首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Fabry disease is a systemic disease caused by genetic deficiency of a lysosomal enzyme, alpha-galactosidase A (alpha-gal A), and is thought to be an important target for enzyme replacement therapy. We studied the feasibility of gene-mediated enzyme replacement for Fabry disease. The adeno-associated virus (AAV) vector containing the alpha-gal A gene was injected into the right quadriceps muscles of Fabry knockout mice. A time course study showed that alpha-gal A activity in plasma was increased to approximately 25% of normal mice and that this elevated activity persisted for up to at least 30 weeks without development of anti-alpha-gal A antibodies. The alpha-gal A activity in various organs of treated Fabry mice remained 5-20% of those observed in normal mice. Accumulated globotriaosylceramide in these organs was completely cleared by 25 weeks after vector injection. Reduction of globotriaosylceramide levels was also confirmed by immunohistochemical and electronmicroscopic analyses. Echocardiographic examination of treated mice demonstrated structural improvement of cardiac hypertrophy 25 weeks after the treatment. AAV vector-mediated muscle-directed gene transfer provides an efficient and practical therapeutic approach for Fabry disease.  相似文献   

2.
Fabry disease is an X-linked recessive lysosomal storage disorder caused by a partial or complete deficiency of alpha-galactosidase A. Intracellular accumulation of globotriaosylceramide, the glycolipid substrate of this enzyme, leads to severe painful neuropathy with progressive renal, cardiovascular, and cerebrovascular dysfunction and early death. Men are predominantly affected but many female carriers have similar clinical involvement, including increased risk of stroke. Physical stigmata, such as angiokeratomas in skin and mucous membranes and characteristic benign corneal abnormalities, facilitate identification of Fabry disease. The finding of a marked decreased activity of (alpha-galactosidase A in plasma, white blood cells or cultured skin fibroblasts confirms the diagnosis. Treatment thus far has been symptomatic only. Etiology-based therapies are being developed that include enzyme replacement therapy, gene therapy, and substrate deprivation. The recently completed double-blind, placebo-controlled trials of intravenous infusions of (alpha-galactosidase A in patients with Fabry disease demonstrated the safety and efficacy of this treatment. We report a family with Fabry disease composed of hemicygous and heterocygous. The propositus developed chronic renal failure and received a cadaver renal transplant, which remained with adequate renal function during 15 years.  相似文献   

3.
Fabry disease is an X-linked recessive inborn metabolic disorder characterized by systemic and vascular accumulation of globotriaosylceramide (Gb(3)) caused by a deficiency of the lysosomal enzyme alpha-galactosidase A (alpha-gal A). The condition is associated with an increased morbidity and mortality due to renal failure, cardiac disease, and early onset of stroke. Hemizygous males are primarily affected clinically with variable expression in heterozygous females. Gene-therapy trials have been initiated recently in alpha-gal A knockout mouse models of Fabry disease by using a variety of viral vectors. In the present investigation we administered single i.v. injections of 1 x 10(10) genomes of recombinant adeno-associated virus (rAAV) encoding the human alpha-gal A gene driven by a modified chicken beta-actin (CAG) promoter to alpha-gal A knockout (Fabry) mice. Transgenic mice were analyzed for expression of alpha-gal A activity and Gb(3) levels in liver, kidney, heart, spleen, small intestine, lung, and brain. Administration of the rAAV-CAG-hAGA vector resulted in stable expression of alpha-gal A in organs of the Fabry mice for >6 months. alpha-Gal A activity in the organs became equal to or higher than that of wild-type mice. Accumulated Gb(3) in the liver, heart, and spleen was reduced to that of wild-type mice with lesser but significant reductions in kidney, lung, and small intestine. Injection of the rAAV-CAG-hAGA construct into skeletal muscle did not result in expression of alpha-gal A in it or in other tissues. This study provides a basis for a simple and efficient gene-therapy approach for patients with Fabry disease and is indicative of its potential for the treatment of other lysosomal storage disorders.  相似文献   

