首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Multiple myeloma is associated with unbalanced bone remodeling causing lytic bone lesions. Interleukin-11 (IL-11) promotes osteoclast formation and inhibits osteoblast activity and may, thus, be one factor involved in cancer-induced bone destruction. We have previously shown that myeloma cells produce hepatocyte growth factor (HGF). We now report that HGF induces IL-11 secretion from human osteoblast-like cells and from the osteosarcoma cell lines Saos-2 and HOS. In coculture experiments, both the myeloma cell line JJN-3 and primary myeloma cells from 3 patients induced IL-11 secretion from osteoblasts, whereas no induction was observed with the non-HGF producing myeloma cell line OH-2. Enhanced IL-11 induction was observed with physical contact between osteoblasts and myeloma cells as compared with experiments in which contact was prohibited by tissue inserts. Anti-HGF serum strongly reduced the myeloma cell-induced IL-11 secretion. Furthermore, we show that JJN-3 cells express HGF on the cell-surface. Removal of surface-bound HGF on JJN-3 cells reduced IL-11 production induced in cocultures. Transforming growth factor beta1 and IL-1 potentiated the effect of HGF on IL-11 secretion, whereas an additive effect was observed with tumor necrosis factor. Thus, myeloma-derived HGF can influence the bone marrow environment both as a soluble and a surface-bound factor. Furthermore, HGF emerges as a possible factor involved in myeloma bone disease by its ability to induce IL-11.  相似文献   

2.
Abstract: Adipogenesis and osteogenesis, a reciprocal relationship in bone marrow, are complex processes including proliferation of precursor cells, commitment to the specific lineage, and terminal differentiation. Accumulating evidence from in vitro and in vivo studies suggests that melatonin affects terminal differentiation of osteoblasts and adipocytes, but little is known about the effect of melatonin on the process of adipogenesis and osteogenesis, especially adipogenesis. This study was performed to determine the effect of melatonin on adipogenesis and osteogenesis in human mesenchymal stem cells (hMSCs). Cell proliferation assays demonstrated that melatonin had no apparent effect on the proliferation of hMSCs. When melatonin was added to the adipogenic/osteogenic medium, it directly inhibited adipogenesis and simultaneously promoted osteogenesis of hMSCs in a dose‐dependent manner. Furthermore, quantitative RT‐PCR demonstrated that melatonin significantly suppressed peroxisome proliferator‐activated receptor gamma (PPARγ) expression (day 3, 25% decrease; day 6, 47% decrease), but promoted Runx2 expression (day 3, 87% increase; day 6, 56% increase) in the early stages of adipogenesis and osteogenesis of hMSCs. Moreover, melatonin down‐regulated several markers of terminal adipocyte differentiation, including leptin (30%), lipoprotein lipase (LPL, 41%), adiponectin (51%), and adipocyte protein 2 (αP2, 45%). Meanwhile, melatonin up‐regulated several markers of osteoblast differentiation, including alkaline phosphatase (110%), osteopontin (218%), and osteocalcin (310%). These results suggest that melatonin directly inhibits hMSCs adipogenic differentiation and significantly enhances hMSCs osteogenic differentiation by suppressing PPARγ expression and enhancing Runx2 expression; this provides further evidence for melatonin as an anti‐osteoporosis drug.  相似文献   

3.
4.
Feng R  Anderson G  Xiao G  Elliott G  Leoni L  Mapara MY  Roodman GD  Lentzsch S 《Blood》2007,109(5):2130-2138
Multiple myeloma is characterized by increased osteoclast activity that results in bone destruction and lytic lesions. With the prolonged overall patient survival achieved by new treatment modalities, additional drugs are required to inhibit bone destruction. We focused on a novel and more potent structural analog of the nonsteroidal anti-inflammatory drug etodolac, known as SDX-308, and its effects on osteoclastogenesis and multiple myeloma cells. SDX-101 is another structural analog of etodolac that is already used in clinical trials for the treatment of B-cell chronic lymphocytic leukemia (B-CLL). Compared with SDX-101, a 10-fold lower concentration of SDX-308 induced potent (60%-80%) inhibition of osteoclast formation, and a 10- to 100-fold lower concentration inhibited multiple myeloma cell proliferation. Bone resorption was completely inhibited by SDX-308, as determined in dentin-based bone resorption assays. SDX-308 decreased constitutive and RANKL-stimulated NF-kappaB activation and osteoclast formation in an osteoclast cellular model, RAW 264.7. SDX-308 effectively suppressed TNF-alpha-induced IKK-gamma and IkappaB-alpha phosphorylation and degradation and subsequent NF-kappaB activation in human multiple myeloma cells. These results indicate that SDX-308 effectively inhibits multiple myeloma cell proliferation and osteoclast activity, potentially by controlling NF-kappaB activation signaling. We propose that SDX-308 is a promising therapeutic candidate to inhibit multiple myeloma growth and osteoclast activity and that it should receive attention for further study.  相似文献   

