首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Olfactory receptor neurons of the nasal epithelium send their axons, via the olfactory nerve (ON), to the glomeruli of the olfactory bulb (OB), where the axon terminals form glutamatergic synapses with the apical dendrites of mitral and tufted cells, the output cells of the OB, and with juxtaglomerular (JG) interneurons. Many JG cells are GABAergic. Here we show that, despite the absence of conventional synapses, GABA released from JG cells activates GABA(B) receptors on ON terminals and inhibits glutamate release both tonically and in response to ON stimulation. Field potential recordings and current-source density analysis, as well as intracellular and whole cell recording techniques were used in rat OB slices. Baclofen (2-5 microM), a GABA(B) agonist, completely suppressed ON-evoked synaptic responses of both mitral/tufted cells and JG cells, with no evidence for postsynaptic effects. Baclofen (0.5-1 microM) also reversed paired-pulse depression (PPD) of mitral/tufted cell responses to paired-pulse facilitation (PPF), and reduced depression of JG cell excitatory postsynaptic currents (EPSCs) during repetitive ON stimulation. These results suggest that baclofen reduced the probability of glutamate release from ON terminals. The GABA(B) antagonists CGP35348 or CGP55845A increased mitral/tufted cell responses evoked by single-pulse ON stimulation, suggesting that glutamate release from ON terminals is tonically suppressed via GABA(B) receptors. The same antagonists reduced PPD of ON-evoked mitral/tufted cell responses at interstimulus intervals 50-400 ms. This finding suggests that a single ON impulse evokes sufficient GABA release, presumably from JG cells, to activate GABA(B) receptors on ON terminals. Thus GABA(B) heteroreceptors on ON terminals are activated by ambient levels of extrasynaptic GABA, and by ON input to the OB. The time course of ON-evoked, GABA(B) presynaptic inhibition suggests that neurotransmission to M/T cells and JG cells will be significantly suppressed when ON impulses arrive in glomeruli at 2.5-20 Hz. GABA(B) receptor-mediated presynaptic inhibition of sensory input to the OB may play an important role in shaping the activation pattern of the OB glomeruli during olfactory coding.  相似文献   

2.
Olfactory bulb glomeruli are formed by a network of three major types of neurons collectively called juxtaglomerular (JG) cells, which include external tufted (ET), periglomerular (PG), and short axon (SA) cells. There is solid evidence that gamma-aminobutyric acid (GABA) released from PG neurons presynaptically inhibits glutamate release from olfactory nerve terminals via activation of GABA(B) receptors (GABA(B)-Rs). However, it is still unclear whether ET cells have GABA(B)-Rs. We have investigated whether ET cells have functional postsynaptic GABA(B)-Rs using extracellular and whole cell recordings in olfactory bulb slices. In the presence of fast synaptic blockers (CNQX, APV, and gabazine), the GABA(B)-R agonist baclofen either completely inhibited the bursting or reduced the bursting frequency and increased the burst duration and the number of spikes/burst in ET cells. In the presence of fast synaptic blockers and tetrodotoxin, baclofen induced an outward current in ET cells, suggesting a direct postsynaptic effect. Baclofen reduced the frequency and amplitude of spontaneous EPSCs in PG and SA cells. In the presence of sodium and potassium channel blockers, baclofen reduced the frequency of miniature EPSCs, which were inhibited by the calcium channel blocker cadmium. All baclofen effects were reversed by application of the GABA(B)-R antagonist CGP55845. We suggest that activation of GABA(B)-Rs directly inhibits ET cell bursting and decreases excitatory dendrodendritic transmission from ET to PG and SA cells. Thus the postsynaptic GABA(B)-Rs on ET cells may play an important role in shaping the activation pattern of the glomeruli during olfactory coding.  相似文献   