4.
Fabry disease is a lysosomal storage disorder caused by a deficiency of the lysosomal enzyme alpha-galactosidase A (alpha-gal A). This enzyme deficiency leads to impaired catabolism of alpha-galactosyl-terminal lipids such as globotriaosylceramide (Gb3). Patients develop painful neuropathy and vascular occlusions that progressively lead to cardiovascular, cerebrovascular, and renal dysfunction and early death. Although enzyme replacement therapy and bone marrow transplantation have shown promise in the murine analog of Fabry disease, gene therapy holds a strong potential for treating this disease in humans. Delivery of the normal alpha-gal A gene (cDNA) into a depot organ such as liver may be sufficient to elicit corrective circulating levels of the deficient enzyme. To investigate this possibility, a recombinant adeno-associated viral vector encoding human alpha-gal A (rAAV-AGA) was constructed and injected into the hepatic portal vein of Fabry mice. Two weeks postinjection, alpha-gal A activity in the livers of rAAV-AGA-injected Fabry mice was 20-35% of that of the normal mice. The transduced animals continued to show higher alpha-gal A levels in liver and other tissues compared with the untouched Fabry controls as long as 6 months after treatment. In parallel to the elevated enzyme levels, we see significant reductions in Gb3 levels to near normal at 2 and 5 weeks posttreatment. The lower Gb3 levels continued in liver, spleen, and heart, up to 25 weeks with no significant immune response to the virus or alpha-gal A. Also, no signs of liver toxicity occurred after the rAAV-AGA administration. These findings suggest that an AAV-mediated gene transfer may be useful for the treatment of Fabry disease and possibly other metabolic disorders.  相似文献   

5.
Metabolic storage disorders are caused by mutations in genes that result in insufficient activity of enzymes required for the catabolism of substances that arise from the turnover of senescent cells in the body. Among the most prevalent of these conditions are Gaucher disease and Fabry disease, which are caused by reduced activity of the housekeeping enzymes glucocerebrosidase and alpha-galactosidase A, respectively. Enzyme replacement therapy is extraordinarily effective for patients with Gaucher disease. It is under examination in patients with Fabry disease, and improvement of various clinical aspects in these patients has been documented. The blood-brain barrier prevents systemically administered enzymes from reaching the central nervous system. This limitation is a major impediment for the treatment of patients with enzyme deficiency disorders in whom the brain is involved. Alternatives to enzyme replacement therapy that have been initiated to treat systemic manifestations and brain involvement in patients with metabolic disorders include substrate reduction therapy, active site-specific chaperone therapy, and gene therapy. The present status and anticipated advances in the application of these therapeutic approaches are examined here.  相似文献   

6.
Non-specific gastrointestinal symptoms, including pain, diarrhoea, nausea, and vomiting, can be the first symptoms of Fabry disease. They may suggest more common disorders, e.g. irritable bowel syndrome or inflammatory bowel disease. The confounding clinical presentation and rarity of Fabry disease often cause long diagnostic delays and multiple misdiagnoses. Therefore, specialists involved in the clinical evaluation of non-specific upper and lower gastrointestinal symptoms should recognize Fabry disease as a possible cause of the symptoms, and should consider Fabry disease as a possible differential diagnosis. When symptoms or family history suggest Fabry disease, in men, low alpha-galactosidase A enzyme levels, and in women, specific Fabry mutations confirm the diagnosis. In addition to symptomatic treatments, disease-specific enzyme replacement therapy with recombinant human alpha-galactosidase A enzyme or chaperone therapy (migalastat) in patients with amenable mutations can improve the disease, including gastrointestinal symptoms, and should be initiated as early as possible after Fabry disease has been confirmed; starting enzyme replacement therapy at as young an age as possible after diagnosis improves long-term clinical outcomes. Improved diagnostic tools, such as a modified gastrointestinal symptom rating scale, may facilitate diagnosing Fabry disease in patients with gastrointestinal symptoms of unknown cause and thus assure timely initiation of disease-specific treatment.  相似文献   