5.
人骨髓间充质干细胞体外分化为肝细胞样细胞   总被引:12,自引:3,他引:12  
目的 探讨人骨髓间充质干细胞(MSCs)的体外培养及特异性诱导为肝细胞样细胞的能力。方法 骨髓标本来源于健康志愿者的胸骨,年龄2~35岁,采用淋巴细胞分离液(密度1.077)分离人MSCs,并分别采用HGF、FGF4、HGF FGF4以及无生长因子四种处理因素体外诱导第三代人MSC向肝细胞样细胞分化。通过流式细胞术分析鉴定.MSCs的纯度,于诱导培养的0、7、14、21、28天时留取细胞检测CK18、AFP和白蛋白的表达情况,同时进行糖原染色验证细胞功能。结果 用淋巴细胞分离液分离出的人MSCs纯度可达90%,采用HGF、FGF4及HGF FGF4三种处理因素均可在体外诱导人MSCs特异分化为具有肝细胞样细胞表型和功能的细胞。结论 人MSCs能在体外扩增并定向诱导为肝细胞样细胞。  相似文献   

6.
7.
Objectives: Hepatocyte growth factor (HGF) is a constituent of the myeloma microenvironment and is elevated in sera from myeloma patients compared to healthy individuals. Increased levels of serum HGF predict a poor prognosis. It has previously been shown by us and others HGF can act as a growth factor to myeloma cells in vitro although these effects have been moderate. We therefore wanted to investigate if HGF could influence the effects of interleukin (IL)‐6. Methods: Myeloma cell lines and primary samples were tested for the combined effects of IL‐6 and HGF in inducing DNA synthesis and migration. Expression levels of c‐Met protein were analysed by Western blotting and flow cytometry. Signaling pathways were examined by Western blotting using phosphospecific antibodies and a Ras‐GTP pull down assay. Results: HGF potentiated IL‐6‐induced growth in human myeloma cell lines and in purified primary myeloma cells. There was also cooperation between HGF and IL‐6 in induction of migration. There seemed to be two explanations for this synergy. IL‐6‐treatment increased the expression of c‐Met making cells HGF responsive, and IL‐6 was dependent on c‐Met signaling in activating both Ras and p44/42 MAPK by a mechanism involving the tyrosine phosphatase Shp2. Conclusions: The results indicate that besides from being a myeloma growth factor alone, HGF can also potentiate the effects of IL‐6 in myeloma proliferation and migration. Thus, c‐Met signaling could be a target for therapy of multiple myeloma.  相似文献   

8.
9.
目的体外观察人骨髓间充质干细胞(hMSCs)向成骨细胞、脂肪细胞及心肌细胞的分化。方法体外培养扩增hMSCs,流式细胞仪分析其免疫表型。取稳定传代的hMSCs,分别在体外向成骨细胞、脂肪细胞及心肌细胞分化,并采用碱性磷酸酶染色、油红O染色及PTAH染色鉴定3种诱导分化后的细胞。结果 hMSCs传代后形态上为典型的成纤维细胞样结构;流式细胞仪检测表明,hMSCs表达CD44、CD105,不表达CD31、CD34和CD45;hMSCs诱导分化后,细胞化学染色显示呈阳性表达的成骨细胞、脂肪细胞和心肌细胞。结论 hMSCs具有多向分化潜能,可向成骨细胞、脂肪细胞和心肌细胞分化。  相似文献   