3.
Taurine is abundant in the main olfactory bulb, exceeding glutamate and GABA in concentration. In whole-cell patch-clamp recordings in rat olfactory bulb slices, taurine inhibited principal neurons, mitral and tufted cells. In these cells, taurine decreased the input resistance and caused a shift of the membrane potential toward the chloride equilibrium potential. The taurine actions were sustained under the blockade of transmitter release and were reversible and dose-dependent. At a concentration of 5 mM, typically used in this study, taurine showed 90% of its maximal effect. GABA(A) antagonists, bicuculline and picrotoxin, blocked the taurine actions, whereas the glycine receptor antagonist strychnine and GABA(B) antagonists, CGP 55845A and CGP 35348, were ineffective. These findings are consistent with taurine directly activating GABA(A) receptors and inducing chloride conductance. Taurine had no effect on periglomerular and granule interneurons. The subunit composition of GABA(A) receptors in these cells, differing from those in mitral and tufted cells, may account for taurine insensitivity of the interneurons. Taurine suppressed olfactory nerve-evoked monosynaptic responses of mitral and tufted cells while chloride conductance was blocked. This action was mimicked by the GABA(B) agonist baclofen and abolished by CGP 55845A; CGP 35348, which primarily blocks postsynaptic GABA(B) receptors, was ineffective. The taurine effect most likely was due to GABA(B) receptor-mediated inhibition of presynaptic glutamate release. Neither taurine nor baclofen affected responses of periglomerular cells. The lack of a baclofen effect implies that functional GABA(B) receptors are absent from olfactory nerve terminals that contact periglomerular cells. These results indicate that taurine decreases the excitability of mitral and tufted cells and their responses to olfactory nerve stimulation without influencing periglomerular and granule cells. Selective effects of taurine in the olfactory bulb may represent a physiologic mechanism that is involved in the inhibitory shaping of the activation pattern of principal neurons.  相似文献   

4.
An investigation was made of the effect of presynaptic inhibition on paired-pulse facilitation (PPF) of group Ia afferent excitatory postsynaptic potentials (EPSPs). The main finding from this study was that PPF was enhanced during presynaptic inhibition of compound Ia EPSPs. This increase in PPF is identical to that seen at other synapses when the probability of transmitter release is decreased by lowering the extracellular calcium or raising the extracellular magnesium concentration, providing unequivocal evidence that presynaptic inhibition is associated with a decrease in the probability of transmitter release. Further, by analogy with the effects of reduced calcium influx on PPF at other synapses, the results support the idea that presynaptic inhibition is associated with reduced calcium influx into nerve terminals.  相似文献   

5.
Although the olfactory bulb contains one of the highest concentrations of neuropeptide Y in the CNS, its function in the bulb remains unclear. In this study, we used whole-cell electrophysiological, molecular, and primary culture techniques to investigate neuropeptide Y gene expression and neuromodulatory actions of neuropeptide Y on rat olfactory bulb neurons. Northern analysis showed that neuropeptide Y mRNA increases with animal age or time in culture, in a parallel manner. In electrophysiology experiments, agonists that activate neuropeptide Y receptors (whole neuropeptide Y) and the Y2 receptor subtype (neuropeptide Y 13-36) reduced spontaneous excitatory activity in bulb interneurons. In investigating potential presynaptic effects, both agonists reduced the amplitude of calcium channel currents in the presynaptic (mitral/tufted) cell. Also consistent with a presynaptic effect, both agonists reduced the frequency but not the amplitude of miniature excitatory postsynaptic currents (or "minis") in interneurons. In examining potential postsynaptic effects, both agonists slightly increased membrane resistance but had no effect on currents evoked by glutamate. Together, these data suggest that neuropeptide Y inhibits excitatory neurotransmission between olfactory bulb neurons via a presynaptic effect on transmitter (glutamate) release.  相似文献   

6.
Herzog CD  Otto T 《Neuroscience》2002,113(3):569-580
Although replacement of olfactory receptor neurons (ORNs) and subsequent reinnervation of the olfactory bulb occur following ORN injury, the intrinsic and extrinsic factors that contribute to the regulation of this dynamic process have not yet been fully identified. Recent research indicates that several growth factors have neurogenic effects on ORNs in vitro, and that chronic in vivo administration of either basic fibroblast growth factor, epidermal growth factor, or transforming growth factor-alpha (TGF-alpha) following chemical lesion can enhance the normal rate of ORN reinnervation of the olfactory bulb. The primary goal of the present experiments was to further assess the extent to which growth factor-related enhancements in the rate of anatomical recovery during ORN reconstitution and subsequent reinnervation of olfactory bulb are accompanied by enhancements in the rate of recovery of odor-guided behavior.A series of experiments in rats was conducted to initially characterize the time course of the anatomical and behavioral recovery normally observed following ORN reconstitution as a consequence of olfactory nerve transection, and to subsequently characterize the anatomical and behavioral effects of TGF-alpha administration on this normal rate of recovery. Consistent with a host of prior studies, olfactory nerve transection produced consistent and substantial deafferentation of olfactory bulb followed by a time-dependent anatomical recovery which was significantly enhanced by administration of TGF-alpha. The effect of TGF-alpha on functional recovery following olfactory nerve transection was also assessed using an odor-guided fear conditioning task. ORN lesioned animals receiving injections of TGF-alpha during recovery were found to display enhanced conditioned responding to an olfactory stimulus compared to untreated subjects. Further behavioral analyses suggested that this enhanced functional recovery was likely not due to non-specific effects of TGF-alpha on cognition or motor activity, but rather to enhanced olfactory input to the CNS.Future studies will likely reveal the exact mechanism of action mediating the anatomical and concomitant behavioral effects of this growth factor. Since ORNs are one of only a few populations of neurons capable of regeneration or replacement, the continued study of the cellular and molecular factors that coordinate this regenerative process may ultimately lead to the development of therapeutic strategies to promote an enhanced functional recovery following injury to other neuronal populations.  相似文献   

