首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stem cell factor (SCF) is a novel growth factor thatinfluences the growth and development of hematopoieticcells, germ cells and melanocytes. To explore the  相似文献   

2.
3.
During bone resorption, abundant factors previously buried in the bone matrix are released into the bone marrow microenvironment, which results in recruitment and differentiation of bone marrow mesenchymal stem cells (MSCs) for subsequent bone formation, temporally and spatially coupling bone remodeling. Parathyroid hormone (PTH) orchestrates the signaling of many pathways that direct MSC fate. The spatiotemporal release and activation of matrix TGF-β during osteoclast bone resorption recruits MSCs to bone-resorptive sites. Dysregulation of TGF-β alters MSC fate, uncoupling bone remodeling and causing skeletal disorders. Modulation of TGF-β or PTH signaling may reestablish coupled bone remodeling and be a potential therapy.  相似文献   

4.
β-Globin locus control region (LCR) sequences have been widely used for the regulated expression of the human β-globin gene in therapeutic viral vectors. In this study, we compare the expression of the human β-globin gene from either the HS2/HS3 β-globin LCR or the HS40 regulatory element from the α-globin locus in the context of foamy virus (FV) vectors for the genetic correction of β-thalassemia. Both regulatory elements expressed comparable levels of human β-globin in a murine erythroleukemic line, whereas in murine hematopoietic stem cells the HS40.β vector proved more efficient in β-globin expression and correction of the β-thalassemia phenotype. Following transplantation in the Hbb(th3/+) mouse model, the expression efficiency by the two vectors was similar, whereas the HS40.β vector achieved relatively more stable transgene expression. In addition, in an ex vivo assay using CD34+ cells from thalassemic patients, both vectors achieved significant human β-globin expression and restoration of the thalassemic phenotype as evidenced by enhanced erythropoiesis and decreased apoptosis. Our data suggest that FV vectors with the α-globin HS40 element can be used as alternative but equally efficient vehicles for human β-globin gene expression for the genetic correction of β-thalassemia.  相似文献   

5.
6.
Introduction: Autologous hematopoietic stem cells are gaining ground as an effective and safe treatment for treating severe refractory Crohn’s disease (CD). Autologous hematopoietic stem cell therapy (AHSCT) induces resetting of the immune system by de novo regeneration of T-cell repertoire and repopulation of epithelial cells by bone-marrow derived cells to help patients achieve clinical and endoscopic remission.

Areas covered: Herein, the authors discuss the use of AHSCT in treating patients with CD. Improvements in disease activity have been seen in patients with severe autoimmune disease and patients with severe CD who underwent AHSCT for a concomitant malignant hematological disease. Clinical and endoscopic remission has been achieved in patients treated with AHSCT for CD. The only randomized trial published to date, the ASTIC Trial, did not support further use of AHSCT to treat CD. Yet, critics of this trial have deemed AHSCT as a promising treatment for severe refractory CD.

Expert opinion: Even with the promising evidence presented for HSCT for refractory CD, protocols need to be refined through the collaboration of GI and hemato-oncology professionals. The goal is to incorporate safe AHSCT and restore tolerance by delivering an effective immune ‘cease fire’ as a treatment option for severe refractory CD.  相似文献   


7.
8.
Gene therapy of human cancer is likely to bemost effective when it is directed at targets that areexpressed in cancer cells but are lacking from othercells. Human papillomaviruses (HPV) can providesuch target, since these viruses are present in manycervical and oral cancers, and likely to be etiologicagents of the tumor. The oncogenic ability of HPVhas been assigned primarily to its two early genes, E6and E7. Continued expression of these two genes is  相似文献   

9.
10.
The safety and efficacy of hematopoietic stem cell (HSC) mobilization was investigated in adult splenectomized (SPL) and non-SPL patients with thalassemia major, in two clinical trials, using different mobilization modes: granulocyte-colony-stimulating factor (G-CSF)-alone, G-CSF following pretreatment with hydroxyurea (HU), plerixafor-alone. G-CSF-mobilization was both safe and effective in non-SPL patients. However, in SPL patients the procedure resulted in excessive response to G-CSF, expressed as early hyperleukocytosis necessitating significant dose reduction, and suboptimal CD34(+) cells yields. One-month HU-pretreatment prevented hyperleukocytosis and allowed successful CD34(+) cell collections when an optimal washout period was maintained, but it significantly prolonged the mobilization procedure. Plerixafor resulted in rapid and effective mobilization in both SPL and non-SPL patients and was well-tolerated. For gene therapy of thalassemia, G-CSF or Plerixafor could be used as mobilization agents in non-SPL patients whereas Plerixafor appears to be the mobilization agent of choice in SPL adult thalassemics in terms of safety and efficacy.  相似文献   

