首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effects of cannabinoid receptor agonists on (45)Ca(2+) uptake in rat brain synaptosomes. A cannabinoid receptor agonist, (R)-(+)-[2,3-dihydro-5-methyl-3-[(4-merpholino)methyl]pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl](1-naphthyl)methanone (WIN 55212-2) dose-dependently inhibited (45)Ca(2+) uptake in rat synaptosomes. Only an endogenous cannabinoid receptor agonist, anandamide, dose-dependently inhibited (45)Ca(2+) uptake in rat synaptosomes, but not an endogenous cannabinoid receptor agonist, palmitoylethanolamide. Only a cannabinoid CB1 antagonist, [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamidehydrochloride] (SR 141716A), reversed the inhibitory effect of these WIN 55212-2 and anandamide on (45)Ca(2+) uptake in rat synaptosomes, but not a cannabinoid CB2 receptor antagonist, [N-[(1S)-endo-1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)pyrazole-3-carboxamide] (SR 144528). The inhibitory effects of WIN 55212-2 and anandamide on (45)Ca(2+) uptake in rat synaptosomes were reversed by the pretreatment of a voltage-sensitive A-type K(+) channel blocker, dendrotoxin, but no other type of K(+) channel blockers, i.e. iberiotoxin, charybdotoxin or glibenclamide. These findings suggest that cannabinoid receptors inhibit Ca(2+) influx into rat brain nerves via the activation of CB1 receptors and the opening of voltage-sensitive A-type K(+) channels.  相似文献   

2.
A high cytoplasmic Na(+) concentration may contribute to N-methyl-D-aspartate (NMDA)-induced excitotoxicity by promoting Ca(2+) influx via reverse operation of the Na(+)/Ca(2+) exchanger (NaCaX), but may simultaneously decrease the electrochemical Ca(2+) driving force by depolarizing the plasma membrane (PM). Digital fluorescence microscopy was used to compare the effects of Na(+) versus ions that do not support the NaCaX operation, i.e., N-methyl-D-glucamine(+) or Li(+), on: PM potential; cytoplasmic concentrations of Ca(2+), H(+), and K(+); mitochondrial Ca(2+) storage; and viability of primary cultures of cerebellar granule cells exposed to NMDA receptor agonists. In the presence of Na(+) or Li(+), NMDA depolarized the PM and decreased cytoplasmic pH (pH(C)); in the presence of Li(+), Ca(2+) influx was reduced, mitochondrial Ca(2+) overload did not occur, and the cytoplasm became more acidified than in the presence of Na(+). In the presence of N-methyl-D-glucamine(+), NMDA instantly hyperpolarized the PM, but further changes in PM potential and pH(C) were Ca-dependent. In the absence of Ca(2+), hyperpolarization persisted, pH(C) was decreasing very slowly, K(+) was retained in the cytoplasm, and cerebellar granule cells survived the challenge; in the presence of Ca(2+), pH(C) dropped rapidly, the K(+) concentration gradient across the PM began to collapse as the PM began to depolarize, and Ca(2+) influx and excitotoxicity greatly increased. These results indicate that the dominant, very likely excitotoxic, component of NMDA-induced Ca(2+) influx is mediated by reverse NaCaX and that direct Ca(2+) influx via NMDA channels is curtailed by Na-dependent PM depolarization.  相似文献   