7.
GABA release from cerebellar molecular layer interneurons can be modulated by presynaptic glutamate and/or GABA B receptors upon perfusing the respective agonists. However, it is unclear how release and potential spillover of endogenous transmitter lead to activation of presynaptic receptors. High frequency firing of granule cells, as observed in vivo upon sensory stimulation, could lead to glutamate and/or GABA spillover. Here, we established sustained glutamatergic activity in the granule cell layer of acute mouse cerebellar slices and performed 190 paired recordings from connected stellate cells. Train stimulation at 50 Hz reduced by about 30% the peak amplitude of IPSCs evoked by brief depolarization of the presynaptic cell in 2-week-old mice. A presynaptic mechanism was indicated by changes in failure rate, paired-pulse ratio and coefficient of variation of evoked IPSCs. Furthermore, two-photon Ca2+ imaging in identified Ca2+ hot spots of stellate cell axons confirmed reduced presynaptic Ca2+ influx after train stimulation within the granular layer. Pharmacological experiments indicated that glutamate released from parallel fibres activated AMPARs in stellate cells, evoking GABA release from surrounding cells. Consequential GABA spillover activated presynaptic GABA B Rs, which reduced the amplitude of eIPSCs. Two-thirds of the total disinhibitory effect were mediated by GABA B Rs, one-third being attributable to presynaptic AMPARs. This estimation was confirmed by the observation that bath applied baclofen induced a more pronounced reduction of evoked IPSCs than kainate. Granule cell-mediated disinhibition persisted at near-physiological temperature but was strongly diminished in 3-week-old mice. At this age, GABA release probability was not reduced and presynaptic GABA B Rs were still detectable, but GABA uptake appeared to be advanced, attenuating GABA spillover. Thus, sustained granule cell activity modulates stellate cell-to-stellate cell synapses, involving transmitter spillover during a developmentally restricted period.  相似文献   

8.
Although D2 dopamine receptors have been localized to olfactory receptor neurons (ORNs) and dopamine has been shown to modulate voltage-gated ion channels in ORNs, dopaminergic modulation of either odor responses or excitability in mammalian ORNs has not previously been demonstrated. We found that <50 microM dopamine reversibly suppresses odor-induced Ca2+ transients in ORNs. Confocal laser imaging of 300-microm-thick slices of neonatal mouse olfactory epithelium loaded with the Ca(2+)-indicator dye fluo-4 AM revealed that dopaminergic suppression of odor responses could be blocked by the D2 dopamine receptor antagonist sulpiride (<500 microM). The dopamine-induced suppression of odor responses was completely reversed by 100 microM nifedipine, suggesting that D2 receptor activation leads to an inhibition of L-type Ca2+ channels in ORNs. In addition, dopamine reversibly reduced ORN excitability as evidenced by reduced amplitude and frequency of Ca2+ transients in response to elevated K(+), which activates voltage-gated Ca2+ channels in ORNs. As with the suppression of odor responses, the effects of dopamine on ORN excitability were blocked by the D2 dopamine receptor antagonist sulpiride (<500 microM). The observation of dopaminergic modulation of odor-induced Ca2+ transients in ORNs adds to the growing body of work showing that olfactory receptor neurons can be modulated at the periphery. Dopamine concentrations in nasal mucus increase in response to noxious stimuli, and thus D2 receptor-mediated suppression of voltage-gated Ca2+ channels may be a novel neuroprotective mechanism for ORNs.  相似文献   