10.
During bone formation and fracture healing there is a cross-talk between endothelial cells and osteoblasts. We previously showed that vascular endothelial growth factor A (VEGF-A) might be an important factor in this cross-talk, as osteoblast-like cells produce this angiogenic factor in a differentiation-dependent manner. Moreover, exogenously added VEGF-A enhances osteoblast differentiation. In the present study we investigated, given the coupling between angiogenesis and bone formation, whether bone morphogenetic proteins (BMPs) stimulate osteoblastogenesis and angiogenesis through the production of VEGF-A. For this we used the murine preosteoblast-like cell line KS483, which forms mineralized nodules in vitro, and an angiogenesis assay comprising 17-d-old fetal mouse bone explants that have the ability to form tube-like structures in vitro. Treatment of KS483 cells with BMP-2, -4, and -6 enhanced nodule formation, osteocalcin mRNA expression, and subsequent mineralization after 18 d of culture. This was accompanied by a dose-dependent increase in VEGF-A protein levels throughout the culture period. BMP-induced osteoblast differentiation, however, was independent of VEGF-A, as blocking VEGF-A activity by a VEGF-A antibody or a VEGF receptor 2 tyrosine kinase inhibitor did not affect BMP-induced mineralization. To investigate whether BMPs stimulate angiogenesis through VEGF-A, BMPs were assayed for their angiogenic activity. Treatment of bone explants with BMPs enhanced angiogenesis. This was inhibited by soluble BMP receptor 1A or noggin. In the presence of a VEGF-A antibody, both unstimulated and BMP-stimulated angiogenesis were arrested. Conditioned media of KS483 cells treated with BMPs also induced a strong angiogenic response, which was blocked by antimouse VEGF-A but not by noggin. These effects were specific for BMPs, as TGF beta inhibited osteoblast differentiation and angiogenesis while stimulating VEGF-A production. These findings indicate that BMPs stimulate angiogenesis through the production of VEGF-A by osteoblasts. In conclusion, VEGF-A produced by osteoblasts in response to BMPs is not involved in osteoblast differentiation, but couples angiogenesis to bone formation.  相似文献   

11.
A previous study showed that skeletal unloading induced by hindlimb suspension for 14 days in rats reduces osteoblastic cell proliferation, inhibits skeletal growth and bone formation and induces metaphyseal bone loss. This study investigated the effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) in this model. In vitro analysis showed that rhBMP-2 (25-100 ng/ml, 48-96 h) increased alkaline phosphatase activity, an early marker of osteoblast differentiation, in rat neonatal calvaria cells and adult marrow stromal cells, showing that rhBMP-2 induced the differentiation of osteoblast precursor cells in vitro. In contrast, rhBMP-2 did not increase rat calvaria or marrow stromal cell proliferation. Biochemical and histomorphometric analysis showed that systemic infusion with rhBMP-2 (2 microg/kg/day) in unloaded rats had no significant effect on serum osteocalcin levels and on histomorphometric indices of bone formation. Accordingly, rhBMP-2 infusion did not prevent the decreased skeletal growth, trabecular bone bone volume and bone mineral content induced by unloading. The present data indicate that, although rhBMP-2 stimulates osteoblastic cell differentiation, rhBMP-2 infusion is not effective in increasing bone formation and in preventing trabecular bone loss induced by unloading in rats.  相似文献   

12.
Interactions between osteoclast progenitors and stromal cells derived from mesenchymal stem cells (MSCs) within the bone marrow are important for osteoclast differentiation. In vitro models of osteoclastogenesis are well established in animal species; however, such assays do not necessarily reflect human osteoclastogenesis. We sought to establish a reproducible coculture model of human osteoclastogenesis using highly purified human marrow-derived MSCs (hMSCs) and CD34+ hematopoietic stem cells (HSCs). After 3 weeks, coculture of hMSCs and HSCs resulted in an increase in hematopoietic cell number with formation of multinucleated osteoclast-like cells (Ocls). Coculture of hMSCs with HSCs, transduced with a retroviral vector that expresses enhanced green fluorescent protein, produced enhanced green fluorescent protein+ Ocls, further demonstrating that Ocls arise from HSCs. These Ocls express calcitonin and vitronectin receptors and tartrate-resistant acid phosphatase and possess the ability to resorb bone. Ocl formation in this assay is cell contact dependent and is independent of added exogenous factors. Conditioned medium from the coculture contained high levels of interleukin (IL)-6, IL-11, leukemia inhibitory factor (LIF), and macrophage-colony stimulating factor. IL-6 and LIF were present at low levels in cultures of hMSCs but undetectable in cultures of HSCs alone. These data suggest that coculture with HSCs induce hMSCs to secrete cytokines involved in Ocl formation. Addition of neutralizing anti-IL-6, IL-11, LIF, or macrophage-colony stimulating factor antibodies to the coculture inhibited Ocl formation. hMSCs seem to support Ocl formation as undifferentiated progenitor cells, because treatment of hMSCs with dexamethasone, ascorbic acid, and beta-glycerophosphate (to induce osteogenic differentiation) actually inhibited osteoclastogenesis in this coculture model. In conclusion, we have developed a simple and reproducible assay using culture-expanded hMSCs and purified HSCs with which to study the mechanisms of human osteoclastogenesis.  相似文献   

