首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
White matter (WM) disease is associated with disruption of the gliovascular unit, which involves breach of the blood–brain barrier (BBB). We quantified pericytes as components of the gliovascular unit and assessed their status in vascular and other common dementias. Immunohistochemical and immunofluorescent methods were developed to assess the distribution and quantification of pericytes connected to the frontal lobe WM capillaries. Pericytes with a nucleus were identified by collagen 4 (COL4) and platelet‐derived growth factor receptor‐β (PDGFR‐β) antibodies with further verification using PDGFR‐β‐specific ELISA. We evaluated a total of 124 post‐mortem brains from subjects with post‐stroke dementia (PSD), vascular dementia (VaD), Alzheimer’s disease (AD), AD‐VaD (Mixed) and post‐stroke non‐demented (PSND) stroke survivors as well as normal aging controls. COL4 and PDGFR‐β reactive pericytes adopted the characteristic “crescent” or nodule‐like shapes around capillary walls. We estimated densities of pericyte somata to be 225 ±38 and 200 ±13 (SEM) per COL4 mm2 area or 2.0 ± 0.1 and 1.7 ± 0.1 per mm capillary length in young and older aging controls. Remarkably, WM pericytes were reduced by ~35%–45% in the frontal lobe of PSD, VaD, Mixed and AD subjects compared to PSND and controls subjects (P < 0.001). We also found pericyte numbers were correlated with PDGFR‐β reactivity in the WM. Our results first demonstrate a reliable method to quantify COL4‐positive pericytes and then, indicate that deep WM pericytes are decreased across different dementias including PSD, VaD, Mixed and AD. Our findings suggest that downregulation of pericytes is associated with the disruption of the BBB in the deep WM in several aging‐related dementias.  相似文献   

2.
Familial Alzheimer''s disease (FAD) is caused by autosomal dominant mutations in the PSEN1, PSEN2 or APP genes, giving rise to considerable clinical and pathological heterogeneity in FAD. Here we investigate variability in clinical data and the type and distribution of Aβ pathologies throughout the cortical layers of different FAD mutation cases. Brain tissue from 20 FAD cases [PSEN1 pre‐codon 200 (n = 10), PSEN1 post‐codon 200 (n = 6), APP (n = 4)] were investigated. Frontal cortex sections were stained immunohistochemically for Aβ, and Nissl to define the cortical layers. The frequency of different amyloid‐beta plaque types was graded for each cortical layer and the severity of cerebral amyloid angiopathy (CAA) was determined in cortical and leptomeningeal blood vessels. Comparisons were made between FAD mutations and APOE4 status, with associations between pathology, clinical and genetic data investigated. In this cohort, possession of an APOE4 allele was associated with increased disease duration but not with age at onset, after adjusting for mutation sub‐group and sex. We found Aβ pathology to be heterogeneous between cases although Aβ load was highest in cortical layer 3 for all mutation groups and a higher Aβ load was associated with APOE4. The PSEN1 post‐codon 200 group had a higher Aβ load in lower cortical layers, with a small number of this group having increased cotton wool plaque pathology in lower layers. Cotton wool plaque frequency was positively associated with the severity of CAA in the whole cohort and in the PSEN1 post‐codon 200 group. Carriers of the same PSEN1 mutation can have differing patterns of Aβ deposition, potentially because of differences in risk factors. Our results highlight possible influences of APOE4 genotype, and PSEN1 mutation type on Aβ deposition, which may have effects on the clinical heterogeneity of FAD.  相似文献   

