首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The opportunistic human pathogen Achromobacter (Alcaligenes) xylosoxidans has been recovered with increasing frequency from respiratory tract culture of persons with cystic fibrosis (CF). However, confusion of this species with other closely related respiratory pathogens has limited studies to better elucidate its epidemiology, natural history, and pathogenic role in CF. Misidentification of A. xylosoxidans as Burkholderia cepacia complex is especially problematic and presents a challenge to effective infection control in CF. To address the problem of accurate identification of A. xylosoxidans, we developed a PCR assay based on a 16S ribosomal DNA sequence. In an analysis of 149 isolates that included 47 A. xylosoxidans and several related glucose-nonfermenting species recovered from CF sputum, the sensitivity and specificity of this PCR assay were determined to be 100 and 97%, respectively. The availability of this assay will enhance identification of A. xylosoxidans, thereby facilitating study of the pathogenic role of this species and improving infection control efforts in CF.  相似文献   

2.
A multilocus sequence analysis (MLSA) scheme was developed for characterization of strains and species from the genus Achromobacter, which are increasingly recovered from patients with cystic fibrosis (CF). Five conserved housekeeping genes were selected for the MLSA, which was applied to a diverse collection of 77 strains originating from Europe, Asia, and South America and including type strains of the seven recognized Achromobacter species, six environmental strains, eight non-CF clinical strains, and 56 CF clinical strains. The discriminatory power of MLSA, based on 2,098 nucleotides (nt), was much superior to a 16S rRNA gene comparison based on 1,309 nt. Congruence was observed between single-gene trees and a concatenated gene tree. MLSA differentiated all seven current Achromobacter species and also demonstrated the presence of at least four novel potential species within the genus. CF isolates were predominantly Achromobacter xylosoxidans (64%), an undescribed Achromobacter species (18%), and Achromobacter ruhlandii (7%). A clone of Achromobacter, which has spread among patients from Danish CF centers in Aarhus and Copenhagen, was identified as Achromobacter ruhlandii. MLSA facilitates the specific identification of isolates of Achromobacter necessary for describing their role in clinical infections.  相似文献   

3.
Stenotrophomonas maltophilia and Achromobacter (Alcaligenes) xylosoxidans have been increasingly recognized as a cause of respiratory tract colonization in cystic fibrosis (CF). Although both organisms have been associated with progressive deterioration of pulmonary function, demonstration of causality is lacking. To examine the molecular epidemiology of S. maltophilia and A. xylosoxidans in CF, isolates from patients monitored for up to 2 years were fingerprinted using a PCR-based randomly amplified polymorphic DNA (RAPD-PCR) method. Sixty-one of 69 CF centers screened had 183 S. maltophilia culture-positive patients, and 46 centers had 92 A. xylosoxidans-positive patients. At least one isolate from each patient was genotyped, and patients with > or =10 positive cultures (12 S. maltophilia cultures, 15 A. xylosoxidans cultures) had serial isolates genotyped. In addition, centers with multiple culture-positive patients were examined for evidence of shared clones. There were no instances of shared genotypes among different CF centers. Some patients demonstrated isolates with a single genotype throughout the observation period, and others had intervening or sequential genotypes. At the six centers with multiple S. maltophilia culture-positive patients and the seven centers with multiple A. xylosoxidans-positive patients, there were three and five instances of shared genotypes, respectively. The majority of shared isolates were from pairs who were siblings or otherwise epidemiologically linked. These findings suggest RAPD-PCR typing can distinguish unique CF isolates of S. maltophilia and A. xylosoxidans, person-to-person transmission may occur, there are not a small number of clones infecting CF airways, and patients with long-term colonization may either have a persistent organism or may acquire additional organisms over time.  相似文献   

4.
《Research in microbiology》2018,169(9):540-542
Respiratory infections can lead to serious complications in CF patients, especially when infected with antibiotic resistant bacteria. Alternative treatments for these infections are being sought out to help address this problem. We present a clinical case of a cystic fibrosis (CF) patient, with multi-drug resistant (MDR) Achromobacter xylosoxidans chronic lung infection who was successfully managed with bacteriophage therapy.  相似文献   