3.
4.
In excitable cells, receptor-induced Ca(2+) release from intracellular stores is usually accompanied by sustained depolarization of cells and facilitated voltage-gated Ca(2+) influx (VGCI). In quiescent pituitary lactotrophs, however, endothelin-1 (ET-1) induced rapid Ca(2+) release without triggering Ca(2+) influx. Furthermore, in spontaneously firing and depolarized lactotrophs, the Ca(2+)-mobilizing action of ET-1 was followed by inhibition of spontaneous VGCI caused by prolonged cell hyperpolarization and abolition of action potential-driven Ca(2+) influx. Agonist-induced depolarization of cells and enhancement of VGCI upon Ca(2+) mobilization was established in both quiescent and firing lactotrophs treated overnight with pertussis toxin (PTX). Activation of adenylyl cyclase by forskolin and addition of cell-permeable 8-bromo-cAMP did not affect ET-1-induced sustained inhibition of VGCI, suggesting that the cAMP-protein kinase A signaling pathway does not mediate the inhibitory action of ET-1 on VGCI. Consistent with the role of PTX-sensitive K(+) channels in ET-1-induced hyperpolarization of control cells, but not PTX-treated cells, ET-1 decreased the cell input resistance and activated a 5 mM Cs(+)-sensitive K(+) current. In the presence of Cs(+), ET-1 stimulated VGCI in a manner comparable with that observed in PTX-treated cells, whereas E-4031, a specific blocker of ether-a-go-go-related gene-like K(+) channels, was ineffective. Similar effects of PTX and Cs(+) were also observed in GH(3) immortalized cells transiently expressing ET(A) receptors. These results indicate that signaling of ET(A) receptors through the G(i/o) pathway in lactotrophs and the subsequent activation of inward rectifier K(+) channels provide an effective and adenylyl cyclase-independent mechanism for a prolonged uncoupling of Ca(2+) mobilization and influx pathways.  相似文献   

5.
In the present study, the effects on intracellular calcium concentration ([Ca(2+)](i)) oscillations of the blockade of ether-a-go-go-related gene (ERG) K(+) channels and of Ca(2+) influx through store-operated channels (SOC) activated by [Ca(2+)](i) store depletion have been studied in GH(3) cells by means of a combination of single-cell fura-2 microfluorimetry and whole-cell mode of the patch-clamp technique. Nanomolar concentrations (1-30 nM) of the piperidinic second-generation antihistamines terfenadine and astemizole and of the class III antiarrhythmic methanesulfonanilide dofetilide, by blocking ERG K(+) channels, increased the frequency and the amplitude of [Ca(2+)](i) oscillations in resting oscillating GH(3) cells. These compounds also induced the appearance of an oscillatory pattern of [Ca(2+)](i) in a subpopulation of nonoscillating GH(3) cells. The effects of ERG K(+) channel blockade on [Ca(2+)](i) oscillations appeared to be due to the activation of L-type Ca(2+) channels, because they were prevented by 300 nM nimodipine. By contrast, the piperazinic second-generation antihistamine cetirizine (0.01-30 microM), which served as a negative control, failed to affect ERG K(+) channels and did not interfere with [Ca(2+)](i) oscillations in GH(3) cells. Interestingly, micromolar concentrations of terfenadine and astemizole (0.3-30 microM), but not of dofetilide (10-100 microM), produced an inhibition of the spontaneous oscillatory pattern of [Ca(2+)](i) changes. This effect was possibly related to an inhibition of SOC, because these compounds inhibited the increase of [Ca(2+)](i) achieved by extracellular calcium reintroduction after intracellular calcium store depletion with the sarcoplasmic or endoplasmic reticulum calcium ATPase pump inhibitor thapsigargin (10 microM) in an extracellular calcium-free medium. The same inhibitory effect on [Ca(2+)](i) oscillations and SOC was observed with the first-generation antihistamine hydroxyzine (1-30 microM), the more hydrophobic metabolic precursor of cetirizine. Collectively, the results of the present study obtained with compounds that interfere in a different concentration range with ERG K(+) channels or SOC suggest that 1) ERG K(+) channels play a relevant role in controlling the oscillatory pattern of [Ca(2+)](i) in resting GH(3) cells and 2) the inhibition of SOC might induce an opposite effect, i.e., an inhibition of [Ca(2+)](i) oscillations.  相似文献   

