggesting that phosphorylation of both residues is required for PKC-dependent modulation. Consistent with this, mutating each of the threonines individually to aspartate in separate mutants restored the PKC sensitivity of Ca(v)1.2, indicating that a change in net charge by phosphorylation of both sites is responsible for inhibition. Our results define the molecular basis for inhibition of cardiac Ca(v)1.2 channels by the PKC pathway.  相似文献   

15.
Ca2+ signaling, TRP channels, and endothelial permeability   总被引:4,自引:0,他引:4  
Increased endothelial permeability is the hallmark of inflammatory vascular edema. Inflammatory mediators that bind to heptahelical G protein-coupled receptors trigger increased endothelial permeability by increasing the intracellular Ca2+ concentration ([Ca2+]i). The rise in [Ca2+]i activates key signaling pathways that mediate cytoskeletal reorganization (through myosin-light-chain-dependent contraction) and the disassembly of VE-cadherin at the adherens junctions. The Ca2+-dependent protein kinase C (PKC) isoform PKCalpha plays a crucial role in initiating endothelial cell contraction and disassembly of VE-cadherin junctions. The increase in [Ca2+]i induced by inflammatory agonists such as thrombin and histamine is achieved by the generation of inositol 1,4,5-trisphosphate (IP3), activation of IP3-receptors, release of stored intracellular Ca2+, and Ca2+ entry through plasma membrane channels. IP3-sensitive Ca2+-store depletion activates plasma membrane cation channels (i.e., store-operated cation channels [SOCs] or Ca2+ release-activated channels [CRACs]) to cause Ca2+ influx into endothelial cells. Recent studies have identified members of Drosophila transient receptor potential (TRP) gene family of channels that encode functional SOCs in endothelial cells. These studies also suggest that the canonical TRPC homologue TRPC1 is the predominant isoform expressed in human vascular endothelial cells, and is the essential component of the SOC in this cell type. Further, evidence suggests that the inflammatory cytokine tumor necrosis factor-alpha can induce the expression of TRPC1 in human vascular endothelial cells signaling via the nuclear factor-kappaB pathway. Increased expression of TRPC1 augments Ca2+ influx via SOCs and potentiates the thrombin-induced increase in permeability in human vascular endothelial cells. Deletion of the canonical TRPC homologue in mouse, TRPC4, caused impairment in store-operated Ca2+ current and Ca2+-store release-activated Ca2+ influx in aortic and lung endothelial cells. In TRPC4 knockout (TRPC4-/-) mice, acetylcholine-induced endothelium-dependent smooth muscle relaxation was drastically reduced. In addition, TRPC4-/- mouse-lung endothelial cells exhibited lack of actin-stress fiber formation and cell retraction in response to thrombin activation of protease-activated receptor-1 (PAR-1) in endothelial cells. The increase in lung microvascular permeability in response to PAR-1 activation was inhibited in TRPC4-/- mice. These results indicate that endothelial TRP channels such as TRPC1 and TRPC4 play an important role in signaling agonist-induced increases in endothelial permeability.  相似文献   

16.
We have previously shown that endothelial cells (EC) derived from the uterine artery (UA) of both pregnant (P-UAEC) and nonpregnant (NP-UAEC) ewes show a biphasic intracellular free Ca(2+) ([Ca(2+)](i)) response after ATP stimulation. In each case, the initial transient peak, caused by the release of Ca(2+) from the intracellular Ca(2+) stores, is mediated by purinergic receptor-Y2 and is very similar in both cell types. However, the sustained phase in particular, caused by the influx of extracellular Ca(2+), is heightened in the P-UAEC, and associates with an increased ability of the cells to demonstrate enhanced capacitative Ca(2+) entry (CCE) via store-operated channels (SOCs). Herein we demonstrated that the difference in the sustained [Ca(2+)](i) response is maintained for at least 30 min. When 2-aminoethoxydiphenyl borate (2APB) (an inhibitor of the inosital 1,4,5-trisphosphate receptor (IP3R) and possibly SOC) was used in conjunction with ATP, it was capable of completely inhibiting CCE. Since 2APB can inhibit SOC in some cell types and 2APB was capable of inhibiting CCE in the UAEC model, the role of SOC in CCE was first evaluated using the classical inhibitor La(3+). The ATP-induced sustained phase was inhibited by 10 microM La(3+), implying a role for SOC in the [Ca(2+)](i) response. Since canonical transient receptor potential channels (TRPCs) have recently been identified as putative SOCs in many cell types, including EC, the expression levels of several isoforms were evaluated in UAEC. Expression of TRPC3 and TRPC6 channels in particular was detected, but no significant difference in expression level was found between NP- and P-UAEC. Nonetheless, we were able to show that IP3R2 interacts with TRPC3 in UAEC, forming a protein complex, and that this interaction is considerably enhanced in an agonist sensitive manner by pregnancy. Thus, while IP3R and TRPC isoforms are not altered in their expression by pregnancy, enhanced functional interaction of TRPC3 with IP3R2 may underlie pregnancy-enhanced CCE in the UAEC model and so explain the prolonged [Ca(2+)](i) sustained phase seen in response to ATP.  相似文献   

