首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The inwardly-rectifying K+ channel Kir6.2 serves as a common pore-forming core in various ATP-sensitive K+ (KATP) channels, and it is through assembly with sulfonylurea-receptor (SUR) isoforms, which are ATP-binding cassette (ABC) proteins, that tissue-specific channel phenotypes can be generated. In this regard, Kir6.2 has been shown to physically associate with SUR1 to form the pancreatic KATP channel. While cardiac KATP channel activity can be reconstituted by coexpression of Kir6.2 with a distinct SUR isoform, SUR2A, no direct proof has been provided for physical association between these two proteins. Therefore, we tested, by a coimmunoprecipitation procedure in conjunction with an amino-terminal Kir6.2-antibody, physical association between recombinant Kir6.2 and SUR2A. From a mixture of Kir6.2 and SUR2A in vitro-translated proteins, the Kir6.2-specific antibody coimmunoprecipitated 38-kDa and 140-kDa proteins corresponding to Kir6.2 and SUR2A, respectively. In the absence of Kir6.2, SUR2A was not precipitated by the anti-Kir6.2 antibody, indicating that the antibody recognized SUR2A only when SUR2A formed a complex with Kir6.2. A Kir6.2 deletion mutant lacking 37 amino acids from the carboxyterminus still coimmunoprecipitated with SUR2A, indicating that the distal carboxy-terminus of Kir6.2 is unnecessary for subunit association. Kir6.2 mutants lacking more proximal carboxy-terminus regions, including the M2 transmembrane domain, failed to immunoprecipitate SUR2A, suggesting that the proximal carboxyterminus together with the M2 domain are required for channel assembly. These deletion constructs supported cellular distribution of Kir6.2. Thus, the present study provides direct evidence for physical association between Kir6.2 and SUR2A, essentially reconstituting the cardiac KATP channel in vitro. The demonstration of complex formation between Kir6.2 and SUR2A indicates that the structural basis for channel function may rely on direct physical interaction of the two subunits.  相似文献   

2.
3.
目的探讨高血压病理状态下ATP-敏感性钾离子通道(KATP)基因表达的变化,以及抗高血压新药钾通道开放剂埃他卡林(iptakalim)的作用特征,探讨埃他卡林逆转心血管重构的分子机制.方法自发性高血压大鼠(SHR)分为埃他卡林治疗组和模型对照组,同时设正常血压大鼠为正常对照,12周后取心脏、主动脉和尾动脉等组织,提取总RNA,利用反转录-聚合酶链式反应(RT-PCR)研究KATP各亚型基因SUR2、Kir6.1和Kir6.2在转录水平的改变.结果高血压状态下的SHR心脏、主动脉平滑肌和尾动脉平滑肌组织中的SUR2、Kir6.2基因表达显著高于对照大鼠(WKY),12周给药治疗后这些过表达的基因显著降低,P<0.05 vs未治疗SHR;3种组织中Kir6.1的表达均无显著性变化.结论埃他卡林具有逆转高血压引起的心脏、主动脉平滑肌和尾动脉平滑肌中过表达的SUR2和Kir 6.2的作用,这可能与其逆转高血压心血管重构有关.  相似文献   