3.
The actual role of SARS‐CoV‐2 in brain damage remains controversial due to lack of matched controls. We aim to highlight to what extent is neuropathology determined by SARS‐CoV‐2 or by pre‐existing conditions. Findings of 9 Coronavirus disease 2019 (COVID‐19) cases and 6 matched non‐COVID controls (mean age 79 y/o) were compared. Brains were analyzed through immunohistochemistry to detect SARS‐CoV‐2, lymphocytes, astrocytes, endothelium, and microglia. A semi‐quantitative scoring was applied to grade microglial activation. Thal‐Braak stages and the presence of small vessel disease were determined in all cases. COVID‐19 cases had a relatively short clinical course (0–32 days; mean: 10 days), and did not undergo mechanical ventilation. Five patients with neurocognitive disorder had delirium. All COVID‐19 cases showed non‐SARS‐CoV‐2‐specific changes including hypoxic‐agonal alterations, and a variable degree of neurodegeneration and/or pre‐existent SVD. The neuroinflammatory picture was dominated by ameboid CD68 positive microglia, while only scant lymphocytic presence and very few traces of SARS‐CoV‐2 were detected. Microglial activation in the brainstem was significantly greater in COVID‐19 cases (p = 0.046). Instead, microglial hyperactivation in the frontal cortex and hippocampus was clearly associated to AD pathology (p = 0.001), regardless of the SARS‐CoV‐2 infection. In COVID‐19 cases complicated by delirium (all with neurocognitive disorders), there was a significant enhancement of microglia in the hippocampus (p = 0.048). Although higher in cases with both Alzheimer''s pathology and COVID‐19, cortical neuroinflammation is not related to COVID‐19 per se but mostly to pre‐existing neurodegeneration. COVID‐19 brains seem to manifest a boosting of innate immunity with microglial reinforcement, and adaptive immunity suppression with low number of brain lymphocytes probably related to systemic lymphopenia. Thus, no neuropathological evidence of SARS‐CoV‐2‐specific encephalitis is detectable. The microglial hyperactivation in the brainstem, and in the hippocampus of COVID‐19 patients with delirium, appears as a specific topographical phenomenon, and probably represents the neuropathological basis of the “COVID‐19 encephalopathic syndrome” in the elderly.  相似文献   

4.
Reduced glucose metabolism and formation of polyglucosan bodies (PGB) are, beside amyloid beta plaques and neurofibrillary tangles, well‐known pathological findings associated with Alzheimer''s disease (AD). Since both glucose availability and PGB are regulated by enzymatic degradation of glycogen, we hypothesize that dysfunctional glycogen degradation is a critical event in AD progression. We therefore investigated whether alpha (α)‐amylase, an enzyme known to efficiently degrade polysaccharides in the gastrointestinal tract, is expressed in the hippocampal CA1/subiculum and if the expression is altered in AD patients. Using immunohistochemical staining techniques, we show the presence of the α‐amylase isotypes AMY1A and AMY2A in neuronal dendritic spines, pericytes and astrocytes. Moreover, AD patients showed reduced gene expression of α‐amylase, but conversely increased protein levels of α‐amylase as well as increased activity of the enzyme compared with non‐demented controls. Lastly, we observed increased, albeit not significant, load of periodic acid‐Schiff positive PGB in the brain of AD patients, which correlated with increased α‐amylase activity. These findings show that α‐amylase is expressed and active in the human brain, and suggest the enzyme to be affected, alternatively play a role, in the neurodegenerative Alzheimer''s disease pathology.  相似文献   

5.
In the brain capillaries, endothelial cells, pericytes, astrocytes and microglia form a structural and functional complex called neurovascular unit (NVU) which is critically involved in maintaining neuronal homeostasis. In the present study, we applied a comprehensive immunohistochemical approach to investigate the structural alterations in the NVU across different Alzheimer''s disease (AD) neuropathological stages. Post‐mortem human cortical and hippocampal samples derived from AD patients and non‐demented elderly control individuals were immunostained using a panel of markers representing specific components of the NVU including Collagen IV (basement membrane), PDGFR‐β (pericytes), GFAP (astrocytes), Iba1 (microglia), MRC1 (perivascular macrophages) and lectin as an endothelial cell label. Astrocytes (GFAP) and microglia (Iba1) were quantified both in the whole visual‐field and specifically within the NVU, and the sample set was additionally analyzed using anti‐tau (AT8) and three different anti‐Aβ (clones G2‐10, G2‐11, 4G8) antibodies. Analyses of lectin labeled sections showed an altered vascular distribution in AD patients as revealed by a reduced nearest distance between capillaries. Within the NVU, a Braak‐stage dependent reduction in pericyte coverage was identified as the earliest structural alteration during AD progression. In comparison to non‐demented elderly controls, AD patients showed a significantly higher astrocyte coverage within the NVU, which was paralleled by a reduced microglial coverage around capillaries. Assessment of perivascular macrophages moreover demonstrated a relocation of these cells from leptomeningeal arteries to penetrating parenchymal vessels in AD patients. Collectively, the results of our study represent a comprehensive first in‐depth analysis of AD‐related structural changes in the NVU and suggest distinct alterations in all components of the NVU during AD progression.  相似文献   