11.
Liposomes have several advantages over viral vectorsfor gene delivery both in vitro and in vivo. However,few data are available concerning gene transfer intohematopoietic stem cells. In order to explore theefficiency and the stability of expression of gene transferinto hematopoietic stem cells, we have transduced twomarker genes (Neo~R and Lac Z) co-transfer into humanbone marrow CD34~ hematopoietic stem cells mediated  相似文献   

12.
13.
β-thalassemia is one of the most prevalent inherited hemoglobin disorders. Compound heterozygotes or homozygous mutations of the β-globin chain gene account for severe cases of β-thalassemia that require lifelong transfusion, and make it necessary to identify β-thalassemia carries for prenatal diagnosis. The increase in hemoglobin A2 (HbA2) level is the most significant parameter in the identification of β-thalassemia carriers. HbA2, composing of two α chains and two δ chains, is a minor component of the hemoglobin present in normal adult red blood cells, accounting for about 2.5% of the total hemoglobin in healthy individuals. However, HbA2 level is also elevated in some pregnant women. This study aimed to evaluate the value of HbA2 level in the screening of pregnant women with β-thalassemia trait. Pregnant and non-pregnant women were randomly recruited who attended the prenatal care or diagnosis at our hospital located in Guangdong, a province in South China. Hemoglobin capillary electrophoresis was performed on high performance liquid chromatography to measure HbA2 levels in blood. The β-globin gene mutations were detected by the PCR-reverse dot-blot assay, and some were verified by direct sequencing. Pregnant women (n = 96) and non-pregnant women (n = 114) with normal HbA2 level (< 3.5%) had no β-thalassemia mutation. In contrast, pregnant women (n = 55) and non-pregnant women (n = 85) with elevated HbA2 level (≥ 3.5%) are β-thalassemia carriers. In conclusion, HbA2 level is a good marker for screening β-thalassemia trait in pregnant women in South China population.  相似文献   

14.
Bone marrow mesenchymal stem cells (MSCs) have been used for bone tissue engineering due to their osteogenic differentiation capability, but their application is controversial. To enhance their capability, we prepared biodegradable gelatin sponges incorporating β-tricalcium phosphate ceramics (GT sponge), which has been shown to possess excellent controlled drug-release properties. The GT sponge was used as a carrier for both rat MSCs and bone morphogenetic protein-2 (BMP-2) and osteogenic differentiation was assessed by subcutaneous implantation of four different kinds of implants, i.e. GT-alone, MSC-GT composites, BMP-GT composites and BMP-GT composites supplemented with MSCs (BMP-MSC-GT) in rats. Two weeks after implantation, histological sections showed new bone formation in the peripheral parts of the BMP-GT and in almost the total volume of the BMP-MSC-GT implants. After 4 weeks, histology as well as microCT analyses demonstrated extensive bone formation in BMP-MSC-GT implants. Gene expression and biochemical analyses of both alkaline phosphatase and bone-specific osteocalcin confirmed the histological findings. These results indicate that the combination of MSCs, GT and BMP synergistically enhances osteogenic capability and provides a rational basis for their clinical application in bone reconstruction.  相似文献   

15.
16.
Ex vivo expansion of hematopoietic precursors, progenitors and stem cells represents the modern era of cellular therapeutics in the 21st century. For the last 10 years, increasing means for identifying and purifying hematopoietic stem cells and cytokines have facilitated and improved the development of ex vivo stem cell expansion technology. However, technology has not yet reached a stage where ex vivo-expanded hematopoietic progenitors and stem cells can be used routinely for replacement therapy. Lessons learned over the past 10 years from investigations focused at developing optimal ex vivo stem cell expansion systems have continued to a much greater understanding of stem cell biology. This knowledge has led to novel attempts at ex vivo expansion of hematopoietic precursors, progenitors, and stem cells, and should facilitate development of a new generation of cellular therapeutics. This review addresses recent progress toward development of clinically useful protocols for stem cell expansion. In addition, we discuss the results of a limited number of clinical trials that address the efficacy of such procedures. Three major areas of ex vivo stem cell expansion that impact clinical feasibility are discussed, including: (1) selection of an optimal stem cell population for expansion, (2) definition of the desired characteristics of the expanded stem cell population to be used for engraftment, and (3) development of new reagents and procedures for expansion and infusion of hematopoietic progenitors and stem cells.  相似文献   