4.
ATP-sensitive K (K(ATP)) channels are blocked by ATP and activated by PIP(2). Both negatively-charged ligands are presumed to bind to positively-charged residues on the N-and C-termini of the channel's cytoplasmic domain. Evidence summarized here suggests that the channel's interaction with ATP and PIP(2) is regulated by separate groups of residues, involving both direct charge-charge interactions and allosteric effects. ATP interaction is regulated by R50 in the N-terminus and by K185, R192 and R201 in the C-terminus. R192 and R201 mutations decrease channel sensitivity to ATP, ADP and AMP to a similar extent, implying that they regulate interaction with either the alpha phosphate group, common to all three adenine nucleotides, or the adenosine moiety. K185 mutations, and to a lesser extent R50 mutations, decrease ATP and ADP sensitivity without markedly affecting AMP sensitivity, implying that they regulate interaction with the beta phosphate of ATP and ADP. In addition, when open probability decreases due to rundown, ATP sensitivity increases in R50, K185 and R192, but not in R201 mutants. Combining these observations with recent structural data, we hypothesize the following scenario: 1) the ATP binding site is located at the outside of the channel's cytoplasmic domain away from the pore. 2) When the channel is open, R50 and K185 interact directly with the beta phosphate of ATP, whereas R192, which appears to be removed from the ATP binding site, modulates the initial interaction with ATP allosterically. 3) When the channel closes, R201 is in position to interact with the alpha phosphate of ATP to stabilize the closed state. 4) PIP(2) also interacts with the channel's cytoplasmic domain, but at distinct positively-charged residues located above the ATP binding site and near to the plasma membrane. These residues include R54 in the N-terminus and R176, R177 and R206 in the C-terminus. Thus, the binding domains of ATP and PIP(2) in the N- and C-termini do not appear to overlap.  相似文献   

5.
-ATP-sensitive potassium (K(ATP)) channels were discovered in ventricular cells, but their roles in the heart remain mysterious. K(ATP) channels have also been found in numerous other tissues, including vascular smooth muscle. Two pore-forming subunits, Kir6.1 and Kir6.2, contribute to the diversity of K(ATP) channels. To determine which subunits are operative in the cardiovascular system and their functional roles, we characterized the effects of pharmacological K(+) channel openers (KCOs, ie, pinacidil, P-1075, and diazoxide) in Kir6.2-deficient mice. Sarcolemmal K(ATP) channels could be recorded electrophysiologically in ventricular cells from Kir6.2(+/+) (wild-type [WT]) but not from Kir6.2(-/-) (knockout [KO]) mice. In WT ventricular cells, pinacidil induced an outward current and action potential shortening, effects that were blocked by glibenclamide, a K(ATP) channel blocker. KO ventricular cells exhibited no response to KCOs, but gene transfer of Kir6.2 into neonatal ventricular cells rescued the electrophysiological response to P-1075. In terms of contractile function, pinacidil decreased force generation in WT but not KO hearts. Pinacidil and diazoxide produced concentration-dependent relaxation in both WT and KO aortas precontracted with norepinephrine. In addition, pinacidil induced a glibenclamide-sensitive current of similar magnitude in WT and KO aortic smooth muscle cells and comparable levels of hypotension in anesthetized WT and KO mice. In both WT and KO aortas, only Kir6.1 mRNA was expressed. These findings indicate that the Kir6.2 subunit mediates the depression of cardiac excitability and contractility induced by KCOs; in contrast, Kir6.2 plays no discernible role in the arterial tree.  相似文献   

6.
ATP-sensitive K+ channels of vascular smooth muscle cells   总被引:8,自引:0,他引:8  
ATP-sensitive potassium channels (K(ATP)) of vascular smooth muscle cells represent potential therapeutic targets for control of abnormal vascular contractility. The biophysical properties, regulation and pharmacology of these channels have received intense scrutiny during the past twenty years, however, the molecular basis of vascular K(ATP) channels remains ill-defined. This review summarizes the recent advancements made in our understanding of the molecular composition of vascular K(ATP) channels with a focus on the evidence that hetero-octameric complexes of Kir6.1 and SUR2B subunits constitute the vascular K(ATP) subtype responsible for control of arterial diameter by vasoactive agonists.  相似文献   