6.
Limbic‐predominant age‐related transactive response DNA‐binding protein 43 (TDP‐43) encephalopathy neuropathologic change (LATE‐NC) and microvascular pathologies, including microinfarcts, cerebral amyloid angiopathy (CAA), and arteriolosclerosis are common in old age. A relationship between LATE‐NC and arteriolosclerosis has been reported in some but not all studies. The objectives of this study were to investigate the frequency of co‐occurring LATE‐NC and microvascular pathologies and test the hypothesis that arteriolosclerosis, specifically, is related to LATE‐NC in brains from community‐dwelling older persons. Analyses included 749 deceased participants with completed data on LATE‐NC and microvascular pathology from 3 longitudinal clinical pathologic studies of aging. Given the specific interest in arteriolosclerosis, we expanded the examination of arteriolosclerosis to include not only the basal ganglia but also two additional white matter regions from anterior and posterior watershed territories. Ordinal logistic regression models examined the association of microvascular pathology with LATE‐NC. LATE‐NC was present in 409 (54.6%) decedents, of which 354 (86.5%) had one or multiple microvascular pathologies including 132 (32.3%) with moderate‐severe arteriolosclerosis in basal ganglia, 195 (47.6%) in anterior watershed, and 144 (35.2%) in posterior watershed; 170 (41.5%) with moderate‐severe CAA, and 150 (36.6%) with microinfarcts. In logistic regression models, only posterior watershed arteriolosclerosis, but not other regions of arteriolosclerosis was associated with a higher odds of more advanced LATE‐NC stages (Odds Ratio = 1.12; 95% Confidence Interval = 1.01–1.25) after controlling for demographics, AD, and other age‐related pathologies. Capillary CAA, but not the severity of CAA was associated with an increased odds of LATE‐NC burden (Odds Ratio = 1.71; 95% Confidence Interval = 1.13–2.58). Findings were unchanged in analyses controlling for APOE ε4, vascular risk factors, or vascular diseases. These findings suggest that LATE‐NC with microvascular pathology is a very common mixed pathology and small vessel disease pathology may contribute to LATE‐NC in the aging brain.  相似文献   

7.
Prion‐like spreading of abnormal proteins is proposed to occur in neurodegenerative diseases, and the progression of α‐synuclein (α‐syn) deposits has been reported in the brains of animal models injected with synthetic α‐syn fibrils or pathological α‐syn prepared from patients with Parkinson''s disease (PD) and dementia with Lewy bodies (DLB). However, α‐syn transmission in nonhuman primates, which are more similar to humans, has not been fully clarified. Here, we injected synthetic human α‐syn fibrils into the left striatum of a macaque monkey (Macaca fuscata). At 3 months after the injection, we examined neurodegeneration and α‐syn pathology in the brain using α‐syn epitope‐specific antibodies, antiphosphorylated α‐syn antibodies (pSyn#64 and pSer129), anti‐ubiquitin antibodies, and anti‐p62 antibodies. Immunohistochemical examination with pSyn#64, pSer129, and α‐syn epitope‐specific antibodies revealed Lewy bodies, massive α‐syn‐positive neuronal intracytoplasmic inclusions (NCIs), and neurites in the left putamen. These inclusions were also positive for ubiquitin and p62. LB509, a human‐specific α‐syn antibody targeting amino acid residues 115–122, showed limited immunoreactivity around the injection site. The left substantia nigra (SN) and the bilateral frontal cortex also contained some NCIs and neurites. The left hemisphere, including parietal/temporal cortex presented sparse α‐syn pathology, and no immunoreactivity was seen in olfactory nerves, amygdala, hippocampus, or right parietal/temporal cortex. Neuronal loss and gliosis in regions with α‐syn pathology were mild, except for the left striatum and SN. Our results indicate that abnormal α‐syn fibrils propagate throughout the brain of M. fuscata via projection, association, and commissural fibers, though the progression of α‐syn pathology is limited.  相似文献   