5.
The genus Achromobacter currently is comprised of seven species, including Achromobacter xylosoxidans, an opportunistic and nosocomial pathogen that displays broad-spectrum antimicrobial resistance and is recognized as causing chronic respiratory tract infection in persons with cystic fibrosis (CF). To enable strain typing for global epidemiologic investigations, to clarify the taxonomy of "Achromobacter-like" strains, and to elucidate the population structure of this genus, we developed a genus-level multilocus sequence typing (MLST) scheme. We employed in silico analyses of whole-genome sequences of several phylogenetically related genera, including Bordetella, Burkholderia, Cupriavidus, Herminiimonas, Janthinobacterium, Methylibium, and Ralstonia, for selecting loci and designing PCR primers. Using this MLST scheme, we analyzed 107 genetically diverse Achromobacter isolates cultured from biologic specimens from CF and non-CF patients, 1 isolate recovered from sludge, and an additional 39 strains obtained from culture collections. Sequence data from these 147 strains, plus three recently genome-sequenced Achromobacter strains, were assigned to 129 sequence types based on seven loci. Calculation of the nucleotide divergence of concatenated locus sequences within and between MLST clusters confirmed the seven previously named Achromobacter species and revealed 14 additional genogroups. Indices of association showed significant linkage disequilibrium in all of the species/genogroups able to be tested, indicating that each group has a clonal population structure. No clear segregation of species/genogroups between CF and non-CF sources was found.  相似文献   

6.
Achromobacter xylosoxidans. An unusual neonatal pathogen   总被引:1,自引:0,他引:1  
Perinatal acquisition of a rare pediatric pathogen, Achromobacter xylosoxidans, with evidence for in utero transmission, is described. Cultures from the mother and neonate demonstrated A. xylosoxidans. An ascending bacterial infection in the mother with clinical chorioamnionitis is presented as the probable mode of transmission. Postmortem examination of the infant confirmed Achromobacter meningitis. In contrast to the current case with transmission from mother to neonate, previously published neonatal cases of Achromobacter infections indicate that nosocomial transmission of the organism is most common (79%). In addition, the literature review revealed a high mortality associated with meningitis (77%), frequent hydrocephalus, and subsequent neurologic sequelae (36%). To the authors' knowledge, this is the first documented case of maternal-fetal transfer of A. xylosoxidans.  相似文献   

7.
We used partial 16S rRNA gene (16S DNA) sequencing for the prospective identification of nonfermenting Gram-negative bacilli recovered from patients attending our cystic fibrosis center (h?pital Necker-Enfants malades), which gave problematic results with conventional phenotypic tests. During 1999, we recovered 1093 isolates of nonfermenting Gram-negative bacilli from 702 sputum sampled from 148 patients. Forty-six of these isolates (27 patients) were not identified satisfactorily in routine laboratory tests. These isolates were identified by 16S DNA sequencing as Pseudomonas aeruginosa (19 isolates, 12 patients), Achromobacter xylosoxidans (10 isolates, 8 patients), Stenotrophomonas maltophilia (9 isolates, 9 patients), Burkholderia cepacia genomovar I/III (3 isolates, 3 patients), Burkholderia vietnamiensis (1 isolate), Burkholderia gladioli (1 isolate) and Ralstonia mannitolilytica (3 isolates, 2 patients). Fifteen isolates (33%) were resistant to all antibiotics in routine testing. Sixteen isolates (39%) resistant to colistin were recovered on B. cepacia-selective medium: 2 P. aeruginosa, 3 A. xylosoxidans, 3 S. maltophilia and the 8 Burkholderia--Ralstonia isolates. The API 20NE system gave no identification for 35 isolates and misidentified 11 isolates (2 P. aeruginosa, 2 A. xylosoxidans and 1 S. maltophilia classified as B. cepacia ). Control measures and/or treatment were clearly improved as a result of 16S DNA sequencing in three of these cases. This study confirms the weakness of phenotypic methods for identification of atypical nonfermenting Gram-negative bacilli recovered from cystic fibrosis patients. The genotypic methods, such as 16S DNA sequencing which allows identification of strains in routine practice, appears to have a small, but significant impact on the clinical management of CF patients.  相似文献   