7.
Perrot A  Osterziel KJ  Beck M  Dietz R  Kampmann C 《Herz》2002,27(7):699-702
PATHOGENESIS: Fabry disease is an inherited lysosomal storage disorder caused by deficiency of the enzyme alpha-galactosidase A. The enzyme deficiency results in accumulation of glycosphingolipids in the lysosomes n nearly all cell types and tissues leading to a multisystem disease. MANIFESTATIONS include painful crisis, angiokeratomas, corneal dystrophy, and hypohydrosis. The severe renal, cerebrovascular, and cardiac involvement is predominantly responsible for premature mortality in Fabry patients. The disease is X-linked and manifests primarily in hemizygous males but also heterozygous females can be affected. CARDIAC INVOLVEMENT is frequent in Fabry disease. Patients develop hypertrophic cardiomyopathy, arrhythmias, conduction abnormalities, and valvular abnormalities. Although Fabry disease leads to a complex clinical syndrome, there are studies indicating that manifestations can be limited to the heart. The isolated cardiac variant of Fabry disease seems to be more common than previously thought: around 3-6% of male patients with left ventricular hypertrophy seem to suffer from this disease variant. ENZYME REPLACEMENT THERAPY: Recent advances in molecular biology and genetic engineering have enabled the development of enzyme replacement therapy in Fabry disease. Results from two independent therapy studies are indeed promising: Infusion of the enzyme preparation seems to be well tolerated and effective in catabolizing the lipid deposits. This enzyme replacement therapy could be one of the first examples for causal treatment of left ventricular hypertrophy. Therefore, early diagnosis of hypertrophy patients with the cardiac variant of Fabry disease is important.  相似文献   

8.
《Revista portuguesa de cardiologia》2014,33(9):565.e1-565.e6
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the alpha-galactosidase gene. The most frequent cardiac presentation of Fabry disease is cardiomyopathy characterized by left ventricular (LV) hypertrophy, usually concentric.Heart disease in affected females tends to be clinically recognized later than in males and cardiac complications are the most frequently reported cause of death in females with Fabry disease. There are few data regarding the association between Fabry disease and LV noncompaction. We report a case of a 30-year-old asymptomatic woman, heterozygous for a nonsense alpha-galactosidase gene mutation (p.R220X), who presented LV noncompaction on cardiac magnetic resonance imaging, without LV wall hypertrophy. Histopathological examination of myocardial fragments showed marked deposition of glycosphingolipids in cardiomyocytes, confirming the diagnosis of Fabry cardiomyopathy. Based on this finding, the patient was proposed for enzyme replacement therapy. This case illustrates the role of endomyocardial biopsy in the clarification of doubtful or atypical findings related to cardiac Fabry disease, even in heterozygous women, and corroborates the contention that Fabry disease should be included in the differential diagnosis of LV hypertrabeculation/noncompaction.  相似文献   

9.
Fabry disease is inherited as an X-linked disorder secondary to deficiency of alpha-galactosidase A, resulting in abnormal metabolism of substances containing alpha-d-galactosyl moieties. As a consequence, a multisystem disorder develops, culminating in strokes, progressive renal, and cardiac dysfunction. Signs and symptoms of Fabry disease become manifest in childhood, but diagnosis is often delayed. Thirteen children with Fabry disease (age range, 6.5-17 years) were studied as part of a 6-month open-label study of enzyme replacement therapy (ERT) with agalsidase alfa. Paired serum samples were drawn at the start of the study and after 6 months of ERT. Global protein changes in paired samples were compared by using differential stable isotope labeling of peptide lysine residues with O-methylisourea and subsequent nanoHPLC-tandem MS. Statistically significant decreases were observed for five proteins following ERT: alpha(2)-HS glycoprotein, vitamin D-binding protein, transferrin, Ig-alpha-2 C chain, and alpha-2-antiplasmin. The presence of low levels of alpha-2-antiplasmin and plasminogen was confirmed by alternate means in 34 consecutive patients, including four of five ERT-na?ve subjects. Decreased alpha-2-antiplasmin was associated with a parallel increase in circulating VEGF. Soluble VEGF receptor-2 was significantly elevated in plasma of patients compared with pediatric controls and decreased with ERT. These results suggest previously unknown abnormalities of fibrinolysis and angiogenesis factors in Fabry disease. We demonstrated the feasibility of identifying treatment-specific alterations in a small number of subjects that point to previously unsuspected disease-related biological abnormalities.  相似文献   

10.
Fabry disease (alpha-galactosidase A deficiency) is an X-linked recessive lysosomal storage disorder. Although the disease presents in childhood and culminates in cardiac, cerebrovascular, and end-stage renal disease, diagnosis is often delayed or missed. This paper reviews the key signs and symptoms of Fabry disease and provides expert recommendations for diagnosis, follow-up, medical management, and the use of enzyme replacement therapy. Recommendations are based on reviews of the literature on Fabry disease, results of recent clinical trials, and expertise of the authors, all of whom have extensive clinical experience with Fabry disease and lysosomal storage disorders and represent subspecialties involved in treatment. All males and female carriers affected with Fabry disease should be followed closely, regardless of symptoms or treatment status. Clinical trials have shown that recombinant human alpha-galactosidase A replacement therapy--the only disease-specific therapy currently available for Fabry disease--is safe and can reverse substrate storage in the lysosome, the pathophysiologic basis of the disease. Enzyme replacement therapy in all males with Fabry disease (including those with end-stage renal disease) and female carriers with substantial disease manifestations should be initiated as early as possible. Additional experience is needed before more specific recommendations can be made on optimal dosing regimens for reversal; maintenance; and prevention of disease manifestations in affected males, symptomatic carrier females, children, and patients with compromised renal function.  相似文献   