6.
The role of Ca(2+) influx in activating phospholipase C in bovine adrenal chromaffin cells has been investigated. Phospholipase C activity in response to K(+) depolarization (56 mM) was blocked by the L-type Ca(2+) channel antagonist nifedipine and partially inhibited by the omega-conotoxins GVIA and MVIIC. In contrast, phospholipase C activity in response to histamine receptor activation was unaffected by omega-conotoxin GVIA and partially inhibited by omega-conotoxin MVIIC or nifedipine. This response was however markedly inhibited by the non-selective Ca(2+) channel antagonists La(3+) or 1-[beta-[3-(4-Methoxyphenyl)propoxy]-4-methoyphenethyl]-H-imidazol e (SKF-96365). Despite this Ca(2+) dependence phospholipase C activity was not increased during periods of "capacitative" Ca(2+) inflow generated by histamine-, caffeine- or thapsigargin-mediated depletion of internal Ca(2+) stores. Thus, while Ca(2+) influx in response to K(+) depolarization or G-protein receptor activation can increase phospholipase C activity in these cells, in the latter case it appears to be ineffective unless there is concurrent agonist occupation of the receptor.  相似文献   

7.
Fluoxetine, a widely used antidepressant, has additional effects, including the blocking of voltage-gated ion channels. We examined whether fluoxetine affects ATP-induced calcium signaling in PC12 cells using fura-2-based digital calcium imaging, an assay for [3H]-inositol phosphates (IPs) and whole-cell patch clamping. Treatment with ATP (100 microM) for 2 min induced increases in intracellular free Ca(2+) concentrations ([Ca(2+)](i)). Treatment with fluoxetine (100 nM to 30 microM) for 5 min inhibited the ATP-induced [Ca(2+)](i) increases in a concentration-dependent manner (IC(50) = 1.85 microM). Treatment with fluoxetine (1.85 microM) for 5 min significantly inhibited the ATP-induced responses following the removal of extracellular Ca(2+) or depletion of intracellular Ca(2+) stores. Whereas treatment for 10 min with nimodipine (1 microM) significantly inhibited the ATP-induced [Ca(2+)](i) increase, treatment with fluoxetine further inhibited the ATP-induced response. Treatment with fluoxetine significantly inhibited [Ca(2+)](i) increases induced by 50 mM K(+). In addition, treatment with fluoxetine markedly inhibited ATP-induced inward currents in a concentration-dependent manner. However, treatment with fluoxetine did not inhibit ATP-induced [3H]-IPs formation. Therefore, we conclude that fluoxetine inhibits ATP-induced [Ca(2+)](i) increases in PC12 cells by inhibiting both the influx of extracellular Ca(2+) and the release of Ca(2+) from intracellular stores without affecting IPs formation.  相似文献   

8.
Emodin is known to be used in the treatment of cholesterol stones and cholecystitis. This study sought to investigate the effects of emodin on the contraction of gallbladder smooth muscle (GBSM), intracellular Ca(2+) concentration and L-type calcium current in GBSM cells. Gallbladder muscle strips were obtained from adult guinea pigs and the resting tension was recorded. Gallbladder smooth muscle cells were isolated by enzymatic digestion. Cells were loaded with fluo-3/AM and [Ca(2+)](i) was determined by a laser confocal microscope. Calcium current was recorded by the whole-cell patch clamp method. Emodin increased the resting tension of GBSM strips in a dose-dependent manner. Emodin elevated [Ca(2+)](i) in GBSM cells, and this effect was attenuated by pretreatment with nifedipine. In addition, Emodin increased L-type calcium current at concentrations of 1 to 30 microM (at +10 mV, 10 microM, 45.1+/-5.2% compared to control, EC(50) =3.11 microM). In the presence of protein kinase C (PKC) inhibitor, Staurosporine, emodin did not significantly affect the calcium current. However, phorbol 12, 13-dibutyrate mimicked emodin in enhancement of the calcium current. These results suggest that emodin promotes gallbladder contraction by increasing Ca(2+) influx through L-type calcium channel via PKC pathway.  相似文献   