17.
Homologues of Drosophilia transient receptor potential (TRP) have been proposed to be unitary subunits of plasma membrane ion channels that are activated as a consequence of active or passive depletion of Ca(2+) stores. In agreement with this hypothesis, cells expressing TRPs display novel Ca(2+)-permeable cation channels that can be activated by the inositol 1,4,5-trisphosphate receptor (IP3R) protein. Expression of TRPs alters cells in many ways, including up-regulation of IP3Rs not coded for by TRP genes, and proof that TRP forms channels of these and other cells is still missing. Here, we document physical interaction of TRP and IP3R by coimmunoprecipitation and glutathione S-transferase-pulldown experiments and identify two regions of IP3R, F2q and F2g, that interact with one region of TRP, C7. These interacting regions were expressed in cells with an unmodified complement of TRPs and IP3Rs to study their effect on agonist- as well as store depletion-induced Ca(2+) entry and to test for a role of their respective binding partners in Ca(2+) entry. C7 and an F2q-containing fragment of IP3R decreased both forms of Ca(2+) entry. In contrast, F2g enhanced the two forms of Ca(2+) entry. We conclude that store depletion-activated Ca(2+) entry occurs through channels that have TRPs as one of their normal structural components, and that these channels are directly activated by IP3Rs. IP3Rs, therefore, have the dual role of releasing Ca(2+) from stores and activating Ca(2+) influx in response to either increasing IP3 or decreasing luminal Ca(2+).  相似文献   

18.
The mechanism whereby extracellular Ca(2+) exerts the endothelium-dependent control of vascular tone is still unclear. In this study, we assessed whether cardiac microvascular endothelial cells (CMEC) express a functional extracellular Ca(2+)-sensing receptor (CaSR) using a variety of techniques. CaSR mRNA was detected using RT-PCR, and CaSR protein was identified by immunocytochemical analysis. In order to assess the functionality of the receptor, CMEC were loaded with the Ca(2+)-sensitive fluorochrome, Fura-2/AM. A number of CaSR agonists, such as spermine, Gd(3+), La(3+) and neomycin, elicited a heterogeneous intracellular Ca(2+) signal, which was abolished by disruption of inositol 1,4,5-trisphosphate (InsP(3)) signaling and by depletion of intracellular stores with cyclopiazonic acid. The inhibition of the Na(+)/Ca(2+) exchanger upon substitution of extracellular Na(+) unmasked the Ca(2+) signal triggered by an increase in extracellular Ca(2+) levels. Finally, aromatic amino acids, which function as allosteric activators of CaSR, potentiated the Ca(2+) response to the CaSR agonist La(3+). These data provide evidence that CMEC express CaSR, which is able to respond to physiological agonists by mobilizing Ca(2+) from intracellular InsP(3)-sensitive stores.  相似文献   

19.
Persaud SJ  Jones PM 《Endocrine》1995,3(4):285-289
The involvement of the family of protein kinase C (PKC) isoenzymes in the secretory response of rat islets of Langerhans to glucose, the major insulin secretagogue, was investigated using the PKC inhibitor Ro 31-8220, a derivative of staurosporine. Ro 31-8220 was a more selective PKC inhibitor than staurosporine in islets, having minimal effects on protein kinases activated by cyclic AMP or by Ca(2+) and calmodulin. The secretory response to 4βPMA, an activator of phorbol ester-sensitive isoforms of PKC, was abolished by Ro 31-8220. Basal insulin secretion (2MM: glucose) was not affected by Ro 31-8220, but 20MM: glucose-induced insulin release was inhibited in a dose-dependent manner, maximally by ~50% at 10 μM: Ro 31-8220. Higher concentrations of Ro 31-8220 (507gmM: ) did not further inhibit the secretory response to glucose and also caused ~50% inhibition of insulin secretion stimulated by 10MM: glyceraldehyde. Ca(2+)-stimulated insulin secretion from electrically permeabilised islets was not inhibited by Ro 31-8220. Calphostin C, which inhibits some isoforms of PKC by interacting with the diacylglycerol binding site, unexpectedly caused a large (~10-fold) increase in secretion at 2MM: glucose, so could not be used in islets to further investigate the involvement of phorbol ester-sensitive PKC isoforms in the insulin secretory process. One possible explanation for our results using Ro 31-8220 is that phorbol ester-insensitive isoforms of PKC (ζ and/orι) are involved in glucose-stimulated insulin secretion from rat islets.  相似文献   

20.
BACKGROUND & AIMS: Secondary bile acids like deoxycholic acid (DCA) are well-established tumor promoters that may exert their pathologic actions by interfering with intracellular signaling cascades. METHODS: We evaluated the effects of DCA on Ca2+ signaling in BHK-21 fibroblasts using fura-2 and mag-fura-2 to measure cytoplasmic and intraluminal internal stores [Ca2+], respectively. Furthermore, green fluorescent protein (GFP)-based probes were used to monitor time courses of phospholipase C (PLC) activation (pleckstrin-homology [PH]-PLCdelta-GFP), and translocation of protein kinase C (PKC) and a major PKC substrate, myristolated alanine-rich C-kinase substrate (MARCKS). RESULTS: DCA (50-250 micromol/L) caused profound Ca2+ release from intracellular stores of intact or permeabilized cells. Correspondingly, DCA increased cytoplasmic Ca2+ to levels that were approximately 120% of those stimulated by Ca2+-mobilizing agonists in the presence of external Ca2+, and approximately 60% of control in Ca2+-free solutions. DCA also caused dramatic translocation of PH-PLCdelta-GFP, and conventional, Ca2+/diacylglycerol (DAG)-dependent isoforms of PKC (PKC-betaI and PKC-alpha), and MARCKS-GFP, but only in Ca2+-containing solutions. DCA had no effect on localization of a novel (PKCdelta) or an atypical (PKCzeta) PKC isoform. CONCLUSIONS: Data are consistent with a model in which DCA directly induces both Ca2+ release from internal stores and persistent Ca2+ entry at the plasma membrane. The resulting microdomains of high Ca2+ levels beneath the plasma membrane appear to directly activate PLC, resulting in modest InsP 3 and DAG production. Furthermore, the increased Ca2+ entry stimulates vigorous recruitment of conventional PKC isoforms to the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号