8.
Achromobacter xylosoxidans was isolated from six patients. The organism causes opportunistic infections in patients who are compromised. A. xylosoxidans is a catalase- and oxidase-positive, motile, gram-negative rod that oxidizes xylose and glucose. The organism exists in a water environment and may be confused with Pseudomonas species. Unlike pseudomonas, achromobacter has peritrichous flagella. The clinical and laboratory characteristics of A. xylosoxidans are presented.  相似文献   

9.
In the past decade, potential pathogens, including Alcaligenes species, have been increasingly recovered from cystic fibrosis (CF) patients. Accurate identification of multiply antibiotic-resistant gram-negative bacilli is critical to understanding the epidemiology and clinical implications of emerging pathogens in CF. We examined the frequency of correct identification of Alcaligenes spp. by microbiology laboratories affiliated with American CF patient care centers. Selective media, an exotoxin A probe for Pseudomonas aeruginosa, and a commercial identification assay, API 20 NE, were used for identification. The activity of antimicrobial agents against these clinical isolates was determined. A total of 106 strains from 78 patients from 49 CF centers in 22 states were studied. Most (89%) were correctly identified by the referring laboratories as Alcaligenes xylosoxidans. However, 12 (11%) strains were misidentified; these were found to be P. aeruginosa (n = 10), Stenotrophomonas maltophilia (n = 1), and Burkholderia cepacia (n = 1). Minocycline, imipenem, meropenem, piperacillin, and piperacillin-tazobactam were the most active since 51, 59, 51, 50, and 55% of strains, respectively, were inhibited. High concentrations of colistin (100 and 200 microg/ml) inhibited 92% of strains. Chloramphenicol paired with minocycline and ciprofloxacin paired with either imipenem or meropenem were the most active combinations and inhibited 40 and 32%, respectively, of strains. Selective media and biochemical identification proved to be useful strategies for distinguishing A. xylosoxidans from other CF pathogens. Standards for processing CF specimens should be developed, and the optimal method for antimicrobial susceptibility testing of A. xylosoxidans should be determined.  相似文献   

10.
The recently described genus Pandoraea contains five named species (Pandoraea apista, Pandoraea pulmonicola, Pandoraea pnomenusa, Pandoraea sputorum, and Pandoraea norimbergensis) and four unnamed genomospecies. Pandoraea spp. have mainly been recovered from the respiratory tracts of cystic fibrosis (CF) patients. Accurate genus- and species-level identification by routine clinical microbiology methods is difficult, and differentiation from Burkholderia cepacia complex organisms may be especially problematic. This can have important consequences for the management of CF patients. On the basis of 16S ribosomal DNA sequences, PCR assays for the identification of Pandoraea spp. were developed. A first PCR assay was developed for the identification of Pandoraea isolates to the genus level. PCR assays for the identification of P. apista and P. pulmonicola as a group, P. pnomenusa, P. sputorum, and P. norimbergensis were also developed. All five assays were evaluated with a panel of 123 bacterial isolates that included 69 Pandoraea sp. strains, 24 B. cepacia complex strains, 6 Burkholderia gladioli strains, 9 Ralstonia sp. strains, 5 Alcaligenes xylosoxidans strains, 5 Stenotrophomonas maltophilia strains, and 5 Pseudomonas aeruginosa strains. The use of these PCR assays facilitates the identification of Pandoraea spp. and avoids the misidentification of a Pandoraea sp. as a B. cepacia complex isolate.  相似文献   

