首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Breast cancer is a complex disease resulting from a combination of genetic and environmental factors. Among environmental factors, body composition and intake of specific dietary components like total fat are associated with increased incidence of breast cancer and metastasis. We previously showed that mice fed a high-fat diet have shorter mammary cancer latency, increased tumor growth and more pulmonary metastases than mice fed a standard diet. Subsequent genetic analysis identified several modifiers of metastatic mammary cancer along with widespread interactions between cancer modifiers and dietary fat. To elucidate diet-dependent genetic modifiers of mammary cancer and metastasis risk, global gene expression profiles and copy number alterations from mammary cancers were measured and expression quantitative trait loci (eQTL) identified. Functional candidate genes that colocalized with previously detected metastasis modifiers were identified. Additional analyses, such as eQTL by dietary fat interaction analysis, causality and database evaluations, helped to further refine the candidate loci to produce an enriched list of genes potentially involved in the pathogenesis of metastatic mammary cancer.  相似文献   

2.
3.
The homeobox family genes are often dysregulated in various cancer types. Particularly HOXB7 amplification and overexpression correlate with poor prognosis in various cancer such as gastric, pancreatic, and lung cancers. Moreover, HOXB7 is known to contribute to cancer progression by promoting epithelial to mesenchymal transition, anticancer drug resistance, and angiogenesis. In this study, we show that HOXB7 is coamplified with ERBB2 in a subset of breast cancer patients and HOXB7 expression correlates with poor prognosis in HER2-positive breast cancer patients. This clinical observation is supported by the following results—HOXB7 overexpression in an immortalized murine mammary gland epithelial cell line NMuMG induces cellular transformation in vitro, tumorigenesis, and lung metastasis through the activation of JAK-STAT signaling.  相似文献   

4.
Accumulation of fibroblasts is a phenomenon that significantly correlates with formation of aggressive cancers. While studies have shown that the TGF-β signaling pathway is an important regulator of fibroblast activation, the functional contribution of TGF-β signaling in fibroblasts during multi-step tumor progression remains largely unclear. In previous studies, we used a sub-renal capsule transplantation model to demonstrate that homozygous knockout of the Tgfbr2 gene (Tgbr2FspKO) enhanced mammary tumor growth and metastasis. Here, we show for the first time a significant role for loss of one Tgfbr2 allele during multi-step mammary tumor progression. Heterozygous deletion of Tgfbr2 in stromal cells in MMTV–PyVmT transgenic mice (PyVmT/Tgfbr2hetFspKO mice) resulted in earlier tumor formation and increased stromal cell accumulation. In contrast to previous studies of Tgbr2FspKO fibroblasts, Tgfbr2hetFspKO fibroblasts did not significantly increase tumor growth, but enhanced lung metastasis in PyVmT transgenic mice and in co-transplantation studies with PyVmT mammary carcinoma cells. Furthermore, Tgfbr2hetFspKO fibroblasts enhanced mammary carcinoma cell invasiveness associated with expression of inflammatory cytokines including CXCL12 and CCL2. Analyses of Tgbr2FspKO and Tgfbr2hetFspKO fibroblasts revealed differences in the expression of factors associated with metastatic spread, indicating potential differences in the mechanism of action between homozygous and heterozygous deletion of Tgfbr2 in stromal cells. In summary, these studies demonstrate for the first time that loss of one Tgfbr2 allele in fibroblasts enhances mammary metastases in a multi-step model of tumor progression, and demonstrate the importance of clarifying the functional contribution of genetic alterations in stromal cells in breast cancer progression.  相似文献   

5.
6.
7.
Cancers in which mutations have been identified in putative tumor suppressor genes, such as the TP53 gene, the retinoblastoma (RBI) gene, the adenomatous polyposis coli (APC) gene, and the Wilms tumor (WTI) gene, frequently show loss of the corresponding allele on the homologous chromosome. To identify locations of tumor suppressor genes involved in uterine cancer, we examined loss of heterozygosity (LOH) by using genomic probes detecting RFLPs in 35 uterine cancers at 29 loci throughout the genome, and with highly informative microsatellite markers in 21 uterine cancers at nine putative or known tumor suppressor gene loci. High frequencies of allelic loss found at loci on 3p (71%), 9q (38%). 10q (35%). and 17p (35%) suggest that tumor suppressor genes involved in uterine carcinogenesis exist in these regions. There were no significant differences in frequencies of LOH between cancers of the uterine cervix and cancers of the uterine endometrium at any of the loci tested. Genes Chrom Cancer 9:119-123 (1994).© 1994 Wiley-Liss, Inc.  相似文献   

