首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
We are using a systemic plague model to identify the cells and pathways that are undermined by the virulence protein YopM of the plague bacterium Yersinia pestis. In this study, we pursued previous findings that Gr1(+) cells are required to selectively limit growth of ΔyopM Y. pestis and that CD11b(+) cells other than polymorphonuclear leukocytes (PMNs) are selectively lost in spleens infected with parent Y. pestis. When PMNs were ablated from mice, ΔyopM Y. pestis grew as well as the parent strain in liver but not in spleen, showing that these cells are critical for controlling growth of the mutant in liver but not spleen. In mice lacking expression of the chemokine receptor CCR2, wild-type growth was restored to ΔyopM Y. pestis in both organs. In spleen, the Gr1(+) cells differentially recruited by parent and ΔyopM Y. pestis infections were CCR2(+) Gr1(+) CD11b(+) CD11c(Lo-Int) MAC3(+) iNOS(+) (inducible nitric oxide synthase-positive) inflammatory dendritic cells (iDCs), and their recruitment to spleen from blood was blocked when YopM was present in the infecting strain. Consistent with influx of iDCs being affected by YopM in spleen, the growth defect of the ΔyopM mutant was relieved by the parent Y. pestis strain in a coinfection assay in which the parent strain could affect the fate of the mutant in trans. In a mouse model of bubonic plague, CCR2 also was shown to be required for ΔyopM Y. pestis to show wild-type growth in skin. The data imply that YopM's pathogenic effect indirectly undermines signaling through CCR2. We propose a model for how YopM exerts its different effects in liver and spleen.  相似文献   

2.
In Yersinia pestis KIM there are 11 Yops (yersinial outer membrane proteins) encoded by the low-Ca2+ response virulence plasmid pCD1. Only YopM and YopN are found in easily detectable amounts in the culture medium. In our previous work, we characterized the yopM gene. In the present study, we constructed a YopM- mutant to elucidate the role of YopM in the virulence of Y. pestis. A lacZYA sequence was inserted 126 base pairs downstream from the start codon of the yopM gene in pCD1. The YopM- mutant had the same growth properties as the parent, Y. pestis KIM5-3001. The inserted lacZ gene was regulated by the promoter of the yopM gene. Accordingly, it was expressed strongly at 37 degrees C in the absence of Ca2+ and was decreased in expression when Ca2+ was present. Northern blot (RNA blot) analysis revealed that the yopM gene was in a monocistronic operon, suggesting that the yopM insertion mutation was unlikely to have polar effects on other genes. The YopM- mutant had strongly decreased virulence in mice, with a 50% lethal dose of 3.4 x 10(5) CFU. Virulence was restored by the cloned yopM-containing 5.5-kilobase HindIII F fragment of pCD1. However, supplying a cloned 1.57-kilobase fragment containing little more than the yopM structural gene caused the yopM mutant to significantly overexpress YopM and failed to restore virulence. The infection kinetics of the YopM- mutant revealed growth in both spleens and livers from days 2 to 4 after infection, followed by a precipitous clearance of the bacteria. YopM-containing supernatant proteins of Y. pestis inhibited thrombin- or ristocetin-induced platelet aggregation, whereas there was no inhibition by supernatant proteins from the YopM- Y. pestis mutant. Accordingly, YopM may prevent platelet-mediated events and serve as an important strategy for the yersiniae in the initial stages of a plague infection.  相似文献   