11.
Fabry disease is an X-linked recessive lysosomal storage disorder with variable phenotype characterized by the accumulation of glycosphingolipid in various tissues. Unlike patients with the classical systemic Fabry disease entity, who present with multiple organ involvement, patients with a cardiac variant of Fabry disease are characterized mainly by myocardial hypertrophy. Therefore, the cardiac variant of Fabry disease may be defined as a cardiomyocytic storage disorder, thus, mimicking the clinical features of hypertrophic obstructive and especially non-obstructive cardiomyopathy. In patients with unexplained left ventricular hypertrophy the diagnosis of a cardiac variant of Fabry disease is performed by light- and electron microscopic evaluation of endomyocardial catheter biopsy specimens and/or serologic investigations (decreased activity of alpha-galactosidase A in plasma or leucocytes). Several studies show that between 4% and 8% of unselected patients with the clinical features of hypertrophic non-obstructive cardiomyopathy have a cardiac variant of Fabry disease. In each patient with unexplained myocardial hypertrophy concealed myocardial storage disease, especially cardiac Fabry disease has to be considered and should be ruled out or confirmed by endomyocardial catheter biopsy. This is important because of the recently reported alpha-galactosidase A enzyme replacement therapy in Fabry disease. Randomized, multicenter studies are mandatory to test the hypothesis that enzyme replacement therapy leads to a beneficial clinical effect in the cardiac variant form of Fabry disease and may prevent the progression of the disease in asymptomatic patients.  相似文献   

12.
Fabry disease is an X-linked lysosomal storage disease caused by deficiency of alpha-galactosidase A that affects males and shows disease expression in heterozygotes. The characteristic progressive renal insufficiency, cardiac involvement, and neuropathology usually are ascribed to globotriaosylceramide accumulation in the endothelium. However, no direct correlation exists between lipid storage and clinical manifestations, and treatment of patients with recombinant enzymes does not reverse several key signs despite clearance of lipid from the endothelium. We therefore investigated the possibility that globotriaosylceramide metabolites are a missing link in the pathogenesis. We report that deacylated globotriaosylceramide, globotriaosylsphingosine, and a minor additional metabolite are dramatically increased in plasma of classically affected male Fabry patients and plasma and tissues of Fabry mice. Plasma globotriaosylceramide levels are reduced by therapy. We show that globotriaosylsphingosine is an inhibitor of alpha-galactosidase A activity. Furthermore, exposure of smooth muscle cells, but not fibroblasts, to globotriaosylsphingosine at concentrations observed in plasma of patients promotes proliferation. The increased intima-media thickness in Fabry patients therefore may be related to the presence of this metabolite. Our findings suggest that measurement of circulating globotriaosylsphingosine will be useful to monitor Fabry disease and may contribute to a better understanding of the disorder.  相似文献   

13.
Successful therapy for many inherited disorders could be improved if the intervention were initiated early. This is especially true for lysosomal storage disorders. Earlier intervention may allow metabolic correction to occur before lipid buildup has irreversible consequences and/or before the immune system mounts limiting responses. We have been developing gene therapy to treat lysosomal storage disorders, especially Fabry disease. We describe studies directed toward metabolic correction in neonatal animals mediated by recombinant lentiviral vectors. To develop this method, we first injected a marking lentiviral vector that engineers expression of luciferase into the temporal vein of recipient neonatal animals. The use of a cooled charged-coupled device camera allowed us to track transgene expression over time in live animals. We observed intense luciferase expression in many tissues, including the brain, that did not diminish over 24 weeks. Next, we injected neonatal Fabry mice a single time with a therapeutic lentiviral vector engineered to express human alpha-galactosidase A. The injection procedure was well tolerated. We observed increased plasma levels of alpha-galactosidase A activity starting at our first plasma collection point (4 weeks). Levels of alpha-galactosidase A activity were found to be significantly elevated in many tissues even after 28 weeks. No immune response was observed against the corrective transgene product. Increased levels of enzyme activity also led to significant reduction of globotriaosylceramide in the liver, spleen, and heart. This approach provides a method to treat lysosomal storage disorders and other disorders before destructive manifestations occur.  相似文献   