17.
INTRODUCTION: The φC31 integrase system is a phage-derived system that offers the ability to integrate plasmid DNA into the chromosomes at a subset of endogenous preferred locations associated with robust gene expression. Recent progress highlights the unique advantages of this system for in vivo gene therapy and for use in stem cells. AREAS COVERED: The φC31 integrase system has been under development for ten years and has been demonstrated to be effective for integration of plasmids in a variety of tissues and organs for gene therapy in animal systems, as well as in isolated human cells. We focus on work with the φC31 integrase system during the past 12-18 months. This work has centered on a series of papers involving in vivo delivery of the integrase system to the liver and a variety of studies demonstrating the utility of the integrase system in stem cells. EXPERT OPINION: We conclude that the φC31 integrase system has significant potential for liver gene therapy, if effective DNA delivery methods for large mammals become available. The φC31 integrase system displays an outstanding fit for use in pluripotent stem cells, and this area is expected to be the subject of intense development.  相似文献   

18.
The intermediate filament protein Nestin labels populations of stem/progenitor cells, including self-renewing mesenchymal stem cells (MSCs), a major constituent of the hematopoietic stem cell (HSC) niche. However, the intracellular location of Nestin prevents its use for prospective live cell isolation. Hence it is important to find surface markers specific for Nestin+ cells. In this study, we show that the expression of PDGFRα and CD51 among CD45 Ter119 CD31 mouse bone marrow (BM) stromal cells characterizes a large fraction of Nestin+ cells, containing most fibroblastic CFUs, mesenspheres, and self-renewal capacity after transplantation. The PDGFRα+ CD51+ subset of Nestin+ cells is also enriched in major HSC maintenance genes, supporting the notion that niche activity co-segregates with MSC activity. Furthermore, we show that PDGFRα+ CD51+ cells in the human fetal BM represent a small subset of CD146+ cells expressing Nestin and enriched for MSC and HSC niche activities. Importantly, cultured human PDGFRα+ CD51+ nonadherent mesenspheres can significantly expand multipotent hematopoietic progenitors able to engraft immunodeficient mice. These results thus indicate that the HSC niche is conserved between the murine and human species and suggest that highly purified nonadherent cultures of niche cells may represent a useful novel technology to culture human hematopoietic stem and progenitor cells.Hematopoietic stem cells (HSCs) continuously replenish all blood cell lineages throughout their lifetime. Incipient hematopoiesis is first detected extraembryonically in the yolk sac and later in the aorta–gonad–mesonephros region, from where it moves transiently to the placenta and liver before being stabilized in the fetal BM (Wang and Wagers, 2011). In the adult stage, HSCs reside in a highly complex and dynamic microenvironment of the BM commonly referred to as the HSC niche (Schofield, 1978). The interactions between the niche constituents and HSCs ensure hematopoietic homeostasis by regulating HSC self-renewal, differentiation, and migration and by integrating neural and hormonal signals from the periphery (Méndez-Ferrer et al., 2009, 2010; Mercier et al., 2012). However, HSC maintenance and expansion ex vivo still remains challenging mainly because of our limited knowledge on the in vivo HSC niche constituents and the factors that drive HSC self-renewal.Although the cellular constituents of the HSC niche and their role are still poorly understood, in the last decade, several putative cellular components of the murine HSC niche have been proposed, including osteoblastic, endothelial, adipocytic, and perivascular cells (Calvi et al., 2003; Zhang et al., 2003; Arai et al., 2004; Kiel et al., 2005; Sugiyama et al., 2006; Chan et al., 2009; Naveiras et al., 2009; Méndez-Ferrer et al., 2010; Ding et al., 2012). Multipotent BM mesenchymal stem cells (MSCs) have long been suggested to also provide regulatory signals to hematopoietic progenitors, as mixed cultures derived from the adherent fraction of the BM stroma promote the maintenance of HSCs in vitro (Dexter et al., 1977). Although numerous studies explored the ability of mesenchymal stromal cultures to support the ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs), currently these systems are still insufficient to preserve primitive HSCs with long-term multilineage engraftment capacity (Chou et al., 2010; Broxmeyer, 2011). This limitation may in part be associated with the heterogeneous composition of mesenchymal stromal cell cultures. The prospective identification and functional characterization of purified naive populations of mouse and/or human BM stromal MSCs have been mired by the absence of specific cell surface markers allowing prospective isolation. Several MSC-associated antigens have been proposed (such as CD31 CD34 CD45 CD105+ CD90+ CD73+) in cultured cells (Dominici et al., 2006). Nevertheless, these markers are not homogeneously expressed across cultures, varying with isolation protocols and passage and therefore not necessarily representative of MSCs in vivo (Bianco et al., 2013; Frenette et al., 2013). Very few MSC-associated antigens have been validated using rigorous transplantation assays (Sacchetti et al., 2007; Méndez-Ferrer et al., 2010). In the mouse BM, the expression of the intermediate filament protein Nestin characterizes a rare population of multipotent MSCs in close contact with the vasculature and HSCs. Nestin+ stromal cells contain all of the fibroblastic CFU (CFU-F) activity within the mouse BM and the exclusive capacity to form clonal nonadherent spheres in culture. The selective ablation of mouse Nestin+ cells (Méndez-Ferrer et al., 2010) or CXCL12-abundant reticular (CAR) cells (Omatsu et al., 2010) led to significant alterations in the BM HSC and progenitor maintenance. Serial transplantation analyses revealed that Nestin+ cells are able to self-renew and generate hematopoietic activity in heterotopic bone ossicle assays (Méndez-Ferrer et al., 2010). This potential was also associated with a CD45 Tie2 αV+ CD105+ CD90 subset from the fetal mouse bone (Chan et al., 2009). In the adult mouse BM, PDGFRα+ Sca1+ CD45 Ter119 cells were also shown capable to give rise to osteoblasts, reticular cells, and adipocytes in vivo upon transplantation into irradiated mice (Morikawa et al., 2009). However, human BM MSCs are still retrospectively isolated based on plastic adherence (Friedenstein et al., 1970; Pittenger et al., 1999). Human CD45 CD146+ self-renewing osteoprogenitors isolated from stromal cultures containing all the human BM CFU-F activity were shown capable of generating a heterotopic BM niche in an s.c. transplantation model (Sacchetti et al., 2007). However, a recent study showed that human CD45 CD271+ CD146−/low BM cells also possess these capacities (Tormin et al., 2011).Because Nestin is an intracellular protein, its identification in nontransgenic mice requires cell permeabilization, which precludes prospective isolation of live cells. In this study, we have evaluated putative cell surface MSC markers to identify a stromal population equivalent to Nestin+ cells in the mouse and human BM. Our results show that the combination of PDGFRα and CD51 identify a large subset of perivascular Nestin+ cells that is highly enriched in MSC and HSC niche activities in both species. Furthermore, we show that PDGFRα+ CD51+ stromal cells isolated from human BM can also form self-renewing clonal mesenspheres capable of transferring hematopoietic niche activity in vivo and support the ex vivo maintenance and expansion of human HSPCs in a dose-dependent manner.  相似文献   