3.
Yersinia pestis, the etiologic agent of plague, delivers six Yersinia outer proteins (Yops) into host cells upon direct bacterial contact. One of these, YopM, is necessary for virulence in a mouse model of septicemic plague, but its pathogenic function is unknown. We report here the immune processes affected by YopM during infection. To test whether the innate or adaptive immune system is targeted by YopM, C57BL/6 (B6) and B6 SCID mice were infected with either the conditionally virulent Y. pestis KIM5 or a yopM deletion mutant and evaluated for bacterial growth in spleen and liver. Both B6 and SCID mice succumbed to infection with Y. pestis KIM5, whereas both mouse strains survived infection by the YopM(-) mutant. These data showed that YopM counteracts innate defenses present in SCID mice. The YopM(-) strain grew more slowly than the parent Y. pestis during the first 4 days of infection in both mouse strains, indicating an early pathogenic role for YopM. In B6 mice, populations of cells of the immune system were not differentially affected by the two Y. pestis strains, with one major exception: the parent Y. pestis KIM5 but not the YopM(-) mutant caused a significant global decrease in NK cell numbers (blood, spleen, and liver), beginning early in infection. NK cells and macrophages isolated early (day 2) from livers and spleens of mice infected with either Y. pestis strain contained comparable levels of cytokine mRNA: interleukin (IL)-1 beta, IL-12, IL-15, IL-18, and tumor necrosis factor alpha in macrophages and gamma interferon in NK cells. However, by day 4 postinfection, cells from mice infected with the parent Y. pestis expressed lower levels of these messages, while those from mice infected with the mutant retained strong expression. Significantly, mRNA for the IL-15 receptor alpha chain was not expressed in NK cells from Y. pestis KIM5-infected mice as early as day 2 postinfection. These findings suggest that YopM interferes with innate immunity by causing depletion of NK cells, possibly by affecting the expression of IL-15 receptor alpha and IL-15.  相似文献   

4.
Presence of 10 important yop genes in Yersinia pestis isolates (18 in number) of Indian origin from 1994 plague outbreak regions of Maharashtra (6 Rattus rattus & Tetera indica rodents) and Gujarat (11 from human patients, 1 from R. rattus) and from plague endemic regions of the Deccan plateau (8 from T. indica) was located by PCR and specific enzyme immunoassay. PCRs were standardized for six effector yops (YopE, YopH, YopJ, YopM, YopO and YopT), three translocator yops (YopB, YopD and YopK) and a regulator LcrV gene. Amplification of all the 10 yop genes was observed in isolates recovered from pneumonic patients and in 5 of 7 rodents from outbreak regions. Among these, amplification of the yopD gene was absent in all eight isolates, and that of yopM in all except one (10R). One of the isolates from rodents of the Deccan plateau (24H) was consistently negative for all the yops. Cloning and expression of truncated yopM (780 bp), yopB (700 bp) and lcrV (796 bp) genes in pQE vectors with SG13009 host cells yielded recombinant proteins for generation of monoclonal antibodies for further use in enzyme immunoassay. Ten stable reactive clones for YopB, nine for YopM and six for LcrV were obtained, all of them exhibiting specific reactions only to Y. pestis. Testing of 26 Y. pestis isolates by monoclonal antibody dot-ELISA and Western blotting provided results identical to PCR, suggesting that the isolates that failed to show PCR amplification also had no expression of their respective proteins. The Y. pestis isolates of outbreak regions had their virulence factors intact in the LCR plasmid. Yersinia pestis isolates recovered from rodents of the Deccan plateau were relatively heterogeneous. It appears that a long residency of Y. pestis of nearly 100 years in the enzootic plague foci has resulted in shedding of virulence genes in the LCR plasmid region in a fairly large proportion of the organisms, possibly due to natural recombination.  相似文献   

5.
Effect of Yersinia pestis YopM on experimental plague.   总被引:1,自引:0,他引:1       下载免费PDF全文
YopM of Yersinia pestis has previously been shown to be necessary for full virulence in mice and to be able to bind human alpha-thrombin. This activity prompted the hypothesis that YopM, functioning extracellularly during plague, might be accessible to neutralization by antibody and hence might be a protective antigen. This study tested this hypothesis and found that YopM was not protective, either by passive or active immunization, in inbred or outbred mice. These findings showed that either YopM-specific antibody does not have access to YopM during experimental plague or the function of extracellular YopM is not neutralizable by antibody. Exogenously supplied YopM partially restored virulence to a YopM- strain of Y. pestis while having no effect on lethality of Listeria monocytogenes. These findings indicate that YopM does not significantly alter host defenses important for resistance against heterologous infection (Listeria monocytogenes) but raise the possibility that YopM has a minor extracellular function specific to homologous infection (Y. pestis).  相似文献   