9.
In the olfactory bulb, GABA(B) receptors are selectively located in the glomerular layer. A current hypothesis is that GABAergic inhibition mediated through these receptors would be, at least partly, presynaptic and would exerted by decreasing the release of the olfactory receptor neuron excitatory neurotransmitter. Here, we assessed, in the frog, the in vivo action of baclofen, a GABA(B) agonist, on single-unit mitral cell activity in response to odors. Local application of baclofen in the glomerular region of the olfactory bulb was shown to drastically affect mitral cell spontaneous activity, since they became totally silent. Moreover, under baclofen, mitral cells still responded to odors and still specified odor concentration increases through their temporal response patterns. The pharmacological specificity of the GABA(B) agonist action was confirmed by showing that saclofen, a GABA(B) antagonist, partly prevented the inhibitory action of baclofen and restored the initial rate of mitral cell spontaneous activity.The results show that GABA(B)-mimicked inhibition suppressed mitral cell spontaneous activity while odor responses were maintained. This suggests that olfactory receptor neurons partly drive spontaneous mitral cell activity. Moreover, the effect of GABA(B)-mediated inhibition was seen to be very close to that described previously for dopamine D(2) receptor-mediated inhibition. In conclusion, we propose that these two inhibitory mechanisms would offer the possibility to reduce or suppress mitral cell spontaneous activity so as to make their responses to odor especially salient.  相似文献   

10.
The significance of endoplasmic reticulum (ER) store calcium in modulating transmitter release is slowly gaining recognition. One transmitter system that might play an important role in store calcium modulation of transmitter release in the CNS is acetylcholine (ACh). The main olfactory bulb (OB) receives rich cholinergic innervation from the horizontal limb of the diagonal band of Broca and blocking cholinergic signaling in the bulb inhibits the ability of animals to discriminate between closely related odors. Here we show that exposing OB slices to carbamylcholine (CCh), a hydrolysis-resistant analog of Ach, increases gamma-aminobutyric acid (GABA) release at dendrodendritic synapses onto the mitral cells. This increase in transmitter release is mediated by the activation of the M1 class of muscarinic receptors and requires the mobilization of calcium from the ER. The site of action of CCh for this effect is developmentally regulated. In animals younger than postnatal day 10, the major action of CCh appears to be on mitral cells, enhancing GABA release by reciprocal signaling resulting from increased glutamate release from mitral cells. In animals older than postnatal day 10, CCh appears to modulate transmitter release from dendrites of the interneurons themselves. Our results point to modulation of inhibition as an important role for cholinergic signaling in the OB. Our data also strengthen the emerging idea of a role for store calcium in modulating transmitter release at CNS synapses.  相似文献   

11.
12.
Sun H  Ma CL  Kelly JB  Wu SH 《Neuroscience letters》2006,399(1-2):151-156
Whole-cell patch clamp recordings were made from ICC neurons in brain slices of 9-16 day old rats. Postsynaptic currents were evoked by electrical stimulation of the lemniscal inputs. Excitatory postsynaptic currents (EPSCs) were isolated pharmacologically by blocking GABA(A) and glycine receptors. EPSCs were further dissected into AMPA and NMDA receptor-mediated responses by adding the receptor antagonists, APV and CNQX, respectively. The internal solution in the recording electrodes contained CsF and TEA to block K(+) channels that might be activated by postsynaptic GABA(B) receptors. The modulatory effects of GABA(B) receptors on EPSCs in ICC neurons were examined by bath application of the GABA(B) receptor agonist, baclofen, and the antagonist, CGP 35348. The amplitudes of EPSCs in ICC neurons were reduced to 34.4+/-3.2% of the control by baclofen (5-10 microM). The suppressive effect by baclofen was concentration-dependent. The reduction of the EPSC amplitude was reversed by CGP35348. The ratio of the 2nd to 1st EPSCs evoked by paired-pulse stimulation was significantly increased after application of baclofen. These results suggest that glutamatergic excitation in the ICC can be modulated by presynaptic GABA(B) receptors. In addition, baclofen reduced NMDA EPSCs more than AMPA EPSCs. The GABA(B) receptor-mediated modulation of glutamatergic excitation in the ICC provides a likely mechanism for preventing overstimulation and/or regulating the balance of excitation and inhibition involved in processing auditory information.  相似文献   