8.
A significant fraction of cancer patients have occult disseminated tumors at the time of primary diagnosis, which usually progress to become clinically relevant lesions. Since the majority of cancer mortality is associated with metastatic disease, the ability to inhibit the growth of the secondary tumors would significantly reduce cancer-related morbidity and mortality. We have investigated whether caffeine, which has been shown to suppress tumor cell invasiveness and experimental metastasis, can suppress metastasis in a spontaneous transgene-induced mammary tumor model. Chronic exposure to caffeine prior to the appearance of palpable mammary tumors significantly reduced both tumor burden and metastatic colonization. However, when caffeine exposure began after the appearance of frank tumors, caffeine suppressed metastasis without changing primary tumor burden. The means by which caffeine suppressed metastatic activity may be associated with inhibition of malignant transformation of mammary epithelial cells, inhibition of conversion of dormant tumor cells to micrometastases, micrometastases to macrometastases, or inhibition of tumor cell adhesion and motility. Gene and protein expression patterns resulting from caffeine treatment showed that metastasis suppression may be associated with up-regulation the mRNA expression of multiple extracellular matrix genes, including Fbln1, Bgn, Sparc, Fbn1, Loxl1, Col1a1, Col3a1, Col5a1, Col5a2, Col5a3, Col6a1, Col6a2, and Col6a3. These data suggested that caffeine or other methyl xanthine derivatives may improve the clinical outcome in patients prior to and following the diagnosis of metastatic disease, and could potentially reduce the morbidity and mortality associated with disseminated tumors.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

9.
10.
Low-penetrance breast cancer susceptibility alleles seem to play a significant role in breast cancer risk but are difficult to identify in human cohorts. A genetic screen of 176 N2 backcross progeny of two Trp53(+/-) strains, BALB/c and C57BL/6, which differ in their susceptibility to mammary tumors, identified a modifier of mammary tumor susceptibility in an approximately 25-Mb interval on mouse chromosome 7 (designated SuprMam1). Relative to heterozygotes, homozygosity for BALB/c alleles of SuprMam1 significantly decreased mammary tumor latency from 70.7 to 61.1 weeks and increased risk twofold (P = 0.002). Dmbt1 (deleted in malignant brain tumors 1) was identified as a candidate modifier gene within the SuprMam1 interval because it was differentially expressed in mammary tissues from BALB/c-Trp53(+/-) and C57BL/6-Trp53(+/-) mice. Dmbt1 mRNA and protein was reduced in mammary glands of the susceptible BALB/c mice. Immunohistochemical staining demonstrated that DMBT1 protein expression was also significantly reduced in normal breast tissue from women with breast cancer (staining score, 1.8; n = 46) compared with cancer-free controls (staining score, 3.9; n = 53; P < 0.0001). These experiments demonstrate the use of Trp53(+/-) mice as a sensitized background to screen for low-penetrance modifiers of cancer. The results identify a novel mammary tumor susceptibility locus in mice and support a role for DMBT1 in suppression of mammary tumors in both mice and women.  相似文献   

11.
We investigated the effectiveness of in vivo electrogene transfer as a means of therapy in rat urinary bladder carcinoma and in mammary carcinoma models in both athymic and syngeneic mice using the herpes simplex virus 1 thymidine kinase (HSVtk) or IL-12 genes in combination with ganciclovir (GCV). A significant increase in the levels of tissue apoptosis and necrosis was induced with a single injection of HSVtk vector directly into bladder and mammary tumors followed by in vivo transfection and a regimen of intraperitoneal GCV injection. This procedure induced significant selective tumor cell death, characterized by marked inflammation and peripheral macrophage influx. Active caspase-3 was also strongly expressed in areas of cell death, indicating the initiation of apoptosis. This result was confirmed in corollary in vitro studies on a mouse bladder carcinoma cell line in which elevated caspase-3, -8, and -9 activities and decreased mitochondrial membrane potential were observed as a result of transfection with HSVtk and addition of GCV to the medium. In the syngeneic mouse mammary cancer model, we additionally found both tumor volume and metastasis to lymph nodes and lungs to be significantly reduced throughout the 2-month experiment. However, in contrast to their syngeneic counterparts, HSVtk/GCV therapy did not effectively inhibit mammary tumor growth/metastasis in an athymic mouse model, leading us to believe that T-cell-mediated immune responses may participate via the bystander effect in HSVtk/GCV experimental therapy. We subsequently evaluated the antitumor activity of IL-12, which can activate T-cell-mediated immune responses involving macrophages, in the syngeneic mammary tumors and found that IL-12 also significantly suppressed mammary tumor growth and metastasis. We thus suggest that in vivo electrogene transfer is a useful transfection tool in cancer gene therapy and, in addition, we show that T-cell-mediated immune responses may be a critical factor in cancer gene therapy using HSVtk/GCV and IL-12.  相似文献   

12.