6.
The plague virulence protein YopM of Yersinia pestis KIM5 belongs to the large family of leucine-rich repeat (LRR) proteins. The only activity demonstrated so far for YopM is thrombin-binding, which could be a function of the small amount of YopM that is released into surrounding tissues by the bacteria. This study combined deletional and mutational analysis, chemical crosslinking assays, and in vitro functional tests with molecular modelling to identify key features of YopM necessary for interacting with thrombin. Two Y. pestis strains expressing YopM variants that differed in thrombin binding were used to assess the importance of thrombin-binding for lethality of plague. Both strains suffered a similar decrease in virulence by three orders of magnitude, indicating that thrombin-binding per se was not the major deficiency for lethality in the systemic disease model employed. It remains possible that extracellular YopM could contribute to plague pathology and to early events in peripheral tissues. The structural studies provided a model for how YopM may interact with thrombin and an insight into how YopM's LRR structure may assemble distinct regions for binding different targets.  相似文献   

7.
YopM is a leucine-rich repeat (LRR) virulence protein that is delivered into host cells when any of the three human-pathogenic species of Yersinia binds to mammalian cells. It exhibits heterogeneity of size and sequence among the yersiniae, but the functional consequences of this variability are not yet known. Yersinia pestis YopM was previously shown to accumulate in the nuclei of infected HeLa cells by a mechanism that requires vesicular trafficking. In this study, we characterized the trafficking of Y. pestis YopM in a Saccharomyces cerevisiae model previously found to support nuclear localization of YopM from an enteropathogenic Yersinia strain (C. F. Lesser and S. I. Miller, EMBO J. 20:1840-1849, 2001). Y. pestis YopM was N-terminally fused to the yeast enhanced green fluorescent protein (yEGFP) and inducibly expressed in the cytoplasm. yEGFP-YopM localized to the yeast nucleus, showing that this property is conserved for YopMs so far tested and that infection and the presence of other Yops are not required for its trafficking. When expressed in S. cerevisiae that is temperature sensitive for vesicular transport, YopM failed to accumulate in the nucleus at the nonpermissive temperature but did accumulate when the permissive temperature was restored. This shows that vesicular trafficking also is required in yeast for normal localization of YopM. YopM consists of a 71-residue leader sequence, 15 LRRs, and a 32-residue tail. Deletion analysis revealed that the leader sequence or tail is alone insufficient to direct YopM to the nucleus, showing that the LRR structure is required. Both the N-terminal and C-terminal halves of YopM localized to the nucleus, indicating the possible presence of two nuclear localization signals (NLSs) in YopM or domains in YopM where an NLS-containing protein might bind; this fits with the presence of two highly conserved regions among Yersinia YopMs. yEGFP-YopM lacking LRRs 4 to 7 or 7 to 10 accumulated in the nucleus in yeast, and YopM lacking these LRRs concentrated normally in the HeLa cell nucleus after delivery by Yersinia infection, showing that these LRRs are not essential for YopM trafficking in eucaryotic cells. However, because Y. pestis carrying either of these YopMs is strongly compromised in virulence in mice, these findings revealed that LRRs 4 to 10 map a region of YopM or support a conformation of YopM that is necessary for a pathogenic effect.  相似文献   

8.
Yersinia pestis is the causative agent of bubonic plague and possesses a set of plasmid-encoded, secretable virulence proteins termed LcrV and Yops which are essential for survival in mammalian hosts. Yops and LcrV are secreted by a type III mechanism (Ysc), and Yops are unidirectionally targeted into the cytosol of associated eukaryotic cells in a tissue culture infection model. LcrV is required for Yops targeting, and recent findings have revealed that it can localize to the bacterial surface; however, its fate in this infection model has not been investigated in detail. In this study, we compared the localization of LcrV to that of the targeted proteins YopE and YopM by immunoblot analysis of fractions of Yersinia-infected HeLa cultures or by laser-scanning confocal microscopy of infected monolayers. Both LcrV and YopE were secreted by contact-activated, extracellularly localized yersiniae and were targeted to the HeLa cell cytosol. Although a significant amount of LcrV partitioned to the culture medium (unlike YopE), this extracellular pool of LcrV was not the source of the LcrV that entered HeLa cells. Unlike targeting of YopE and YopM, targeting of LcrV occurred in the absence of a functional Ysc apparatus and other virulence plasmid (pCD1)-expressed proteins. However, the Ysc is necessary for LcrV to be released into the medium, and our recent work has shown that localization of LcrV on the bacterial surface requires the Ysc. These results indicate that two mechanisms exist for the secretion of LcrV by Y. pestis, both of which are activated by contact with eukaryotic cells. LcrV secreted by the Ysc reaches the bacterial surface and the surrounding medium, whereas the second is a novel, Ysc-independent pathway which results in localization of LcrV in the cytosol of infected cells but not the surrounding medium.  相似文献   