8.
Pericytes are cells in the blood–brain barrier (BBB) that degenerate in Alzheimer's disease (AD), a neurodegenerative disorder characterized by early neurovascular dysfunction, elevation of amyloid β‐peptide (Aβ), tau pathology and neuronal loss, leading to progressive cognitive decline and dementia. Pericytes are uniquely positioned within the neurovascular unit between endothelial cells of brain capillaries, astrocytes and neurons. Recent studies have shown that pericytes regulate key neurovascular functions including BBB formation and maintenance, vascular stability and angioarchitecture, regulation of capillary blood flow, and clearance of toxic cellular by‐products necessary for normal functioning of the central nervous system (CNS). Here, we review the concept of the neurovascular unit and neurovascular functions of CNS pericytes. Next, we discuss vascular contributions to AD and review new roles of pericytes in the pathogenesis of AD such as vascular‐mediated Aβ‐independent neurodegeneration, regulation of Aβ clearance and contributions to tau pathology, neuronal loss and cognitive decline. We conclude that future studies should focus on molecular mechanisms and pathways underlying aberrant signal transduction between pericytes and its neighboring cells within the neurovascular unit, that is, endothelial cells, astrocytes and neurons, which could represent potential therapeutic targets to control pericyte degeneration in AD and the resulting secondary vascular and neuronal degeneration.  相似文献   

9.
Alzheimer''s Disease (AD) is the leading form of dementia worldwide. Currently, the pathological mechanisms underlying AD are not well understood. Although the glutamatergic system is extensively implicated in its pathophysiology, there is a gap in knowledge regarding the expression of glutamate receptors in the AD brain. This study aimed to characterize the expression of specific glutamate receptor subunits in post‐mortem human brain tissue using immunohistochemistry and confocal microscopy. Free‐floating immunohistochemistry and confocal laser scanning microscopy were used to quantify the density of glutamate receptor subunits GluA2, GluN1, and GluN2A in specific cell layers of the hippocampal sub‐regions, subiculum, entorhinal cortex, and superior temporal gyrus. Quantification of GluA2 expression in human post‐mortem hippocampus revealed a significant increase in the stratum (str.) moleculare of the dentate gyrus (DG) in AD compared with control. Increased GluN1 receptor expression was found in the str. moleculare and hilus of the DG, str. oriens of the CA2 and CA3, str. pyramidale of the CA2, and str. radiatum of the CA1, CA2, and CA3 subregions and the entorhinal cortex. GluN2A expression was significantly increased in AD compared with control in the str. oriens, str. pyramidale, and str. radiatum of the CA1 subregion. These findings indicate that the expression of glutamatergic receptor subunits shows brain region‐specific changes in AD, suggesting possible pathological receptor functioning. These results provide evidence of specific glutamatergic receptor subunit changes in the AD hippocampus and entorhinal cortex, indicating the requirement for further research to elucidate the pathophysiological mechanisms it entails, and further highlight the potential of glutamatergic receptor subunits as therapeutic targets.  相似文献   

10.
Little is known about the relationship between soluble amyloid β (Aβ) and age. We have measured soluble and insoluble Aβ by enzyme‐linked immunosorbent assay (ELISA) in post‐mortem frontal cortex in normal brains (16–95 years) and AD. Insoluble Aβ increased with age, and was significantly higher in Alzheimer''s disease (AD) than age‐matched controls. However, levels of soluble Aβ declined with age and were significantly greater in younger adults than older adults with or without AD. In AD, insoluble : soluble Aβ ratio was much higher than in age‐matched controls. The high levels of soluble Aβ in young adults included oligomeric species of Aβ1‐42. These observations do not preclude Aβ oligomers as neurotoxic mediators of AD but suggest that if they are, the toxicity may be restricted to certain species (eg, β‐pleated protofibrillar species not detected by our assay) or takes decades to manifest. The dramatically increased insoluble : soluble Aβ in AD points to an altered dynamic equilibrium of Aβ in AD, reflecting both enhanced aggregation and continued overproduction or impaired removal of the soluble peptide in older age, when the concentration of this peptide should be declining.  相似文献   