19.
Introduction: Huntington’s disease (HD) is an inherited neurodegenerative disease characterized by chorea, dementia, and depression caused by progressive nerve cell degeneration, which is triggered by expanded CAG repeats in the huntingtin (Htt) gene. Currently, there is no cure for this disease, nor is there an effective medicine available to delay or improve the physical, mental, and behavioral severities caused by it.

Areas covered: In this review, the authors describe the use of induced neural stem cells (iNSCs) by direct conversion technology, which offers great advantages as a therapeutic cell type to treat HD.

Expert opinion: Cell conversion of somatic cells into a desired stem cell type is one of the most promising treatments for HD because it could be facilitated for the generation of patient-specific neural stem cells. The induced pluripotent stem cells (iPSCs) have a powerful potential for differentiation into neurons, but they may cause teratoma formation due to an undifferentiated pluripotent stem cell after transplantation Therefore, direct conversion of somatic cells into iNSCs is a promising alternative technology in regenerative medicine and the iNSCs may be provided as a therapeutic cell source for Huntington’s disease.  相似文献   


20.
To elucidate the feasibility of retroviral mediatedtransfer of multidrug resistance gene (mdrl) intohematopoietic stem/progenitor cells, the CD34~ cellswere isolated from bone marrow by using a high-gradient.magnetic cell sorting system, and the efficiency ofretroviral mediated gene transfer was studied. Materials  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号