13.
A growing body of evidence suggests that teleosts are important models for the study of neural processing of olfactory information, and the functional role of dopamine (DA), which is a potent neuromodulator endogenous to the mammalian olfactory bulb, has been one of the strongest focuses in this field. However, the cellular mechanisms of dopaminergic neuromodulation in olfactory bulbar neural circuits have not been fully understood. We investigated such mechanisms by using the goldfish, which offers several advantages for analyzing olfactory information processing by electrophysiological methods. First, we found in the olfactory bulb that numerous cell bodies of the dopaminergic neurons are mainly distributed in the mitral cell layer and extend fine processes to the glomerular layer. Next, we made in vitro field potential recordings and showed that synaptic transmissions from mitral to granule cells were suppressed by DA application. DA also increased the paired-pulse ratio, suggesting that the suppression of synaptic transmission is caused by a decrease in presynaptic glutamate release from the mitral cells. Furthermore, DA significantly suppressed the oscillatory activity of the olfactory bulb in response to olfactory stimuli. Although DA suppresses the synaptic inputs from the olfactory nerve to the olfactory bulbar neurons in mammals, this phenomenon was not observed in the goldfish. These findings indicate that suppression of the mitral to granule cell synaptic transmission in the reciprocal synapses plays an important role in the negative regulation of olfactory responsiveness in the goldfish olfactory bulb.  相似文献   

14.
15.
The pharmacology of calcium channels involved in glutamatergic synaptic transmission from reticulospinal axons in the lamprey spinal cord was analyzed with specific agonists and antagonists of different high-voltage activated calcium channels. The N-type calcium channel blocker omega-conotoxin GVIA (omega-CgTx) induced a large decrease of the amplitude of reticulospinal-evoked excitatory postsynaptic potentials (EPSPs). The P/Q-type calcium channel blocker omega-agatoxin IVA (omega-Aga) also reduced the amplitude of the reticulospinal EPSPs, but to a lesser extent than omega-CgTx. The dihydropyridine agonist Bay K and antagonist nimodipine had no effect on the amplitude of the reticulospinal EPSP. Combined application of omega-CgTx and omega-Aga strongly decreased the amplitude the EPSPs but was never able to completely block them, indicating that calcium channels insensitive to these toxins (R-type) are also involved in synaptic transmission from reticulospinal axons. We have previously shown that the group III metabotropic glutamate receptor agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4) mediates presynaptic inhibition at the reticulospinal synapse. To test if this presynaptic effect is mediated through inhibition of calcium influx, the effect of L-AP4 on reticulospinal transmission was tested before and after blockade of N-type channels, which contribute predominantly to transmitter release at this synapse. Blocking the N-type channels with omega-CgTx did not prevent inhibition of reticulospinal synaptic transmission by L-AP4. In addition, L-AP4 had no affect on the calcium current recorded in the somata of reticulospinal neurons or on the calcium component of action potentials in reticulospinal axons. These results show that synaptic transmission from reticulospinal axons in the lamprey is mediated by calcium influx through N-, P/Q- and R-type channels, with N-type channels playing the major role. Furthermore, presynaptic inhibition of reticulospinal transmission by L-AP4 appears not to be mediated through inhibition of presynaptic calcium channels.  相似文献   

16.
Ethanol increases miniature inhibitory postsynaptic current frequency and decreases the paired-pulse ratio, which suggests that ethanol increases both spontaneous and evoked GABA release, respectively. We have shown previously that ethanol increases GABA release at the rat interneuron-Purkinje cell synapse and that this ethanol effect involves calcium release from internal stores; however, further exploration of the mechanism responsible for ethanol-enhanced GABA release was needed. We found that a cannabinoid receptor 1 (CB1) agonist, WIN-55212, and a GABA(B) receptor agonist, baclofen, decreased baseline spontaneous GABA release and prevented ethanol from increasing spontaneous GABA release. The CB1 receptor and GABA(B) receptor are Galpha i-linked G protein-coupled receptors with common downstream messengers that include adenylate cyclase and protein kinase A (PKA). Adenylate cyclase and PKA antagonists blocked ethanol from increasing spontaneous GABA release, whereas a PKA antagonist limited to the postsynaptic neuron did not block ethanol from increasing spontaneous GABA release. These results suggest that presynaptic PKA plays an essential role in ethanol-enhanced spontaneous GABA release. Similar to ethanol, we found that the mechanism of the cannabinoid-mediated decrease in spontaneous GABA release involves internal calcium stores and PKA. A PKA antagonist decreased baseline spontaneous GABA release. This effect was reduced after incubating the slice with a calcium chelator, BAPTA-AM, but was unaffected when BAPTA was limited to the postsynaptic neuron. This suggests that the PKA antagonist is acting through a presynaptic, calcium-dependent mechanism to decrease spontaneous GABA release. Overall, these results suggest that PKA activation is necessary for ethanol to increase spontaneous GABA release.  相似文献   