9.
The effect of the selective inhibitor of Na(+)/Ca(2+) exchanger (NCX), KB-R7943, on large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels was examined in cultured human umbilical vein endothelial cells (HUVECs) and freshly isolated mouse aortic smooth muscle cells (MASMCs). In voltage-clamped cells, KB-R7943 reversibly activated BK(Ca) currents in HUVECs and MASMCs. The EC(50) of KB-R7943 for BK(Ca) current activation in HUVECs was determined to be 6.78+/-0.7 microM. In inside-out and outside-out patches, KB-R7943 markedly increased BK(Ca) channel activity and slightly decreased single channel current amplitudes. In inside-out patches, KB-R7943 shifted the relationship between [Ca(2+)](i) and open probability (P(o)) to the left; the [Ca(2+)](i) required to evoke half-maximal activation changed from 1220+/-68 nM (in the absence of KB-R7943) to 620+/-199 nM (in the presence of 10 microM KB-R7943). In addition, KB-R7943 shifted the relationship between membrane potential and P(o) to the left; the membrane potential to evoke half-maximal activation changed from 76.86+/-1.09 mV (in the absence of KB-R7943) to 49.62+/-2.55 mV (in the presence of 10 microM KB-R7943). In conclusion, KB-R7943 was found to act as a potent BK(Ca) channel activator, which increases the sensitivity of BK(Ca) channels to cytosolic free Ca(2+) and membrane potential, and thereby BK(Ca) channel activity. These results should be considered when KB-R7943 is used as NCX blocker.  相似文献   

10.
Nitric oxide (NO)-induced vasorelaxation and the regulation of endothelial superoxide anion levels is partly mediated by vascular large conductance Ca(2+)-activated K(+) (BK(Ca)) channels. Nitroglycerin acts through the release of NO and its effect is modulated by changes in endothelial superoxide levels. This study examines the effect of BK(Ca) channel blockade on nitroglycerin-induced vasorelaxation in human arterial and venous vascular segments and whether responses to BK(Ca) channel blockade are influenced by the development of venous nitroglycerin tolerance. Dose-relaxation curves to nitroglycerin (10(-10)-10(-4) M) were obtained in segments of the saphenous vein and the left mammary artery. Studies were performed with and without pre-incubation with the BK(Ca) channel blocker iberiotoxin (10(-7) M) and venous tolerance to nitroglycerin were induced by a 24-h i.v. infusion (0.5 microg/kg/min). Iberiotoxin reduced the vasorelaxant effect of nitroglycerin (E(max)) by 60% in endothelium-intact arteries and 13% in endothelium-denuded arteries (P<0.05). Development of nitroglycerin tolerance did not affect the response to iberiotoxin in the venous vascular segments (P>0.05) and (compared to arterial segments) veins were less sensitive to BK(Ca) channel blockade (30% reduction in E(max)) or endothelial removal. The results suggest that primarily arterial effects of nitroglycerin are significantly inhibited by changes in the activity of the endothelial BK(Ca) channels. Although endothelial BK(Ca) are likely regulators of mechanisms underlying arterial tolerance development to nitroglycerin, they do not appear to play a role in human venous nitroglycerin tolerance development.  相似文献   

11.
We tested the hypothesis that relaxation of the rat mesenteric artery in response to insulin is mediated by K(+) channels. Two concentrations of insulin (10 and 100 mU/ml) induced relaxation of the artery by 6+/-1%, 24+/-3% (mean+/-S.E.M.). Denudation of the endothelium or precontraction by KCl (30 mM), clotrimazole (10 microM), a cytochrome P450 inhibitor, charybdotoxin (30 nM) an inhibitor of large-conductance Ca(2+)-activated K(+) channels, abolished the relaxation of the artery in response to insulin. However, N(omega)-nitro-L-arginine methyl ester (L-NAME; 100 microM), an inhibitor of nitric oxide synthase, apamin (1 microM), an inhibitor of small-conductance Ca(2+)-activated K(+) channels, or glibenclamide (10 microM), an ATP-sensitive K(+) channels blocker, did not attenuate the relaxation of the artery caused by insulin. These results suggest that the relaxation of rat mesenteric artery in response to insulin is mediated mostly by large-conductance Ca(2+)-activated K(+) channels, perhaps an endothelium-derived hyperpolarizing factor (EDHF).  相似文献   