7.
8.
Focus on Kir6.2: a key component of the ATP-sensitive potassium channel   总被引:4,自引:0,他引:4  
ATP-sensitive potassium (K(ATP)) channels are found in a wide variety of cell types where they couple cell metabolism to electrical activity. In glucose-sensing tissues, these channels respond to fluctuating changes in blood glucose concentration, but in other tissues they are activated only under ischemic conditions or in response to hormonal stimulation. Although K(ATP) channels in different tissues have different regulatory subunits, in almost all cases (except vascular smooth muscle) the pore-forming subunit is the inwardly rectifying K(+) channel Kir6.2. This article reviews recent studies of Kir6.2, focussing on the relation between channel structure and function, and on naturally occurring mutations in Kir6.2 that lead to human disease. New insights into the location of the ATP-binding site, the permeation pathway for K(+), and the gating of the pore provided by homology modelling are discussed in relation to functional studies. Gain-of-function mutations in Kir6.2 cause permanent neonatal diabetes mellitus (PNDM) by reducing the ATP sensitivity of the K(ATP) channel and increasing the K(ATP) current, which is predicted to inhibit beta-cell electrical activity and insulin secretion. Mutations at specific residues, that cause a greater decrease in ATP sensitivity, are associated with additional neurological symptoms. The molecular mechanism underlying the differences in ATP sensitivity produced by these two classes of mutations is discussed. We speculate on how some mutations lead to neurological disease and why no obvious cardiac symptoms are observed. We also consider the implications of these studies for type-2 diabetes.  相似文献   

9.
Sulfonylurea derivatives glibenclamide and tolbutamide are selective blockers of ATP-sensitive K+ (KATP) channels. However, their ability to prevent cellular K+ loss and shortening of action potential duration during ischemia or hypoxia in the intact heart is modest compared with their efficacy at blocking KATP channels in excised membrane patches. In the isolated arterially perfused rabbit interventricular septum, the increase in unidirectional K+ efflux and shortening of action potential duration during substrate-free hypoxia were effectively blocked by glibenclamide, but only by very high concentrations (100 microM); during hypoxia with glucose present, glibenclamide was only partially effective at reducing K+ loss. During total global ischemia (10 minutes), up to 100 microM glibenclamide or 1 mM tolbutamide attenuated shortening of action potential duration but only reduced [K+]0 accumulation by a maximum of 32 +/- 6%. In isolated patch-clamped guinea pig ventricular myocytes in which the whole-cell ATP-sensitive K+ current was activated by exposure to the metabolic inhibitors, glibenclamide (up to 100 microM) and tolbutamide (10 mM) were only partially effective at blocking the whole-cell ATP-sensitive K+ current (maximum block, 51 +/- 10% and 50 +/- 9%, respectively), especially when ADP was included in the patch electrode solution. In inside-out membrane patches excised from these myocytes, glibenclamide blocked unitary currents through KATP channels with a Kd of 0.5 microM and a Hill coefficient of 0.5 in the absence of ADP at the cytosolic membrane surface, but block was incomplete when 100 microM ADP (+2 mM free Mg2+) was present. ADP had a similar effect on block of KATP channels by tolbutamide. These findings suggest that free cytosolic [ADP], which rises rapidly to the 100 microM range during early myocardial ischemia and hypoxia, may account for the limited efficacy of sulfonylureas at blocking ischemic and hypoxic cellular K+ loss under these conditions.  相似文献   

10.
11.
Ischemic preconditioning (IPC) is a phenomenon in which single or multiple brief periods of ischemia have been shown to protect the heart against a more prolonged ischemic insult, the result of which is a marked reduction in myocardial infarct size, severity of stunning, or incidence of cardiac arrhythmias. Although a number of substances and signaling pathways have been proposed to be involved in mediating the cardioprotective effect of IPC, the overwhelming majority of evidence suggests that the ATP-sensitive potassium channel (KATP channel) is an important component of this phenomenon and may serve as the end effector in this process. Initially, it was hypothesized that the surface or sarcolemmal KATP (sarc KATP) channel mediated protection observed after IPC; however, subsequent evidence suggested that the recently identified mitochondrial KATP channel (mito KATP) may be the potassium channel mediating IPC-induced cardioprotection. In this review, evidence will be presented supporting a role for either the sarc KATP or the mito KATP in IPC and potential mechanisms by which opening these channels may produce cardioprotection; additionally, we will address important questions that still need to be investigated to define the role of the sarc or mito KATP channel, or both, in cardiac pathophysiology.  相似文献   