9.
The human salivary amylase genes are associated with two inserted elements, a gamma-actin-processed pseudogene and an endogenous retroviral-like element. To test the contribution of these inserted elements to tissue specificity, 25 lines of transgenic mice carrying 10 amylase constructs were established. A 1-kb fragment of AMY1C (-1003 to +2) was found to be sufficient for parotid-specific expression of a human growth hormone reporter gene. The 1-kb fragment is entirely derived from inserted sequences. Deletion from -1003 to -826 resulted in reduced levels of transgene expression and loss of tissue specificity. The fragment -1003 to -327 was sufficient to transfer parotid specificity to the thymidine kinase promoter. The data demonstrate that the functional tissue-specific promoter of human AMY1C is derived from inserted sequences and that parotid expression can be conferred by sequences derived solely from the retrovirus. A role for retrotransposition in the evolution of gene regulation is indicated by these and other recent observations.  相似文献   

10.
Polyadenylated RNA was isolated from Orgyia pseudotsugata larvae 8-10 days postinfection with the multicapsid nuclear polyhedrosis virus. This RNA was centrifuged through a sucrose gradient and fractions enriched for polyhedrin mRNA were identified by in vitro translation. Complementary DNA made to this RNA hybridized predominantly to a 5-kb fragment of XhoI-digested viral DNA. This fragment was cloned into the plasmid pACYC177 and mapped with restriction endonucleases. A SalI subclone with a 2.5-kb insert derived from the cloned XhoI fragment was found to select by hybridization only polyhedrin mRNA as determined by the size of the in vitro translation product and its precipitation by anti-polyhedrin antibodies. The orientation of the polyhedrin gene and the region of the insert encoding the N terminus of the polyhedrin protein were determined by DNA sequencing. R-Loop mapping indicated polyhedrin mRNA is 980 +/- 75 bases long and contains about 250 nucleotides not represented in the final protein. The polyhedrin gene had no observable intervening sequences.  相似文献   

11.
Chlamydia pneumoniae is a human respiratory pathogen. Unlike the other two Chlamydia species, no species-specific antigen has been defined for C. pneumoniae. An immunoreactive clone containing a 0.8-kb fragment was isolated from a C. pneumoniae (AR-39) genomic library by using anti-C. pneumoniae rabbit immune serum. By Southern hybridization analysis of chromosomal digests of the different Chlamydia spp., the 0.8-kb fragment was shown to react specifically with C. pneumoniae. Subcloning of this fragment into the pGEX-1 lambda T expression vector resulted in the expression of a 62-kDa fusion protein. This fusion protein as well as the cleaved C. pneumoniae peptide were recognized by anti-C. pneumoniae rabbit immune serum, while the glutathione S-transferase moiety was not recognized. The fusion protein was used to produce monospecific rabbit antiserum. This antiserum was shown to react with a 76-kDa protein in all C. pneumoniae isolates tested, specifically recognize C. pneumoniae inclusions in tissue culture, and neutralize infectivity of C. pneumoniae in cell culture. No reactivity was observed with Chlamydia trachomatis or Chlamydia psittaci. To isolate the entire coding sequence of the 76-kDa protein, two partially overlapping fragments of C. pneumoniae DNA, a 3.2-kb HindIII fragment and a 1.2-kb PvuII fragment, were isolated, cloned, and sequenced. No significant sequence similarity was found with any previously reported nucleotide or amino acid sequence of the other Chlamydia species. This C. pneumoniae protein containing a species-specific epitope could play a role in pathogenesis and may be useful as a diagnostic tool.  相似文献   