12.
An increasing number of studies based on recombinant cells and on mouse models that express an altered repertoire of some of the key components of the intracellular Ca(2+) release stores are becoming available as a result of molecular genetics techniques. Information from these studies, together with results from studies of human diseases caused by mutations in genes that encode proteins of the intracellular Ca(2+) stores, are providing a significant advancement in understanding the interactive nature of the molecular machinery that underlies intracellular Ca(2+) signalling and how the different components of the Ca(2+) stores contribute to the regulation of cellular functions.  相似文献   

13.
delta-Hexachlorocyclohexane (delta-HCH), a lipophilic neurodepressant agent, has been shown to inhibit neurotransmitter release and stimulate ryanodine-sensitive Ca(2+) channels. However, the effect of delta-HCH on neuronal activity remains unclear, although it may enhance the gamma-aminobutyric acid-induced current. Its effects on ionic currents were investigated in rat pituitary GH(3) cells and human neuroblastoma IMR-32 cells. In GH(3) cells, delta-HCH increased the amplitude of Ca(2+)-activated K(+) current (I(K(Ca))). delta-HCH (100 microM) slightly inhibited the amplitude of voltage-dependent K(+) current. delta-HCH (30 microM) suppressed voltage-dependent L-type Ca(2+) current (I(Ca, L)), whereas gamma-HCH (30 microM) had no effect on I(Ca, L). In the inside-out configuration, delta-HCH applied intracellularly did not change the single channel conductance of large conductance Ca(2+)-activated K(+) (BK(Ca)) channels; however, it did increase the channel activity. The delta-HCH-mediated increase in the channel activity is mainly mediated by its increase in the number of long-lived openings. delta-HCH reversibly increased the activity of BK(Ca) channels in a concentration-dependent manner with an EC(50) value of 20 microM. delta-HCH also caused a left shift in the midpoint for the voltage-dependent opening. In contrast, gamma-HCH (30 microM) suppressed the activity of BK(Ca) channels. Under the current-clamp mode, delta-HCH (30 microM) reduced the firing rate of spontaneous action potentials; however, gamma-HCH (30 microM) increased it. In neuroblastoma IMR-32 cells, delta-HCH also increased the amplitude of I(K(Ca)) and stimulated the activity of intermediate-conductance K(Ca) channels. This study provides evidence that delta-HCH is an opener of K(Ca) channels. The effects of delta-HCH on these channels may partially, if not entirely, be responsible for the underlying cellular mechanisms by which delta-HCH affects neuronal or neuroendocrine function.  相似文献   

14.
In nervous tissue, the calcium (Ca(2+)) release induces neurotransmitter exocytosis and synaptic plasticity in neurons and is essential for Ca(2+) waves and oscillations in astrocytes. In this work, we have investigated the effect of organocalchogens on calcium influx in synaptosomal preparations under basal and depolarizing conditions. Acute administration of ebselen caused a significant increase of 34% (p < 0.05) Ca(2+) influx, when under basal conditions but showed no effect on potassium stimulated calcium conditions by brain synaptosomes. Diphenyl ditelluride (PhTe)(2) increased (45)Ca(2+) influx by 40% (p < 0.05) under depolarizing conditions, while diphenyl diselenide (PhSe)(2) had no effect on the brain synaptosomes studied. In addition, we characterized an "in vitro" model with the purpose of studying Ca(2+) movements in slices. In this model, we examined the effect of diorganylchalcogenides using brain hippocampal slices, which showed the decrease of calcium influx with the three drugs studied. These findings showed that there are different effects of diorganylchalcogenides in the different models evaluated. It is possible that these differential effects result from the action of neural signal transduction pathways at different levels, possibly involving neurotransmitter release and channel targeting.  相似文献   