14.
Fabry's disease is an X-linked inborn error of glycosphingolipid catabolism, resulting from a deficiency in alpha-galactosidase A (alpha-Gal A). A 56-year-old Japanese woman was at first suspected of having hypertrophic cardiomyopathy. The patient and her son had alpha-Gal A activity in leukocytes that was remarkably below the limit of controls. DNA analysis of the alpha-Gal A gene revealed a novel missense mutation at codon 19 in exon 1, resulting in leucine-to-proline substitution. As a result she was confirmed as a classic Fabry heterozygote. Recent advances in enzyme replacement therapy can reverse the storage of glycosphingolipids in Fabry's disease. Thus, in patients with cardiac hypertrophy, it is important to differentiate Fabry's disease from other causes of hypertrophy. Therefore, it is necessary to measure alpha-Gal A activity in all suspected cases and to analyze genetic abnormalities in heterozygotes.  相似文献   

15.
The heart in Anderson Fabry disease   总被引:1,自引:0,他引:1  
Anderson Fabry disease is a life threatening, X-linked inborn metabolic defect of the lysosomal enzyme áalpha-galactosidase A. The deficiency of alpha-galactosidase A leads to a progressive accumulation of globotriaosylceramide (Gb(3)), the major glycosphingolipid substrate of the enzyme, within vulnerable cells, tissues, and organs, including the cardiovascular system. Cardiac involvement is frequent and patients with cardiac affection develop progressive hypertrophic infiltrative cardiomyopathy, valvular abnormalities, arrhythmias, and conduction abnormalities and may develop coronary heart disease. Hemizygous male patients have no detectable alpha-galactosidase A activity, while affected heterozygous females may have normal level of alpha-galactosidase A activity. Death occurs in male patients at 45 to 50 years, about 15 to 20 years earlier than in female patients due to a vicious circle from chronic renal insufficiency, arterial hypertension, atherosclerotic lesions and cerebrovascular hemorrhage or insults, and cardiomyopathy. Cardiac involvement in hetero- and hemizygotes will be discussed as well as the influence of enzyme replacement of alpha-galactosidase A.  相似文献   

16.
Summary Objective: Fabry disease results from α-gala- ctosidase A deficiency and is characterized by the lysosomal accumulation of globotriaosylceramide. Globotriaosylceramide storage predominantly affects endothelial cells, altering vascular wall morphology and vasomotor function. Our objective was to investigate aortic globotriaosylceramide levels, morphology and function in a mouse model of Fabry disease, and the effect of substrate reduction therapy, using the glycosphingolipid biosynthesis inhibitor N-butyldeoxynojirimycin. Methods and results: Mice used were C57BL/6J and α-galactosidase A knockout (Fabry). We show progressive accumulation of aortic globotriaosylceramide throughout the lifespan of untreated Fabry mice (55-fold elevation at 2 months increasing to 187-fold by 19 months), localized to endothelial and vascular smooth-muscle cells; there was no effect on vascular wall morphology in young Fabry mice. In old mice, storage resulted in intimal thickening. Endothelial function declined with age in Fabry mouse aorta. Aortae from N-butyldeoxynojirimycin-treated Fabry mice at 19 months of age had reduced endothelial globotriaosylceramide storage, fewer morphological abnormalities and less severe vasomotor dysfunction compared with untreated littermates. Conclusion: We provide evidence of a novel vascular phenotype in the Fabry mouse that has relevance to vascular disease in Fabry patients. N-Butyldeoxynojirimycin treatment partially prevented the phenotype in the Fabry mouse by reducing endothelial globotriaosylceramide storage.  相似文献   