11.
In vascular dementia (VaD) and Alzheimer’s disease (AD), cerebral hypoperfusion and blood‐brain barrier (BBB) leakiness contribute to brain damage. In this study, we have measured biochemical markers and mediators of cerebral hypoperfusion and BBB in the frontal (BA6) and parietal (BA7) cortex and underlying white matter, to investigate the pathophysiology of vascular dysfunction in AD, VaD and mixed dementia. The ratio of myelin‐associated glycoprotein to proteolipid protein‐1 (MAG:PLP1), a post‐mortem biochemical indicator of the adequacy of ante‐mortem cerebral perfusion; the concentration of fibrinogen adjusted for haemoglobin level, a marker of blood‐brain barrier (BBB) leakiness; the level of vascular endothelial growth factor‐A (VEGF), a marker of tissue hypoxia; and endothelin‐1 (EDN1), a potent vasoconstrictor, were measured by ELISA in the frontal and parietal cortex and underlying white matter in 94 AD, 20 VaD, 33 mixed dementia cases and 58 age‐matched controls. All cases were assessed neuropathologically for small vessel disease (SVD), cerebral amyloid angiopathy (CAA) severity, Aβ and phospho‐tau parenchymal load, and Braak tangle stage. Aβ40 and Aβ42 were measured by ELISA in guanidine‐HCl tissue extracts. We found biochemical evidence of cerebral hypoperfusion in AD, VaD and mixed dementia to be associated with SVD, Aβ level, plaque load, EDN1 level and Braak tangle stage, and to be most widespread in mixed dementia. There was evidence of BBB leakiness in AD—limited to the cerebral cortex and related to EDN1 level. In conclusion, abnormalities of cerebral perfusion and BBB function in common types of dementia can largely be explained by a combination of arteriolosclerosis, and Aβ‐, tau‐ and endothelin‐related vascular dysfunction. The relative contributions of these processes vary considerably both between and within the diseases.  相似文献   

12.
Assess the contribution of preoperative MRI data in improving grading of adult astrocytomas reclassified according to the WHO 2016 and cIMPACT‐NOW update 3. Retrospective unicentric cohort study of 679 adult patients treated for newly diagnosed diffuse astrocytic and oligodendroglial tumors (January 2006–December 2016). We first systematically compared radiological (contrast enhancement present [CE+] vs. absent [CE−]) and histopathological findings (microvascular proliferation present [MPV+] vs. absent [MPV−]) to validate whether this comparing step of neoangiogenesis represents an efficient method to appreciate the representativity of the tumoral sampling. We focused on 629 cases of astrocytomas for radio‐histological integrated analyses. In 598 cases (95.1%), neoangiogenesis evaluated by MRI or histology (CE+/MPV+ or CE−/MPV−) was identical. For the CE+/MPV− and CE−/MPV+ groups (23 cases), the radio‐histological face‐to‐face evaluation allowed us to assess that for 13 cases (56.5%) the reason for this discrepancy was an undersampled tumor. We analyzed the group of CE+/MPV− (n = 8) and CE−/MPV+ (n = 2) in verified image‐guided tumoral samples. Finally, we identified three new prognostic subgroups for molecular glioblastomas: (1) “non‐representative sampling” (n = 9), (2) “Non neoangiogenic glioblastoma at the time of diagnosis, without contrast enhancement and microvascular proliferation” (n = 8), and (3) “contrast enhancing glioblastoma but without microvascular proliferation in a representative sample” (n = 4). Neoangiogenesis processes should be assessed to improve the prognosis accuracy of the current integrated diagnosis. We suggest adding imaging analyses during the neuropathological analysis of astrocytomas in adults.  相似文献   

13.
Several degenerative brain disorders such as Alzheimer''s disease (AD), Parkinson''s disease (PD) and Dementia with Lewy bodies (DLB) are characterized by the simultaneous appearance of amyloid‐β (Aβ) and α‐synuclein (α‐syn) pathologies and symptoms that are similar, making it difficult to differentiate between these diseases. Until now, an accurate diagnosis can only be made by postmortem analysis. Furthermore, the role of α‐syn in Aβ aggregation and the arising characteristic olfactory impairments observed during the progression of these diseases is still not well understood. Therefore, we assessed Aβ load in olfactory bulbs of APP‐transgenic mice expressing APP695 KM670/671NL and PSEN1 L166P under the control of the neuron‐specific Thy‐1 promoter (referred to here as APPPS1) and APPPS1 mice co‐expressing SNCA A30P (referred to here as APPPS1 × [A30P]aSYN). Furthermore, the olfactory capacity of these mice was evaluated in the buried food and olfactory avoidance test. Our results demonstrate an age‐dependent increase in Aβ load in the olfactory bulb of APP‐transgenic mice that go along with exacerbated olfactory performance. Our study provides clear evidence that the presence of α‐syn significantly diminished the endogenous and seed‐induced Aβ deposits and significantly ameliorated olfactory dysfunction in APPPS1 × [A30P]aSYN mice.  相似文献   