11.
The cellular fatty acid composition and metabolic products of 12 reference strains of Achromobacter sp. and A. xylosoxidans were determined by gas-liquid chromatography (GLC). Results showed that the two Achromobacter groups are strikingly different and can be readily distinguished on the basis of cellular fatty acids and the short-chain acids produced by Achromobacter sp. The major cellular fatty acids of Achromobacter sp. were octadecenoic (18:1) and a 19-carbon cyclopropanoic (19:0 delta) acid, whereas hexadecanoic (16:0) and a 17-carbon cyclopropanoic (17:0 delta) acid were principal components of the lipids of A. xylosoxidans. Hydroxy acids were not found in strains of Achromobacter sp. but comprised approximately 20% of the cellular fatty acids of A. xylosoxidans. In addition, Achromobacter sp. produced relatively large amounts of 2-ketoisocaproic acid, which was detected in only trace amounts from strains of A. xylosoxidans. The data show that GLC tests provide additional criteria for differentiating groups which are very closely related when evaluated with conventional tests. The GLC tests can be readily adapted in the clinical laboratory because they are rapid, highly reproducible, relatively inexpensive, and simple to perform.  相似文献   

12.
The microbiological and clinical features of a case of Achromobacter xylosoxidans (Alcaligenes xylosoxidans subsp. xylosoxidans) meningitis associated with a gunshot wound are described. To our knowledge, this is the third confirmed case report of meningitis caused by this organism.  相似文献   

13.
Cerebral ventriculitis associated with Achromobacter xylosoxidans.   总被引:10,自引:0,他引:10       下载免费PDF全文
Six patients in the neurosurgical ward of Fukushima Medical College Hospital suffering from ventriculitis due to Achromobacter xylosoxidans infection had undergone craniotomy or cranial trepanation before the infection. The strains of A. xylosoxidans isolated from the patients were resistant to streptomycin, ampicillin, cephaloridine, gentamicin, and colistin. They were also resistant to chlorhexidine digluconate (Hibitane) in a concentration of 2%. When a study of the chlorhexidine used in the hospital was carried out four strains of A. xylosoxidans were isolated from 20 containers of chlorhexidine solution in the surgical ward but not from those in the operating theatre.  相似文献   

14.
Strains of Achromobacter xylosoxidans from clinical material.   总被引:10,自引:0,他引:10       下载免费PDF全文
Eleven strains of Achromobacter xylosoxidans have been received from among 1106 strains of Gram-negative, non-fermentative bacteria submitted to the National Collection of Type Cultures for computer-assisted identification since 1 January 1972. The strains showed resistance to a wide range of antimicrobial agents and five of the isolates possibly played a pathogenic role. The biochemical characteristics of these 11 strains were compared with those of three culture collection strains.  相似文献   

15.
We report the case of a 35-yr-old patient who presented with high fever and chills. He had undergone a patch closure of the ventricular septal defect 18 yr before. One year later, a VVI pacemaker was implanted via the right subclavian vein because of complete heart block. Nine years after that, a new VVI pacemaker with another right ventricular electrode was inserted controlaterally and the old pacing lead was abandoned. Trans-thoracic and trans-esophageal echocardiogram identified the pacemaker lead in the right ventricle (RV) attaching hyperechoic materials and also a fluttering round hyperechoic mass with a stalk in the RV outflow tract. Cultures in blood and pus from pacemaker lead grew Achromobacter xylosoxidans. A diagnosis of pacemaker lead endocarditis due to Achromobacter xylosoxidans was made. In this regards, the best treatment is an immediate removal of the entire pacing system and antimicrobial therapy.  相似文献   

16.
Achromobacter xylosoxidans is typically isolated from pulmonary sources, presenting as pneumonia in immunosuppressed individuals. We describe a novel clinical presentation of A. xylosoxidans infection presenting as multiple spiculated, pulmonary nodules mimicking cancer for which the patient underwent a wedge resection of the lung for diagnosis and staging of presumptive cancer.  相似文献   

17.
During 1999, we used partial 16S rRNA gene sequencing for the prospective identification of atypical nonfermenting gram-negative bacilli isolated from patients attending our cystic fibrosis center. Of 1,093 isolates of nonfermenting gram-negative bacilli recovered from 148 patients, 46 (4.2%) gave problematic results with conventional phenotypic tests. These 46 isolates were genotypically identified as Pseudomonas aeruginosa (19 isolates, 12 patients), Achromobacter xylosoxidans (10 isolates, 8 patients), Stenotrophomonas maltophilia (9 isolates, 9 patients), Burkholderia cepacia genomovar I/III (3 isolates, 3 patients), Burkholderia vietnamiensis (1 isolate), Burkholderia gladioli (1 isolate), and Ralstonia mannitolilytica (3 isolates, 2 patients), a recently recognized species.  相似文献   