12.
A 1.6-kb DNA fragment isolated from a Campylobacter concisus genomic library gave C. concisus-specific restriction fragment length patterns when it was used as a probe in hybridization studies. All of the strains tested, including type strains and clinical isolates, contained a 0.5-kb HindIII fragment that hybridized to the probe. DNA sequencing of the 1.6-kb fragment identified three open reading frames (ORFs). One of the ORFs encodes the carboxy terminus of GyrB, and the translational products of ORF2 and ORF3 showed similarity to hypothetical proteins, previously identified in Campylobacter jejuni. DNA-DNA hybridization studies with a fragment internal to ORF3 showed that this sequence was responsible for the signal observed with the 0.5-kb HindIII fragment. A rapid PCR assay was developed and evaluated. Primers that annealed to the extremities of the 1.6-kb fragment were used to obtain an amplicon of the correct size from both reference and clinical strains of C. concisus.  相似文献   

13.
The virulence of yersiniae is promoted in part by shared approximately 70-kb plasmids (pCD in Yersinia pestis and pYV in enteropathogenic Yersinia pseudotuberculosis and Yersinia enterocolitica) that mediate a low-calcium response. This phenotype is characterized at 37 degrees C by either bacteriostasis in Ca(2+)-deficient medium with expression of pCD/pYV-encoded virulence effectors (Yops and LcrV) or vegetative growth and repression of Yops and LcrV with > or =2.5 mM Ca(2+) (Lcr(+)). Regulation of Yops and LcrV is well defined but little is known about bacteriostasis other than that Na(+) plus l-glutamate promotes prompt restriction of Y. pestis. As shown here, l-aspartate substituted for l-glutamate in this context but only Na(+) exacerbated the nutritional requirement for Ca(2+). Bacteriostasis of Y. pestis (but not enteropathogenic yersiniae) was abrupt in Ca(2+)-deficient medium at neutral to slightly alkaline pH (7.0 to 8.0), although increasing the pH to 8.5 or 9.0, especially with added Na(+) (but not l-glutamate), facilitated full-scale growth. Added l-glutamate (but not Na(+)) favored Ca(2+)-independent growth at acidic pH (5.0 to 6.5). Yops and LcrV were produced in Ca(2+)-deficient media at pH 6.5 to 9.0 regardless of the presence of added Na(+) or l-glutamate, although their expression at alkaline pH was minimal. Resting Ca(2+)-starved Lcr(+) cells of Y. pestis supplied with l-glutamate first excreted and then destroyed l-aspartate. These findings indicate that expression of Yops and LcrV is necessary but not sufficient for bacteriostasis of Ca(2+)-starved yersiniae and suggest that abrupt restriction of Y. pestis requires Na(+) and the known absence of aspartate ammonia-lyase in this species.  相似文献   

14.
VirulentYersiniaspecies (Y. pestis, Y. pseudotuberculosis and Y. enterocolitica) possess a 70 kb virulence plasmid that encodes the Yop virulon. This virulence system allows extracellular bacteria adhering at the surface of eukaryotic cells to secrete and inject bacterial effector proteins, called Yops, into the cytosol of these cells in order to disarm them. These secreted Yop proteins are remarkably conserved among the different species. AY. enterocoliticaO:8 strain was found to secrete a protein antigenically related to YopM but significantly larger. Sequencing of the corresponding gene showed that the protein was a YopM variant with three repeats of one domain. Comparison of theyopMgene of variousYersiniastrains by PCR amplification, as well as analysis of the secreted Yop proteins by SDS-PAGE and Western blotting revealed that, unlike the other Yops, the YopM protein shows some heterogeneity.  相似文献   

15.
16.
17.
To produce parvovirus B19 antigen for diagnostic purposes, partially overlapping segments covering the genes encoding the viral structural proteins VP1 and VP2 were cloned into expression vectors. The constructs were induced in Escherichia coli, resulting in the expression of beta-galactosidase fusion proteins. In immunoblotting experiments with sera from patients with erythema infectiosum, immunoglobulin G (IgG) and IgM antibodies bound to a single polypeptide of 235 amino acids at the N terminus of VP1. The DNA fragment encoding this polypeptide was amplified by the polymerase chain reaction and cloned into an expression vector. The viral capsid antigen expressed in E. coli was purified by preparative agarose gel electrophoresis and used in IgG and IgM solid-phase enzyme immunoassays. Comparison with reference gamma- and mu-capture radioimmunoassays using whole virus antigen showed that these antibody tests are suitable for the serodiagnosis of human infections caused by parvovirus B19.  相似文献   