17.
Odorant specificity to l-alpha-amino acids was determined electrophysiologically for 93 single catfish olfactory receptor neurons (ORNs) selected for their narrow excitatory molecular response range (EMRR) to only one type of amino acid (i.e., Group I units). These units were excited by either a basic amino acid, a neutral amino acid with a long side chain, or a neutral amino acid with a short side chain when tested at 10(-7) to 10(-5) M. Stimulus-induced inhibition, likely for contrast enhancement, was primarily observed in response to the types of amino acid stimuli different from that which activated a specific ORN. The high specificity of single Group I ORNs to type of amino acid was also previously observed for single Group I neurons in both the olfactory bulb and forebrain of the same species. These results indicate that for Group I neurons olfactory information concerning specific types of amino acids is processed from receptor neurons through mitral cells of the olfactory bulb to higher forebrain neurons without significant alteration in unit odorant specificity.  相似文献   

18.
The processing of odor-evoked activity in the olfactory bulb (OB) of zebrafish was studied by extracellular single unit recordings from the input and output neurons, i.e., olfactory receptor neurons (ORNs) and mitral cells (MCs), respectively. A panel of 16 natural amino acid odors was used as stimuli. Responses of MCs, but not ORNs, changed profoundly during the first few hundred milliseconds after response onset. In MCs, but not ORNs, the total evoked excitatory activity in the population was initially odor-dependent but subsequently converged to a common level. Hence, the overall population activity is regulated by network interactions in the OB. The tuning widths of both ORN and MC response profiles were similar and, on average, stable over time. However, when analyzed for individual neurons, MC response profiles could sharpen (excitatory response to fewer odors) or broaden (excitatory response to more odors), whereas ORN response profiles remained nearly unchanged. Several observations indicate that dynamic inhibition plays an important role in this remodeling. Finally, the reliability of odor identification based on MC population activity patterns improved over time, whereas odor identification based on ORN activity patterns was most reliable early in the odor response. These results demonstrate that several properties of MC, but not ORN, activity change during the initial phase of the odor response with important consequences for odor-encoding activity patterns. Furthermore, our data indicate that inhibitory interactions in the OB are important in dynamically shaping the activity of OB output neurons.  相似文献   

19.
Here we describe several fundamental principles of olfactory processing in the Drosophila melanogaster antennal lobe (the analog of the vertebrate olfactory bulb), through the systematic analysis of input and output spike trains of seven identified glomeruli. Repeated presentations of the same odor elicit more reproducible responses in second-order projection neurons (PNs) than in their presynaptic olfactory receptor neurons (ORNs). PN responses rise and accommodate rapidly, emphasizing odor onset. Furthermore, weak ORN inputs are amplified in the PN layer but strong inputs are not. This nonlinear transformation broadens PN tuning and produces more uniform distances between odor representations in PN coding space. In addition, portions of the odor response profile of a PN are not systematically related to their direct ORN inputs, which probably indicates the presence of lateral connections between glomeruli. Finally, we show that a linear discriminator classifies odors more accurately using PN spike trains than using an equivalent number of ORN spike trains.  相似文献   

20.
Using in vitro superfusion technique the release of [3H]-dopamine from the lateral olivocochlear efferent fibers of the cochlea was investigated. Our previous study gave the first neurochemical evidence for the transmitter role of dopamine and proved its neuronal origin. Using specific antagonists now we characterized the voltage-dependent calcium channels (VDCCs) involved in the release of dopamine evoked by electrical stimulation of the cochlear tissue. Verapamil or nifedipine, and Ni2+ failed to affect the release, indicating that neither L-, nor T-type VDCCs are essential for the release process. The fact that omega-conotoxin inhibited the release of dopamine from lateral olivocochlear efferent fibers suggests, that N-type VDCCs are required for the calcium influx during electrical stimulation. These VDCCs could be presynaptic targets of modulation of the dopamine release under pathological conditions or in therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号