Background  

We have previously described an alternative invasion-independent pathway of cancer metastasis in a murine mammary tumor model. This pathway is initiated by intravasation of tumor nests enveloped by endothelial cells of sinusoidal vasculature within the tumor. In this study, we examined whether evidence for the invasion-independent pathway of metastasis is present in human cancers.  相似文献   

13.
Morbidity and mortality of breast cancer patients are drastically increased when primary tumor cells are able to spread to distant sites and proliferate to become secondary lesions. Effective treatment of metastatic disease has been limited; therefore, an increased molecular understanding to identify biomarkers and therapeutic targets is needed. Breast cancer metastasis suppressor 1 (BRMS1) suppresses development of pulmonary metastases when expressed in a variety of cancer types, including metastatic mammary carcinoma. Little is known of Brms1 function throughout the initiation and progression of mammary carcinoma. The goal of this study was to investigate mechanisms of Brms1-mediated metastasis suppression in transgenic mice that express Brms1 using polyoma middle T oncogene-induced models. Brms1 expression did not significantly alter growth of the primary tumors. When expressed ubiquitously using a β-actin promoter, Brms1 suppressed pulmonary metastasis and promoted apoptosis of tumor cells located in the lungs but not in the mammary glands. Surprisingly, selective expression of Brms1 in the mammary gland using the MMTV promoter did not significantly block metastasis nor did it promote apoptosis in the mammary glands or lung, despite MMTV-induced expression within the lungs. These results strongly suggest that cell type-specific over-expression of Brms1 is important for Brms1-mediated metastasis suppression.  相似文献   

14.
High animal fat consumption is associated with an increase in triple‐negative breast cancer (TNBC) risk. Based on previous MRI studies demonstrating the feasibility of detecting very early non‐palpable mammary cancers in simian virus 40 large T antigen (SV40TAg) mice, we examined the effect of dietary fat fed from weaning to young adulthood in this model of TNBC. Virgin female C3(1)SV40TAg mice (n = 16) were weaned at 3–4 weeks of age and then fed either a low fat diet (LFD) (n = 8, 3.7 kcal/g; 17.2% kcal from vegetable oil) or a high animal fat diet (HAFD) (n = 8, 5.3 kcal/g; 60% kcal from lard). After 8 weeks on the diet (12 weeks of age), fast spin echo MR images of inguinal mammary glands were acquired at 9.4 T. Following in vivo MRI, mice were sacrificed and inguinal mammary glands were excised and formalin fixed for ex vivo MRI. 3D volume‐rendered MR images were then correlated with mammary gland histology to assess the glandular parenchyma and tumor burden. Using in vivo MRI, an average of 3.88 ± 1.03 tumors were detected per HAFD‐fed mouse compared with an average of 1.25 ± 1.16 per LFD‐fed mouse (p < 0.007). Additionally, the average tumor volume was significantly higher following HAFD feeding (0.53 ± 0.45 mm3) compared with LFD feeding (0.20 ± 0.08 mm3, p < 0.02). Analysis of ex vivo MR and histology images demonstrated that HAFD mouse mammary glands had denser parenchyma, irregular and enlarged ducts, dilated blood vessels, increased white adipose tissue, and increased tumor invasion. MRI and histological studies of the SV40TAg mice demonstrated that HAFD feeding also resulted in higher cancer incidence and larger mammary tumors. Unlike other imaging methods for assessing environmental effects on mammary cancer growth, MRI allows routine serial measurements and reliable detection of small cancers as well as accurate tumor volume measurements and assessment of the three‐dimensional distribution of tumors over time.  相似文献   

15.
Tumor recurrence represents a significant clinical challenge in the treatment and management of breast cancer. To investigate whether copy number aberrations (CNAs) facilitate the re‐emergence of tumor growth from residual disease, we performed array comparative genomic hybridization on primary and recurrent mammary tumors from an inducible mouse model of type‐I insulin‐like growth factor receptor driven breast cancer. This genome‐wide analysis revealed primary and recurrent tumors harbored distinct CNAs with relapsed tumors containing an increased number of gene‐level gains and losses. Remarkably, high‐level CNAs detected in primary tumors were largely devoid of annotated cancer genes while the vast majority of recurrent tumors harbored at least one CNA containing a known oncogene or tumor suppressor. Specifically, 38% of recurrent tumors carried gains at 6qA2 and 9qA2 which encode the Met and Yap1 oncogenes, respectively. The most frequent CNA, occurring in 63% of recurrent tumors, was a focal deletion at 4qC5 involving the Cdkn2a/b tumor suppressor genes. Integrative analysis revealed positive correlations between gene copy number and mRNA expression suggesting Met, Yap1, and Cdkn2a/b may serve as potential drivers that promote tumor recurrence. Accordingly, cross‐species analysis revealed gene‐level murine CNAs were present in a subset of human breast cancers with high MET and YAP1 mRNA predictive of decreased relapse‐free survival in basal‐like breast cancers. Together, these findings indicate that tumor recurrence is facilitated by the acquisition of CNAs with oncogenic potential and provide a framework to dissect the molecular mechanisms that mediate tumor escape from dormancy.  相似文献   