12.
目的探讨缺血再灌注损伤大鼠心肌中,Kir6.1与Kir6.2通道亚基基因及蛋白水平表达的改变。方法雄性SD大鼠14只,体重250—300g,随机分为:假手术组、缺血再灌注损伤(IRI)组,每组各7只。RT-PCR方法检测Kir6.1、Kir6.2 mRNA的表达;Western Blot方法检测细胞膜Kir6.1与Kir6.2蛋白的表达;同时应用放免法检测血浆AngⅡ与缺血区、非缺血区的心肌AngⅡ含量。结果(1)IRI引发缺血区及非缺血区Kir6.1mRNA水平明显升高,而Kir6.2mRNA水平没有明显改变;(2)IRI引发缺血区及非缺血区心肌细胞膜Kir6.1蛋白水平明显升高,而Kir6.2蛋白水平没有明显改变。结论IRI导致心肌KATP通道亚基构成发生了改变,可能与局部RAS的激活有一定的关系。  相似文献   

13.
Glucose-induced insulin secretion is classically attributed to the cooperation of an ATP-sensitive potassium (K ATP) channel-dependent Ca2+ influx with a subsequent increase of the cytosolic free Ca2+ concentration ([Ca2+]c) (triggering pathway) and a K ATP channel-independent augmentation of secretion without further increase of [Ca2+]c (amplifying pathway). Here, we characterized the effects of glucose in beta-cells lacking K ATP channels because of a knockout (KO) of the pore-forming subunit Kir6.2. Islets from 1-yr and 2-wk-old Kir6.2KO mice were used freshly after isolation and after 18 h culture to measure glucose effects on [Ca2+]c and insulin secretion. Kir6.2KO islets were insensitive to diazoxide and tolbutamide. In fresh adult Kir6.2KO islets, basal [Ca2+]c and insulin secretion were marginally elevated, and high glucose increased [Ca2+]c only transiently, so that the secretory response was minimal (10% of controls) despite a functioning amplifying pathway (evidenced in 30 mm KCl). Culture in 10 mm glucose increased basal secretion and considerably improved glucose-induced insulin secretion (200% of controls), unexpectedly because of an increase in [Ca2+]c with modulation of [Ca2+]c oscillations. Similar results were obtained in 2-wk-old Kir6.2KO islets. Under selected conditions, high glucose evoked biphasic increases in [Ca2+]c and insulin secretion, by inducing K ATP channel-independent depolarization and Ca2+ influx via voltage-dependent Ca2+ channels. In conclusion, Kir6.2KO beta-cells down-regulate insulin secretion by maintaining low [Ca2+]c, but culture reveals a glucose-responsive phenotype mainly by increasing [Ca2+]c. The results support models implicating a K ATP channel-independent amplifying pathway in glucose-induced insulin secretion, and show that K ATP channels are not the only possible transducers of metabolic effects on the triggering Ca2+ signal.  相似文献   

14.
Interactions of sulfhydryl reagents with introduced cysteines in the pore-forming (Kir6.2) subunits of the K(ATP) channel were examined. 2-Aminoethyl methanethiosulfonate (MTSEA(+)) failed to modify Cd(2+)-insensitive control-Kir6.2 channels, but rapidly and irreversibly modified Kir6.2[L164C] (L164C) channels. Although a single Cd(2+) ion is coordinated by L164C, four MTSEA(+) "hits" can occur, each sequentially reducing the single-channel current. A dimeric fusion of control-Kir6.2 and L164C subunits generates Cd(2+)-insensitive channels, confirming that at least three cysteines are required for coordination, but MTSEA(+) modification of the dimer occurs in two hits. L164C channels were not modified by bromotrimethyl ammoniumbimane (qBBr(+)), even though qBBr(+) caused voltage-dependent block (as opposed to modification) that was comparable to that of MTSEA(+) or 3-(triethylammonium)propyl methanethiosulfonate (MTSPTrEA(+)), implying that qBBr(+) can also enter the inner cavity but does not modify L164C residues. The Kir channel pore structure was modeled by homology with the KcsA crystal structure. A stable conformation optimally places the four L164C side chains for coordination of a single Cd(2+) ion. Modification of these cysteines by up to four MTSEA(+) (or three MTSPTrEA(+), or two qBBr(+)) does not require widening of the cavity to accommodate the derivatives within it. However, like the KcsA crystal structure, the energy-minimized model shows a narrowing at the inner entrance, and in the Kir6.2 model this narrowing excludes all ions. To allow entry of ions as large as MTSPTrEA(+) or qBBr(+), the entrance must widen to >8 A, but this widening is readily accomplished by minimal M2 helix motion and side-chain rearrangement.  相似文献   