13.
Abstract: Melatonin promotes bone formation and prevents bone degradation via receptor‐dependent or receptor‐independent actions. The aim of this study is to encapsulate melatonin into poly (lactic‐co‐glycolic acid) (PLGA) microspheres (PLGA‐MEL‐MS) and create a melatonin sustained release system, then to evaluate its effect on the osteogenesis of human mesenchymal stem cells (hMSCs) in vitro. PLGA‐MEL‐MS were prepared by single emulsion solvent evaporation technique. Scanning electron microscopy demonstrated the incorporation of melatonin did not disturb the conventional generation of PLGA microspheres in size and morphology. In vitro drug release assay showed that PLGA‐MEL‐MS exhibited a biphasic drug release pattern: a low initial burst release effect with approximately 40% drug release at the first 3 days and a relatively retarded and continuous release with about 85% drug release over the 25 days. Cell proliferation assay demonstrated that PLGA‐MEL‐MS had no apparent effect on proliferation of human MSCs. In an osteogenesis assay, PLGA‐MEL‐MS obviously enhanced alkaline phosphatase (ALP) mRNA expression and increased ALP activity compared to that in the control group. Meanwhile, several markers of osteoblast differentiation were also significantly upregulated, including runx2, osteopontin, and osteocalcin. Furthermore, quantificational alizarin red‐based assay demonstrated that PLGA‐MEL‐MS significantly enhanced calcium deposit of hMSCs compared to the controls. Therefore, this simple melatonin sustained release system can control released melatonin to generate a microenvironment with a relatively stable concentration of melatonin for a period of time to support osteogenic differentiation of hMSCs in vitro. This suggests that this system may be used as bone growth stimulator in bone healing in vivo.  相似文献   

14.
Objectives: The aim of the study was to investigate the effect of bortezomib on osteoblast proliferation and differentiation, as well as on bone matrix deposition for the first time in bisphosphonate‐naïve, previously untreated patients with myeloma. Methods: Twenty newly diagnosed patients received four cycles of bortezomib treatment, initially as monotherapy and then combined with a glucocorticoid from cycle two to four. Bone remodeling markers were monitored closely during treatment. Furthermore, the effects of bortezomib and a glucocorticoid on immature and mature osteoblasts were also studied in vitro. Results: Treatment with bortezomib caused a significant increase in bone‐specific alkaline phosphatase and pro‐collagen type I N‐terminal propeptide, a novel bone formation marker. The addition of a glucocorticoid resulted in a transient decrease in collagen deposition. In vitro bortezomib induced osteoblast proliferation and differentiation. Differentiation but not proliferation was inhibited by glucocorticoid treatment. Conclusions: Bortezomib used as first‐line treatment significantly increased collagen deposition in patients with multiple myeloma and osteolytic lesions, but the addition of a glucocorticoid to the treatment transiently inhibited the positive effect of bortezomib, suggesting that bortezomib may result in better healing of osteolytic lesions when used without glucocorticoids in patients that have obtained remission with a previous therapy. The potential bone‐healing properties of single‐agent bortezomib are currently being explored in a clinical study in patients who have undergone high‐dose therapy and autologous stem cell transplantation.  相似文献   