15.
Gabapentin and pregabalin (S-(+)-3-isobutylgaba) produced concentration-dependent inhibitions of the K(+)-induced [Ca(2+)](i) increase in fura-2-loaded human neocortical synaptosomes (IC(50)=17 microM for both compounds; respective maximal inhibitions of 37 and 35%). The weaker enantiomer of pregabalin, R-(-)-3-isobutylgaba, was inactive. These findings were consistent with the potency of these drugs to inhibit [(3)H]-gabapentin binding to human neocortical membranes. The inhibitory effect of gabapentin on the K(+)-induced [Ca(2+)](i) increase was prevented by the P/Q-type voltage-gated Ca(2+) channel blocker omega-agatoxin IVA. The alpha 2 delta-1, alpha 2 delta-2, and alpha 2 delta-3 subunits of voltage-gated Ca(2+) channels, presumed sites of gabapentin and pregabalin action, were detected with immunoblots of human neocortical synaptosomes. The K(+)-evoked release of [(3)H]-noradrenaline from human neocortical slices was inhibited by gabapentin (maximal inhibition of 31%); this effect was prevented by the AMPA receptor antagonist NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydro[f]quinoxaline-7-sulphonamide). Gabapentin and pregabalin may bind to the Ca(2+) channel alpha 2 delta subunit to selectively attenuate depolarization-induced Ca(2+) influx of presynaptic P/Q-type Ca(2+) channels; this results in decreased glutamate/aspartate release from excitatory amino acid nerve terminals leading to a reduced activation of AMPA heteroreceptors on noradrenergic nerve terminals.  相似文献   

16.
Hu XQ  Zhang L 《Drug discovery today》2012,17(17-18):974-987
Large conductance Ca(2+)-activated K(+) (BK(Ca)) channels are abundantly expressed in vascular smooth muscle cells. Activation of BK(Ca) channels leads to hyperpolarization of cell membrane, which in turn counteracts vasoconstriction. Therefore, BK(Ca) channels have an important role in regulation of vascular tone and blood pressure. The activity of BK(Ca) channels is subject to modulation by various factors. Furthermore, the function of BK(Ca) channels are altered in both physiological and pathophysiological conditions, such as pregnancy, hypertension and diabetes, which has dramatic impacts on vascular tone and hemodynamics. Consequently, compounds and genetic manipulation that alter activity and expression of the channel might be of therapeutic interest.  相似文献   

17.
Three genes encode the small-conductance Ca(2+)-activated K(+) channels (SK channels). We have stably expressed hSK1 and rSK2 in HEK 293 cells and addressed the pharmacology of these subtypes using whole-cell patch clamp recordings. The bee venom peptide apamin blocked hSK1 as well as rSK2 with IC(50) values of 3.3 nM and 83 pM, respectively. The pharmacological separation between the subtypes was even more prominent when applying the scorpion peptide blocker scyllatoxin, which blocked hSK1 with an IC(50) value of 80 nM and rSK2 at 287 pM. The potent small molecule blockers showed little differentiation between the channel subtypes. The bis-quinolinium cyclophane UCL 1684 blocked hSK1 with an IC(50) value of 762 pM and rSK2 at 364 pM. The antiseptic compound dequalinium chloride blocked hSK1 and rSK2 with IC(50) values of 444 nM and 162 nM, respectively. The nicotinic acetylcholine receptor antagonist d-tubocurarine was found to block hSK1 and rSK2 with IC(50) values of 27 microM and 17 microM when measured at +80 mV. The inhibition by d-tubocurarine was voltage-dependent with increasing affinities at more hyperpolarized potentials. The GABA(A) receptor antagonist bicuculline methiodide also blocked hSK1 and rSK2 in a voltage-dependent manner with IC(50) values of 15 and 25 microM when measured at +80 mV. In conclusion, the pharmacological separation between SK channel subtypes expressed in mammalian cells is too small to support the notion that the apamin-insensitive afterhyperpolarization of neurones is mediated by hSK1.  相似文献   