17.
Fabry disease is an X-linked lysosomal storage disease caused by a deficiency of alpha-galactosidase A. This determines an accumulation of globotriaosylceramide within lysosomes. The clinical picture is highly variable and depends on cellular storage deposition. Renal, cardiac and nervous system are the most frequent organs involved. Gastrointestinal involvement is also present, associated with other clinical signs of Fabry disease and sometimes can be a prominent clinical manifestation. We describe a Fabry disease case in which gastrointestinal involvement was the first and the only clinical sign of Fabry disease and a diagnosis of Fabry disease was made by chance during a family screening. Enzyme replacement therapy was started and after 3 months, there was a complete disappearance of signs.  相似文献   

18.
BACKGROUND: Fabry disease is a rare X-linked disease arising from deficiency of alpha-galactosidase A. It results in early death related to renal, cardiac, and cerebrovascular disease, which are also important outcomes in patients with elevated blood pressure (BP). The prevalence of uncontrolled hypertension, as well as the effect of enzyme replacement therapy on BP, in patients with Fabry disease is unknown. METHODS: We examined uncontrolled hypertension (systolic BP [SBP] >or=130 mm Hg or diastolic BP [DBP] >or=80 mm Hg) among 391 patients with Fabry disease who were participating in the Fabry Outcome Survey (FOS). RESULTS: Uncontrolled hypertension was present in 57% of men and 47% of women. In patients with chronic kidney disease (CKD) stage 1 (n100), median SBP was 120 mm Hg and median DBP was 74 mm Hg. In patients with CKD stage 2 (n172), median SBP was 125 mm Hg and median DBP was 75 mm Hg. In patients with CKD stage 3 (n63), median SBP was 130 mm Hg and median DBP was 75 mm Hg. There was a significant decrease in both SBP and DBP during a 2-year course of enzyme replacement therapy. CONCLUSIONS: This study revealed a high prevalence of uncontrolled hypertension among patients with Fabry disease. Thus there is a need to improve BP control and renoprotection in patients with Fabry disease.  相似文献   

19.
Fabry disease is an X-linked metabolic disorder caused by a deficiency of alpha-galactosidase A (alpha-Gal A). The enzyme defect leads to the systemic accumulation of glycosphingolipids with alpha-galactosyl moieties consisting predominantly of globotriaosylceramide (Gb3). In patients with this disorder, glycolipid deposition in endothelial cells leads to renal failure and cardiac and cerebrovascular disease. Recently, we generated alpha-Gal A gene knockout mouse lines and described the phenotype of 10-week-old mice. In the present study, we characterize the progression of the disease with aging and explore the effects of bone marrow transplantation (BMT) on the phenotype. Histopathological analysis of alpha-Gal A -/0 mice revealed subclinical lesions in the Kupffer cells in the liver and macrophages in the skin with no gross lesions in the endothelial cells. Gb3 accumulation and pathological lesions in the affected organs increased with age. Treatment with BMT from the wild-type mice resulted in the clearance of accumulated Gb3 in the liver, spleen, and heart with concomitant elevation of alpha-Gal A activity. These findings suggest that BMT may have a potential role in the management of patients with Fabry disease.  相似文献   

20.
Fabry disease is a lipid storage disorder resulting from mutations in the gene encoding the enzyme alpha-galactosidase A (alpha-gal A; EC ). We previously have demonstrated long-term alpha-gal A enzyme correction and lipid reduction mediated by therapeutic ex vivo transduction and transplantation of hematopoietic cells in a mouse model of Fabry disease. We now report marked improvement in the efficiency of this gene-therapy approach. For this study we used a novel bicistronic retroviral vector that engineers expression of both the therapeutic alpha-gal A gene and the human IL-2Ralpha chain (huCD25) gene as a selectable marker. Coexpression of huCD25 allowed selective immunoenrichment (preselection) of a variety of transduced human and murine cells, resulting in enhanced intracellular and secreted alpha-gal A enzyme activities. Of particular significance for clinical applicability, mobilized CD34(+) peripheral blood hematopoietic stem/progenitor cells from Fabry patients have low-background huCD25 expression and could be enriched effectively after ex vivo transduction, resulting in increased alpha-gal A activity. We evaluated effects of preselection in the mouse model of Fabry disease. Preselection of transduced Fabry mouse bone marrow cells elevated the level of multilineage gene-corrected hematopoietic cells in the circulation of transplanted animals and improved in vivo enzymatic activity levels in plasma and organs for more than 6 months after both primary and secondary transplantation. These studies demonstrate the potential of using a huCD25-based preselection strategy to enhance the clinical utility of ex vivo hematopoietic stem/progenitor cell gene therapy of Fabry disease and other disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号