15.
Syndecan-1 is a heparan sulfate proteoglycan expressed on the surface of, and actively shed by, myeloma cells. Hepatocyte growth factor (HGF) is a cytokine produced by myeloma cells. Previous studies have demonstrated elevated levels of syndecan-1 and HGF in the serum of patients with myeloma, both of negative prognostic value for the disease. Here we show that the median concentrations of syndecan-1 (900 ng/mL) and HGF (6 ng/mL) in the marrow compartment of patients with myeloma are highly elevated compared with healthy controls and controls with other diseases. We show that syndecan-1 isolated from the marrow of patients with myeloma seems to exist in an intact form, with glucosaminoglycan chains. Because HGF is a heparan-sulfate binding cytokine, we examined whether it interacted with soluble syndecan-1. In supernatants from myeloma cells in culture as well as in pleural effusions from patients with myeloma, HGF existed in a complex with soluble syndecan-1. Washing myeloma cells with purified soluble syndecan-1 could effectively displace HGF from the cell surface, suggesting that soluble syndecan-1 can act as a carrier for HGF in vivo. Finally, using a sensitive HGF bioassay (interleukin-11 production from the osteosarcoma cell line Saos-2) and intact syndecan-1 isolated from the U-266 myeloma cell line, we found that the presence of high concentrations of syndecan-1 (more than 3 microg/mL) inhibited the HGF effect, whereas lower concentrations potentiated it. HGF is only one of several heparin-binding cytokines associated with myeloma. These data indicate that soluble syndecan-1 may participate in the pathology of myeloma by modulating cytokine activity within the bone marrow.  相似文献   

16.
The transforming growth factor (TGF)-β family members, bone morphogenetic protein (BMP)-2 and TGF-β that signal via the receptor-regulated Smads (R-Smads) induce bone formation in vivo. The inhibitory Smads (I-Smads), Smad6 and Smad7, negatively regulate TGF-β family ligand signaling by competing with R-Smads for binding to activated type I receptors, and preventing R-Smad activation, Hence, the I-Smads potentially act as suppressors of bone formation although their effects on phenotypic changes in mature osteoblasts are unclear. While Smad7 inhibits both BMP and TGF-β signaling, Smad6 is less effective in inhibiting TGF-β signaling. The present study was performed to examine the role of Smad7 on the phenotype of mouse osteoblastic MC3T3-E1 cells. We employed stable Smad7-transfected MC3T3-E1 cells to examine the role of Smad7 in osteoblast proliferation, differentiation and mineralization. Stable Smad7 overexpression significantly inhibited the absorbance in the MTT-dye assay and inhibited the levels of PCNA compared with those in empty vector-transfected cells. Smad7 overexpression suppressed the type 1 collagen mRNA and protein levels. Moreover, Smad7 inhibited ALP activity and mineralization of osteoblastic cells. The effects of stable overexpression of Smad6 were similar to those of Smad7 suggesting the changes mediated by either I-Smad occurred by inhibition of BMP rather than TGF-β signaling. In addition, PTH-(1-34) elevated the levels of Smad7 in parental MC3T3-E1 cells. In conclusion, the present study demonstrated that Smad7, as well as Smad6, inhibits proliferation, differentiation and mineralization of mouse osteoblastic cells. Therefore, I-Smads are important molecular targets for the negative control of bone formation.  相似文献   

17.
Interactions of myeloma cells with the bone marrow microenvironment lead to enhanced osteoclast recruitment and impaired osteoblast activity. Recent evidence revealed that the proteasome inhibitor bortezomib stimulates osteoblast differentiation, but the mechanisms are not fully elucidated. We hypothesised that bortezomib could influence osteoblastic differentiation via alteration of vitamin D signalling by blocking the proteasomal degradation of the vitamin D receptor (VDR). This is of clinical importance, as a high rate of vitamin D deficiency was reported in patients with myeloma. We performed cocultures of primary human mesenchymal stem cells (hMSCs) and human osteoblasts (hOBs) with myeloma cells, which resulted in an inhibition of the vitamin D‐dependent differentiation of osteoblast precursors. Treatment with bortezomib led to a moderate increase in osteoblastic differentiation markers in hMSCs and hOBs. Importantly, this effect could be strikingly increased when vitamin D was added. Bortezomib led to enhanced nuclear VDR protein levels in hMSCs. Primary hMSCs transfected with a VDR luciferase reporter construct showed a strong increase in VDR signalling with bortezomib. In summary, stimulation of VDR signalling is a mechanism for the bortezomib‐induced stimulation of osteoblastic differentiation. The data suggest that supplementation of vitamin D in patients with myeloma treated with bortezomib is crucial for optimal bone formation.  相似文献   