15.
The E23K variant of the Kir6.2 gene has been shown to be associated with type 2 diabetes mellitus in Caucasian subjects. Because offspring of type 2 diabetic patients have a genetically increased risk of developing diabetes, we sought to identify the E23K variant of the Kir6.2 gene in offspring of Caribbean patients with type 2 diabetes and assess the contribution of this variant to impaired glucose tolerance in these subjects. Forty-six offspring of patients with type 2 diabetes and 39 apparently healthy subjects whose immediate parents were not diabetic ('control') were studied after an overnight fast. Anthropometric indices were measured and blood samples were collected. Fasting and 2 h plasma glucose, insulin and lipids were subsequently determined. Insulin resistance was calculated using the homeostatic model assessment technique. The offspring and control subjects had similar frequencies of the E23K polymorphism (52.6 vs 45.5%, P>0.05) and the frequency of the E23K variant did not differ significantly between gender and ethnic distributions, irrespectively of a family history of diabetes (P>0.05). There were no significant differences in biochemical risk factors for developing diabetes in offspring carriers of the E23K variant compared with offspring non-carriers of the mutation. Offspring with the E23K mutation had even significantly higher 2 h insulin concentrations when compared with control subjects. It is concluded that the presence of the Kir6.2 E23K genotype in Caribbean subjects with an immediate positive family history of diabetes does not confer significantly higher levels of biochemical risk factors for the development of type 2 diabetes.  相似文献   

16.
OBJECTIVE: To test the hypothesis that hypoxia activates ATP-sensitive K+ (KATP) channels in cremasteric arteriolar muscle cells, resulting in membrane hyperpolarization and inhibition of norepinephrine-induced contraction. METHODS: Arteriolar muscle cells were isolated enzymatically from second- and third-order arterioles that were surgically removed from hamster cremaster muscles. The effects of hypoxia (PO2 = 12-15 mm Hg) were then examined on norepinephrine-induced contraction, membrane currents, and membrane potential in these cells at room temperature. Whole-cell currents and membrane potential were recorded using the perforated patch technique. RESULTS: Hypoxia (12-15 mm Hg PO2) reversibly inhibited norepinephrine-induced contraction to 52 +/- 6% of the response in normoxic solutions (156 mm Hg, n = 12 digests, p < 0.05). These effects of hypoxia could be prevented by superfusion of the cells with either solutions containing the KATP channel antagonist glibenclamide (1 microM) or solutions containing 35 mM K+ to reduce the electrochemical gradient for K+ diffusion. Cromakalim, an activator of KATP channels, also inhibited norepinephrine-induced contraction to a similar extent as hypoxia, and in a glibenclamide and 35 mM K(+)-sensitive manner. These results are consistent with the KATP channel hypothesis. In contrast, hypoxia had no effect on estimated whole-cell membrane conductance between -40 and -90 mV in voltage-clamp experiments; on holding current measured at -60 mV in cells superfused with 143 mM K+ under voltage-clamp conditions; or on membrane potential in current-clamp experiments, despite positive effects of cromakalim in all three protocols. These electrophysiological data lead to rejection of the hypothesis that hypoxia activates KATP channels. CONCLUSIONS: Hypoxia inhibits norepinephrine-induced contraction of cremasteric arteriolar muscle cells by a mechanism that does not involve KATP channels. It is speculated that the inhibitory effects of glibenclamide and 35 mM K+ on the effects of hypoxia on contraction resulted from depolarization induced by these treatments rather than specific inhibition of KATP channels.  相似文献   