16.
Disturbance of circadian gene expression in breast cancer   总被引:1,自引:0,他引:1  
To explore the mechanism of the disruption of circadian rhythm in breast cancer, we examined the expression of nine circadian genes in 53 newly diagnosed breast cancers by immunohistochemical staining, mutational analysis, and methylation analysis of the promoter of circadian genes. Our results showed that 37 of the 53 breast cancer tissues had hypermethylation on the promoters of PER1, PER2, CRY1, or BMAL1. Twenty-five out of 53 paired noncancerous (normal) tissues had methylation on the promoter of PER1 or CRY1. Our results indicated a higher frequency of concurrent methylation of PER1 and CRY1 promoters in cancerous and normal tissues. Promoter methylation of the PER1 correlates with c-erbB2 immunohistochemical reaction of ≥2+ (p = 0.012) and has a strong inverse correlation with estrogen receptor positivity (p = 0.016). We further analyzed the patterns of circadian gene expression by immunohistochemical methods and found that homogeneous expression of PER2 or BMAL1 is significantly associated with lymph node metastasis and poor prognosis. PER2 heterogeneous expression correlates with <2+ c-erbB2 immunohistochemical reaction. Heterogeneous expression of CLOCK is associated significantly with 3-year survival. In conclusion, the expression pattern of circadian genes might be a biomarker for the prognosis of breast cancer. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
Twenty percent of breast cancers exhibit amplification or overexpression of ERBB2/neu and a poor prognosis. As the susceptibility genes controlling ERBB2 tumorgenesis are unknown, in a genetic mapping project we crossed transgenic mice expressing the neu oncogene under control of MMTV promoter with recombinant congenic (RC) strains, which provided a high mapping power. RC strains differed considerably in tumor latency (P = 0.0002), suggesting a strong genetic control of tumor development. Linkage analysis in neu-transgene carrying F2 hybrids between the most susceptible and most resistant RC strain revealed three mammary tumor susceptibility (Mts) loci with main effects, Mts1 (chr. 4), Mts2 (chr. 10), Mts3 (chr. 19), and two interacting loci Mts4 (chr.6) and Mts5 (chr. 8), significantly affecting mammary tumor latency. Suggestive significance levels indicated control of tumor numbers by Mts1 alone and in interaction with Mts5, and by two additional interacting loci on chromosomes 1 and 8. These loci combined explain to a large extent the tumor latency and number in individual F2 mouse. We also identified a suggestive locus on chromosome 17 controls metastasis to the lung. The loci Mts1, Mts1b, and Mts3 are located in the Naad4-4,5 and Naad19-2 LOH-regions of neu-induced mammary tumors, corresponding to the frequent human breast cancer LOH-regions 1p34/1p36, and 10q25, respectively. These results expand the knowledge of ERBB2 tumorigenesis and point to a combined control of specific tumor phenotypes by germ-line polymorphisms and somatic alterations.  相似文献   

19.
20.
Metastatic thyroid cancers are more difficult to treat and have a significantly worse prognosis than localized thyroid cancers. Previous studies have shown that follicular helper T cells (Tfh) may participate in antitumor immune responses. Here, we investigated the characteristics of Tfh cells in patients with differentiated thyroid cancer (DTC) at various severities, including patients with localized disease, cervical metastasis, and distant metastasis. In circulating CD4 T cells, the proportion of CD4+CXCR5+ Tfh-like cells was significantly higher in patients with distant metastasis than in healthy controls, patients with local disease, and patients with cervical metastasis. Also, the expression of Tfh cell-associated surface molecules, such as PD-1, ICOS, and BTLA, tended to be higher in patients with cervical and distant metastasis than in healthy controls. However, the expression of secreted molecules, such as IL-10, IL-21, and CXCL13, was significantly lower in patients with distant metastasis than in healthy controls and patients with local disease. Additionally, circulating Tfh-like cells from patients with distant metastasis were less capable of supporting B-cell growth and IgM secretion. We also examined the CD4+CXCR5+ Tfh-like cells in tumor samples. Tumor-infiltrating Tfh-like cells were highly enriched in the pulmonary metastasis compared to the local tumor and the cervical metastasis. However, tumor-infiltrating Tfh-like cells from pulmonary metastasis displayed higher PD-1, TIM-3, and lower IL-21 expression than those from the local tumor. Together, this study identified that the metastasis of DTC patients was associated with an overabundance of defective Tfh cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号