18.
Bone disease is a major symptom of multiple myeloma, which results from excessive osteoclast activation and impaired osteoblast function. Novel antimyeloma agents, such as immunomodulatory drugs and bortezomib, alter bone metabolism in patients with this disease. However, recent studies have shown that bortezomib affects bone formation and healing, but immunomodulatory drugs do not. We report a case of refractory multiple myeloma that was treated with lenalidomide combined with dexamethasone (RD regimen). As a result, the patient's myeloma protein expression was markedly reduced, and her hematological profile was improved. However, the treatment also induced tetany by reducing her serum calcium and magnesium levels and elevating her alkaline phosphatase levels. In addition, conventional radiography and computed tomography detected osteosclerosis. These findings suggest that the RD regimen affects bone formation, possibly by activating osteoblasts. This is to our knowledge the first report to suggest that lenalidomide, an immunomodulatory drug, affects osteogenesis, at least in a certain subpopulation of patients with multiple myeloma.  相似文献   

19.
Bone destruction in multiple myeloma is characterized both by markedly increased osteoclastic bone destruction and severely impaired osteoblast activity. We reported that interleukin-3 (IL-3) levels are increased in bone marrow plasma of myeloma patients compared with healthy controls and that IL-3 stimulates osteoclast formation. However, the effects of IL-3 on osteoblasts are unknown. Therefore, to determine if IL-3 inhibits osteoblast growth and differentiation, we treated primary mouse and human marrow stromal cells with IL-3 and assessed osteoblast differentiation. IL-3 inhibited basal and bone morphogenic protein-2 (BMP-2)-stimulated osteoblast formation in a dose-dependent manner without affecting cell growth. Importantly, marrow plasma from patients with high IL-3 levels inhibited osteoblast differentiation, which could be blocked by anti-IL-3. However, IL-3 did not inhibit osteoblast differentiation of osteoblastlike cell lines. In contrast, IL-3 increased the number of CD45+ hematopoietic cells in stromal-cell cultures. Depletion of the CD45+ cells abolished the inhibitory effects of IL-3 on osteoblasts, and reconstitution of the cultures with CD45+ cells restored the capacity of IL-3 to inhibit osteoblast differentiation. These data suggest that IL-3 plays a dual role in the bone destructive process in myeloma by both stimulating osteoclasts and indirectly inhibiting osteoblast formation.  相似文献   

20.
Elucidating the molecular mechanisms that regulate human stromal (mesenchymal) stem cell (hMSC) differentiation into osteogenic lineage is important for the development of anabolic therapies for treatment of osteoporosis. MicroRNAs (miRNAs) are short, noncoding RNAs that act as key regulators of diverse biological processes by mediating translational repression or mRNA degradation of their target genes. Here, we show that miRNA-138 (miR-138) modulates osteogenic differentiation of hMSCs. miRNA array profiling and further validation by quantitative RT-PCR (qRT-PCR) revealed that miR-138 was down-regulated during osteoblast differentiation of hMSCs. Overexpression of miR-138 inhibited osteoblast differentiation of hMSCs in vitro, whereas inhibition of miR-138 function by antimiR-138 promoted expression of osteoblast-specific genes, alkaline phosphatase (ALP) activity, and matrix mineralization. Furthermore, overexpression of miR-138 reduced ectopic bone formation in vivo by 85%, and conversely, in vivo bone formation was enhanced by 60% when miR-138 was antagonized. Target prediction analysis and experimental validation by luciferase 3' UTR reporter assay confirmed focal adhesion kinase, a kinase playing a central role in promoting osteoblast differentiation, as a bona fide target of miR-138. We show that miR-138 attenuates bone formation in vivo, at least in part by inhibiting the focal adhesion kinase signaling pathway. Our findings suggest that pharmacological inhibition of miR-138 by antimiR-138 could represent a therapeutic strategy for enhancing bone formation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号