18.
We have recently found that diethylstilbestrol (DES), a synthetic estrogen agonist, inhibits thrombin-induced Ca(2+) influx in human platelets, but it remains unclear to what extend this effect might be related to the store-operated Ca(2+) influx pathway. To study the effect of DES on store-operated channels and capacitative Ca(2+) influx, we used rat basophilic leukemia (RBL) cells, vascular smooth muscle cells (SMC), and human platelets, and recorded whole-cell Ca(2+) release-activated Ca(2+) (CRAC) currents and thapsigargin (TG)-induced capacitative Ca(2+) influx. In this study, we demonstrate that extracellular DES produces a dose-dependent and reversible inhibition of CRAC currents in RBL cells (IC(50), approximately 0.5 microM), whereas intracellular DES (25 microM) has no effect. Extracellular DES (up to 30 microM) inhibited only CRAC but did not affect a whole-cell monovalent cation current mediated by TRPM7 channels. DES effectively inhibited TG-induced capacitative Ca(2+) influx in a dose-dependent manner with an IC(50) values of approximately 0.1 microM in RBL cells, <0.1 microM in SMC, and approximately 1 microM in human platelets. It is noteworthy that trans-stilbene, a close structural analog of DES that lacks hydroxyl and ethyl groups, had no effect on CRAC current and on store-operated Ca(2+) influx. Thus, we found DES to be a very effective inhibitor of store-operated channels and Ca(2+) influx in a variety of cell types.  相似文献   

19.
The effect of nordihydroguaiaretic acid (NDGA) on Ca(2+) signaling in human hepatoma cells (HA22/VGH) has been investigated. NDGA (5-50 microM) increased [Ca(2+)](i) concentration-dependently. The [Ca(2+)](i) increase comprised an initial rise and an elevated phase over a time period of 4 min. Removal of extracellular Ca(2+) reduced 10-50 microM NDGA induced [Ca(2+)](i) signals by 45+/-5%. Consistently, the 50 microM NDGA-induced [Ca(2+)](i) increase in Ca(2+)-containing medium was reduced by 41+/-2% by 10 microM of La(3+), nifedipine or verapamil. In Ca(2+)-free medium, pretreatment with 20 microM NDGA for 6 min abolished the [Ca(2+)](i) increase induced by the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (1 microM). Conversely, 20 microM NDGA failed to increase [Ca(2+)](i) after 1 microM thapsigargin had depleted the endoplasmic reticulum Ca(2+) store. Inhibition of phospholipase C with 2 microM U73122 had little effect on 20 microM NDGA-induced Ca(2+) release. Several other lipoxygenase inhibitors had no effect on basal [Ca(2+)](i). Together, the data suggest that NDGA increased [Ca(2+)](i) in hepatocytes in a lipoxygenase-independent manner, by releasing Ca(2+) from the endoplasmic reticulum and causing Ca(2+) influx.  相似文献   

20.
Starting from the scaffold of N-methyllaudanosine and N-methylnoscapine, which are known small conductance Ca2+-activated K+ channel blockers, original bis-isoquinolinium derivatives were synthezised and evaluated using binding studies, electrophysiology, and molecular modeling. These quaternary compounds are powerful blockers, and the most active ones have 10 times more affinity for the channels than dequalinium. The unsubstituted compounds possess a weaker affinity than the analogues having a 6,7-dimethoxy- or a 6,7,8-trimethoxy substitution. The length of the linker has no influence in the alkane derivatives. In relation to the xylene derivatives, the affinities are higher for the ortho and meta isomers. These results are well corroborated by a molecular modeling study. Finally, the most effective compounds have been tested in electrophysiological experiments on midbrain dopaminergic neurons and demonstrate the blocking potential of the apamin-sensitive after-hyperpolarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号