17.
18.
The aim of this paper was to find out the effects of hypotonic stress on the slope conductivity of ATP-sensitive K(+) channels. Using patch clamp technique, rilmakalim and pinacidil as the activators and glibenclamide as an inhibitor of mentioned channels, we have demonstrated that short hypotonic challenge doubled slope conductivity of exploring channels by augmentation of their open probability.  相似文献   

19.
Sildenafil (Viagra), a phosphodiesterase type-5 inhibitor used in treatment of male erectile dysfunction and pulmonary hypertension can induce cardioprotection through opening of mitochondrial ATP-sensitive K+ channels (mitoKATP). Recent studies suggest that activation of mitochondrial Ca2+-activated K+ channels (mitoKCa) also has anti-ischemic effects. However, the relative role of mitoKCa and mitoKATP in sildenafil-induced cardioprotection remains unknown. In the present study, adult male ICR mice were pretreated with sildenafil (0.71 mg/kg, i.p.) 24 h prior to 20 min of global ischemia followed by 30 min of reperfusion in Langendorff mode. Paxilline (blocker of KCa) or 5-hydroxydecanoic acid (5-HD; blocker of mitoKATP) was administered either 30 min before sildenafil or 10 min prior to ischemia. Treatment with sildenafil reduced infarct size, which was abolished by either paxilline or 5-HD. Furthermore, in vivo gene knockdown of β1 subunit of KCa (KCa-β1) using small interfering RNA (siRNA) administered 48 h before sildenafil injection blocked the infarct limiting effect of sildenafil. The protective effect of sildenafil was preserved in mice treated with non-target siRNA. Western blots demonstrated selective protein expression of KCa-β1 in cardiac mitochondria and the gene knockdown effect of siRNA on KCa-β1. The level of KCa-β1 protein was not upregulated following treatment with sildenafil. We conclude that both mitoKCa and mitoKATP play a critical role in triggering and mediating sildenafil-induced delayed cardioprotection. The results suggest that activation of mitoKCa and mitoKATP are crucial for maintaining mitochondrial homeostasis and reducing cell death in sildenafil-induced preconditioning against ischemia-reperfusion injury.  相似文献   

20.
The subcellular distribution of ATP-sensitive potassium (K(ATP)) channel subunits in rat-isolated ventricular myocytes was investigated using a panel of subunit-specific antisera. Kir6.1 subunits were associated predominantly with myofibril structures and were co-localized with the mitochondrial marker MitoFluor red (correlation coefficient (cc) = 0.63 +/- 0.05). Anti-Kir6.1 antibodies specifically recognized a polypeptide of 48 kDa in mitochondrial membrane fractions consistent with the presence of Kir6.1 subunits in this organelle. Both Kir6.2 and SUR2A subunits were distributed universally over the sarcolemma. Lower-intensity antibody-associated immunofluorescence was detected intracellularly, which was correlated with the distribution of MitoFluor red in both cases (cc, Kir6.2, 0.56 +/- 0.05; SUR2A, 0.61 +/- 0.06). A polypeptide of 40 kDa was recognized by anti-Kir6.2-subunit antibodies in western blots of both microsomal and mitochondrial membrane fractions consistent with the presence of this subunit in the sarcolemma and mitochondria. Similarly, SUR2A and SUR2B subunits were detected in western blots of microsomal membrane proteins consistent with a sarcolemmal localization for these polypeptides. SUR2B subunits were shown in confocal microscopy to co-localize strongly with t-tubules (cc, 0.81 +/- 0.05). Together, the results indicate that Kir6.2 and SUR2A subunits predominate in the sarcolemma of ventricular myocytes consistent with a Kir6.2/SUR2A-subunit combination in the sarcolemmal K(ATP)channel. Kir6.1, Kir6.2 and SUR2A subunits were demonstrated in mitochondria. Combinations of these subunits would not explain the reported pharmacology of the mitochondrial K(ATP) channel (Mol Pharmacol 59 (2001) 225) suggesting the possibility of further unidentified components of this channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号