14.
The pathological hallmark of multiple system atrophy (MSA) is fibrillary aggregates of α‐synuclein (α‐Syn) in the cytoplasm and nucleus of both oligodendrocytes and neurons. In neurons, α‐Syn localizes to the cytosolic and membrane compartments, including the synaptic vesicles, mitochondria, and endoplasmic reticulum (ER). α‐Syn binds to vesicle‐associated membrane protein‐binding protein B (VAPB) in the ER membrane. Overexpression of wild‐type and familial Parkinson''s disease mutant α‐Syn perturbs the association between the ER and mitochondria, leading to ER stress and ultimately neurodegeneration. We examined brains from MSA patients (n = 7) and control subjects (n = 5) using immunohistochemistry and immunoelectron microscopy with antibodies against VAPB and phosphorylated α‐Syn. In controls, the cytoplasm of neurons and glial cells was positive for VAPB, whereas in MSA lesions VAPB immunoreactivity was decreased. The proportion of VAPB‐negative neurons in the pontine nucleus was significantly higher in MSA (13.6%) than in controls (0.6%). The incidence of cytoplasmic inclusions in VAPB‐negative neurons was significantly higher (42.2%) than that in VAPB‐positive neurons (3.6%); 67.2% of inclusion‐bearing oligodendrocytes and 51.1% of inclusion‐containing neurons were negative for VAPB. Immunoelectron microscopy revealed that α‐Syn and VAPB were localized to granulofilamentous structures in the cytoplasm of oligodendrocytes and neurons. Many vesicular structures labeled with anti‐α‐Syn were also observed within the granulofilamentous structures in the cytoplasm and nucleus of both oligodendrocytes and neurons. These findings suggest that, in MSA, reduction of VAPB is involved in the disease process and that vesicular structures are associated with inclusion formation.  相似文献   

15.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting both the upper and lower motor neurons. Although ALS typically leads to death within 3 to 5 years after initial symptom onset, approximately 10% of patients with ALS live more than 10 years after symptom onset. We set out to determine similarities and differences in clinical presentation and neuropathology in persons with ALS with long vs. those with standard duration. Participants were United States military Veterans with a pathologically confirmed diagnosis of ALS (n = 179), dichotomized into standard duration (<10 years) and long‐duration (≥10 years). The ALS Functional Rating Scale‐Revised (ALSFRS‐R) was administered at study entry and semi‐annually thereafter until death. Microglial density was determined in a subset of participants. long‐duration ALS occurred in 76 participants (42%) with a mean disease duration of 16.3 years (min/max = 10.1/42.2). Participants with long‐duration ALS were younger at disease onset (P = 0.002), had a slower initial ALS symptom progression on the ALSFRS‐R (P < 0.001) and took longer to diagnose (P < 0.002) than standard duration ALS. Pathologically, long‐duration ALS was associated with less frequent TDP‐43 pathology (P < 0.001). Upper motor neuron degeneration was similar; however, long‐duration ALS participants had less severe lower motor neuron degeneration at death (P < 0.001). In addition, the density of microglia was decreased in the corticospinal tract (P = 0.017) and spinal cord anterior horn (P = 0.009) in long‐duration ALS. Notably, many neuropathological markers of ALS were similar between the standard and long‐duration groups and there was no difference in the frequency of known ALS genetic mutations. These findings suggest that the lower motor neuron system is relatively spared in long‐duration ALS and that pathological progression is likely slowed by as yet unknown genetic and environmental modifiers.  相似文献   