18.
The accurate and rapid identification of bacteria isolated from the respiratory tract of patients with cystic fibrosis (CF) is critical in epidemiological studies, during intrahospital outbreaks, for patient treatment, and for determination of therapeutic options. While the most common organisms isolated from sputum samples are Pseudomonas aeruginosa, Staphylococcus aureus, and Haemophilus influenzae, in recent decades an increasing fraction of CF patients has been colonized by other nonfermenting (NF) gram-negative rods, such as Burkholderia cepacia complex (BCC) bacteria, Stenotrophomonas maltophilia, Ralstonia pickettii, Acinetobacter spp., and Achromobacter spp. In the present study, we developed a novel strategy for the rapid identification of NF rods based on Fourier transform infrared spectroscopy (FTIR) in combination with artificial neural networks (ANNs). A total of 15 reference strains and 169 clinical isolates of NF gram-negative bacteria recovered from sputum samples from 150 CF patients were used in this study. The clinical isolates were identified according to the guidelines for clinical microbiology practices for respiratory tract specimens from CF patients; and particularly, BCC bacteria were further identified by recA-based PCR followed by restriction fragment length polymorphism analysis with HaeIII, and their identities were confirmed by recA species-specific PCR. In addition, some strains belonging to genera different from BCC were identified by 16S rRNA gene sequencing. A standardized experimental protocol was established, and an FTIR spectral database containing more than 2,000 infrared spectra was created. The ANN identification system consisted of two hierarchical levels. The top-level network allowed the identification of P. aeruginosa, S. maltophilia, Achromobacter xylosoxidans, Acinetobacter spp., R. pickettii, and BCC bacteria with an identification success rate of 98.1%. The second-level network was developed to differentiate the four most clinically relevant species of BCC, B. cepacia, B. multivorans, B. cenocepacia, and B. stabilis (genomovars I to IV, respectively), with a correct identification rate of 93.8%. Our results demonstrate the high degree of reliability and strong potential of ANN-based FTIR spectrum analysis for the rapid identification of NF rods suitable for use in routine clinical microbiology laboratories.  相似文献   

19.
We investigated the possibility of cross-infection among cystic fibrosis patients in two Brazilian reference centers. Achromobacter xylosoxidans isolates (n = 122) were recovered over a 5-year period from 39 patients. Isolates were genetically heterogeneous, but one genotype was present in 56% of the patients, suggesting that cross-infection may have occurred.  相似文献   

20.
Since nonfermenting, Gram negative bacilli recovered from patients with cystic fibrosis could be misidentified with phenotypic procedures, we used partial 16S ribosomal RNA gene (16S gene) sequencing to identify these "Pseudomonas-like" isolates. 473 isolates were recovered from 66 patients in 2003. Sequencing was used to identify 29 (from 24 patients) of the 473 isolates, showing unclear results with routine tests. PCR with specific primers was carried out to amplify a 995 bp fragment, which was then sequenced. The sequences were analyzed with GenBank database for species assignment. Phenotypic and genotypic results were concordant for 20/29 isolates (10 Pseudomonas aeruginosa, 5 Burkholderia cepacia, 3 Stenotrophomonas maltophilia, 2 Achromobacter xylosoxidans). However, 3 of the 5 B. cepacia isolates were then identified as Burkholderia multivorans with a PCR-RFLP procedure. Phenotypic misidentification was observed for 9/29 isolates: 4 A. xylosoxidans, 1 P. aeruginosa, 1 Bordetella petrii, 1 Bordetella bronchiseptica, 1 Ralstonia respiraculi and 1 Ralstonia mannitolilytica. Partial 16S gene sequencing improved the identification of "Pseudomonas-like" isolates from cystic fibrosis patients, but the accuracy to distinguish between genomovars of the B. cepacia complex was inadequate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号