18.
Yersinia pestis, the etiologic agent of plague, secretes a set of environmentally regulated, plasmid pCD1-encoded virulence proteins termed Yops and V antigen (LcrV) by a type III secretion mechanism (Ysc). LcrV is a multifunctional protein that has been shown to act at the level of secretion control by binding the Ysc inner-gate protein LcrG and to modulate the host immune response by altering cytokine production. LcrV also is essential for the unidirectional targeting of Yops to the cytosol of infected eukaryotic cells. In this study, we constructed an in-frame deletion within lcrG (DeltalcrG3) to further analyze the requirement of LcrV in Yop targeting. We confirmed the essentiality of LcrV and found that LcrG may have a facilitative role, perhaps by promoting efficient secretion of LcrV. We also constructed mutants of lcrV expressing LcrV truncated at the N or C terminus. Both the N and C termini of LcrV were required for the secretion of LcrV into the medium and targeting of Yops. LcrV was detected in punctate zones on the surface of fixed Y. pestis by laser-scanning confocal microscopy, and this localization required a functional Ysc. However, the truncated LcrV proteins were not found on the bacterial surface. Finally, we tested the ability of LcrV-specific Fab antibody fragments or full-length antibody to interfere with Yop targeting and found no interference, even though this antibody protects mice against plague. These results indicate that LcrV may function in Yop targeting at the extracellular surface of yersiniae and that the protective efficacy of LcrV-specific antibodies can be manifested without blocking Yop targeting.  相似文献   

19.
Human polymorphonuclear leukocytes (PMNs, or neutrophils) are the primary innate host defense against invading bacterial pathogens. Neutrophils are rapidly recruited to sites of infection and ingest microorganisms through a process known as phagocytosis. Following phagocytosis by human PMNs, microorganisms are killed by reactive oxygen species (ROS) and microbicidal products contained within granules. Yersinia pestis, the causative agent of plague, is capable of rapid replication and dissemination from sites of infection in the host. Although Y. pestis survives in macrophages, the bacterial fate following interaction with human PMNs is less clear. The ability of Y. pestis to inhibit phagocytosis by human PMNs was assessed by differential fluorescence microscopy and was shown to be dependent on expression of the type III secretion system (TTSS). Previous studies have demonstrated that TTSS expression in enteropathogenic Yersinia spp. also inhibits the respiratory burst in PMNs and macrophages, and we show here that human PMN ROS production is similarly repressed by Y. pestis. However, exclusion of uningested TTSS-expressing Y. pestis with gentamicin revealed that intracellular bacteria are eliminated by human PMNs, similar to bacteria lacking the TTSS. In summary, our results suggest that the Y. pestis TTSS contributes to extracellular survival following interactions with human PMNs and that the intracellular fate is independent of TTSS inhibition of neutrophil ROS production.  相似文献   

20.
There is limited information concerning the nature and extent of the immune response to the virulence determinants of Yersinia pestis during the course of plague infection. In this study, we evaluated the humoral immune response of mice that survived lethal Y. pestis aerosol challenge after antibiotic treatment. Such a model may replicate the clinical situation in humans and indicate which virulence determinants are expressed in vivo. Immunoglobulin G enzyme-linked immunosorbent assay and immunoblotting were performed by using purified, recombinant antigens including F1, V antigen, YpkA, YopH, YopM, YopB, YopD, YopN, YopE, YopK, plasminogen activator protease (Pla), and pH 6 antigen as well as purified lipopolysaccharide. The major antigens recognized by murine convalescent sera were F1, V antigen, YopH, YopM, YopD, and Pla. Early treatment with antibiotics tended to reduce the immune response and differences between antibiotic treatment regimens were noted. These results may indicate that only some virulence factors are expressed and/or immunogenic during infection. This information may prove useful for selecting potential vaccine candidates and for developing improved serologic diagnostic assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号