16.
17.
18.
Circadian disruption is prevalent in Alzheimer''s disease (AD) and may contribute to cognitive impairment, psychological symptoms, and neurodegeneration. This study aimed to evaluate the effects of environmental and genetic factors on the molecular clock and to establish a link between circadian rhythm disturbance and AD. We investigated the pathological effects of chronic sleep deprivation (CSD) in the APPswe/PS1ΔE9 transgenic mice and their wild‐type (WT) littermates for 2 months and evaluated the expression levels of clock genes in the circadian rhythm‐related nuclei. Our results showed that CSD impaired learning and memory, and further exaggerated disease progression in the AD mice. Furthermore, CSD caused abnormal expression of Bmal1, Clock, and Cry1 in the circadian rhythm‐related nuclei of experimental mice, and these changes are more significant in AD mice. Abnormal expression of clock genes in AD mice suggested that the expression of clock genes is affected by APP/PS1 mutations. In addition, abnormal tau phosphorylation was found in the retrosplenial cortex, which was co‐located with the alteration of BMAL1 protein level. Moreover, the level of tyrosine hydroxylase in the locus coeruleus of AD and WT mice was significantly increased after CSD. There may be a potential link between the molecular clock, Aβ pathology, tauopathy, and the noradrenergic system. The results of this study provided new insights into the potential link between the disruption of circadian rhythm and the development of AD.  相似文献   

19.
SARS‐CoV‐2 (severe acute respiratory syndrome coronavirus 2), the new coronavirus responsible for the pandemic disease in the last year, is able to affect the central nervous system (CNS). Compared with its well‐known pulmonary tropism and respiratory complications, little has been studied about SARS‐CoV‐2 neurotropism and pathogenesis of its neurological manifestations, but also about postmortem histopathological findings in the CNS of patients who died from COVID‐19 (coronavirus disease 2019). We present a systematic review, carried out according to the Preferred Reporting Items for Systematic Review standards, of the neuropathological features of COVID‐19. We found 21 scientific papers, the majority of which refer to postmortem examinations; the total amount of cases is 197. Hypoxic changes are the most frequently reported alteration of brain tissue, followed by ischemic and hemorrhagic lesions and reactive astrogliosis and microgliosis. These findings do not seem to be specific to SARS‐CoV‐2 infection, they are more likely because of systemic inflammation and coagulopathy caused by COVID‐19. More studies are needed to confirm this hypothesis and to detect other possible alterations of neural tissue. Brain examination of patients dead from COVID‐19 should be included in a protocol of standardized criteria to perform autopsies on these subjects.  相似文献   

20.
Clusterin, also known as apoJ, is a lipoprotein abundantly expressed within the CNS. It regulates Aβ fibril formation and toxicity and facilitates amyloid‐β (Aβ) transport across the blood‐brain barrier. Genome‐wide association studies have shown variations in the clusterin gene (CLU) to influence the risk of developing sporadic Alzheimer''s disease (AD). To explore whether clusterin modulates the regional deposition of Aβ, we measured levels of soluble (NP40‐extracted) and insoluble (guanidine‐HCl‐extracted) clusterin, Aβ40 and Aβ42 by sandwich ELISA in brain regions with a predilection for amyloid pathology—mid‐frontal cortex (MF), cingulate cortex (CC), parahippocampal cortex (PH), and regions with little or no pathology—thalamus (TH) and white matter (WM). Clusterin level was highest in regions with plaque pathology (MF, CC, PH and PC), approximately mirroring the regional distribution of Aβ. It was significantly higher in AD than controls, and correlated positively with Aβ42 and insoluble Aβ40. Soluble clusterin level rose significantly with severity of cerebral amyloid angiopathy, and in MF and PC regions was highest in APOE ɛ4 homozygotes. In the TH and WM (areas with little amyloid pathology) clusterin was unaltered in AD and did not correlate with Aβ level. There was a significant positive correlation between the concentration of clusterin and the regional levels of insoluble Aβ42; however, the molar ratio of clusterin : Aβ42 declined with insoluble Aβ42 level in a region‐dependent manner, being lowest in regions with predilection for Aβ plaque pathology. Under physiological conditions, clusterin reduces aggregation and promotes clearance of Aβ. Our findings indicate that in AD, clusterin increases, particularly in regions with most abundant Aβ, but because the increase does not match the rising level of Aβ42, the molar ratio of clusterin : Aβ42 in those regions falls, probably contributing to Aβ deposition within the tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号