首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Individuals with high trait anxiety (HTA) can be studied to examine the effect of elevated levels of anxiety on the processing of stimuli and the selection of actions. The anterior cingulate cortex has been implicated in the detection and processing of errors. This investigation examined the hypothesis that HTA subjects are more sensitive to errors than nonanxious comparison subjects during a simple decision-making task and show increased activation in the anterior cingulate, particularly at low error rates. METHODS: Thirteen HTA subjects were compared with 13 normal trait anxiety (NTA: 40th-60th percentile) subjects during functional magnetic resonance imaging while performing a two-choice prediction task at three different error rates. RESULTS: Both HTA and NTA subjects performed similarly during a simple two-choice prediction task; however, during the low-error-rate condition, activation in the anterior cingulate and medial prefrontal cortex was significantly higher in HTA subjects and was correlated with trait but not state anxiety. CONCLUSIONS: These results support the idea that HTA subjects devote more processing resources to decision making than do NTA subjects during times in which there is little chance of incorrect responding (i.e., the low-error-rate condition). The extent to which this altered activation within the anterior cingulate contributes to anxiety-proneness remains to be determined.  相似文献   

2.
Error-related brain activation during a Go/NoGo response inhibition task   总被引:9,自引:0,他引:9  
Inhibitory control and performance monitoring are critical executive functions of the human brain. Lesion and imaging studies have shown that the inferior frontal cortex plays an important role in inhibition of inappropriate response. In contrast, specific brain areas involved in error processing and their relation to those implicated in inhibitory control processes are unknown. In this study, we used a random effects model to investigate error-related brain activity associated with failure to inhibit response during a Go/NoGo task. Error-related brain activation was observed in the rostral aspect of the right anterior cingulate (BA 24/32) and adjoining medial prefrontal cortex, the left and right insular cortex and adjoining frontal operculum (BA 47) and left precuneus/posterior cingulate (BA 7/31/29). Brain activation related to response inhibition and competition was observed bilaterally in the dorsolateral prefrontal cortex (BA 9/46), pars triangularis region of the inferior frontal cortex (BA 45/47), premotor cortex (BA 6), inferior parietal lobule (BA 39), lingual gyrus and the caudate, as well as in the right dorsal anterior cingulate cortex (BA 24). These findings provide evidence for a distributed error processing system in the human brain that overlaps partially, but not completely, with brain regions involved in response inhibition and competition. In particular, the rostal anterior cingulate and posterior cingulate/precuneus as well as the left and right anterior insular cortex were activated only during error processing, but not during response competition, inhibition, selection, or execution. Our results also suggest that the brain regions involved in the error processing system overlap with brain areas implicated in the formulation and execution of articulatory plans.  相似文献   

3.
Event-related fMRI study of response inhibition   总被引:12,自引:0,他引:12  
Event-related functional magnetic resonance imaging (erfMRI) was employed to measure the hemodynamic response during a Go/No-go task in 16 healthy subjects. The task was designed so that Go and No-go events were equally probable, allowing an unbiased comparison of cerebral activity during these two types of trials. In accordance with prediction, anterior cingulate was active during both the Go and No-go trials, dorsolateral and ventrolateral prefrontal cortex was more active during the No-go trials, while primary motor cortex, supplementary motor area, pre-motor cortex and cerebellum were more active during Go trials. These findings are consistent with the hypothesis that the anterior cingulate cortex is principally engaged in making and monitoring of decisions, while dorsolateral and ventral lateral prefrontal sites play a specific role in response inhibition.  相似文献   

4.
A central question regarding the nature of cognitive control is the extent to which different tasks are controlled by a common system. We addressed this issue by comparing the cortical activation associated with the processing of an invalidly cued event with the activation associated with a validly cued event. In a perceptual cueing task, we cued the likely stimulus modality (visual or auditory), and in a motor cueing task, we cued the likely motor response (left or right hand). Event-related functional MRI revealed increased activation in the anterior cingulate cortex on valid and invalid trials in both tasks. In addition, a network of six regions, including the dorsal medial frontal cortex, showed increased activation on invalid trials irrespective of whether the invalid cue referred to the stimulus modality or response. Findings suggest that dorsal medial frontal cortex rather than the anterior cingulated cortex is involved in conflict monitoring operations. We summarize our findings in a model that links six modules for processing invalidly cued events.  相似文献   

5.
BACKGROUND: We previously found that children of parents with depression showed impaired performance on a task of emotional categorisation. AIMS: To test the hypothesis that children of parents with depression would show abnormal neural responses in the anterior cingulate cortex, a brain region involved in the integration of emotional and cognitive information. METHOD: Eighteen young people (mean age 19.8 years) with no personal history of depression but with a biological parent with a history of major depression (FH+ participants) and 16 controls (mean age 19.9 years) underwent functional magnetic resonance imaging while completing an emotional counting Stroop task. RESULTS: Controls showed significant activation in the pregenual anterior cingulate cortex to both positive and negative words during the emotional Stroop task. This activation was absent in FH+ participants. CONCLUSIONS: Our findings show that people at increased familial risk of depression demonstrate impaired modulation of the anterior cingulate cortex in response to emotionally valenced stimuli.  相似文献   

6.
Recurrent anticipation of ominous events is central to obsessions, the core symptom of obsessive-compulsive disorder (OCD), yet the neural basis of intrinsic anticipatory processing in OCD is unknown. We studied nonmedicated adults with OCD and case matched healthy controls in a visual-spatial working memory task with distractor. Magnetoencephalography was used to examine the medial cortex activity during anticipation of to-be-inhibited distractors and to-be-facilitated retrieval stimuli. In OCD anticipatory activation to distractors was abnormally reduced within the posterior cingulate and fusiform gyrus compared to prominent activation in controls. Conversely, OCD subjects displayed significantly increased activation to retrieval stimuli within the anterior cingulate and supplementary motor cortex. This previously unreported discordant pattern of medial anticipatory activation in OCD was accompanied by normal performance accuracy. While increased anterior cortex activation in OCD is commonly viewed as failure of inhibition, the current pattern of data implicates the operation of an anterior compensatory mechanism amending the posterior medial self-regulatory networks disrupted in OCD.  相似文献   

7.
Few studies have examined the relationship between local anatomic thickness of the cortex and the activation signals arising from it. Using structural and functional MRI, we examined whether a relationship exists between cortical thickness and brain activation. Twenty-eight participants were asked to perform the Go/NoGo response inhibition task known to activate the anterior cingulate and the prefrontal cortex. Structural data of the same regions were simultaneously collected. We hypothesized that cortical thickness in these brain regions would positively correlate with brain activation. Data from the structural MRI were aligned with those of functional MRI activation. There was a positive linear correlation between cortical thickness and activation during response inhibition in the right anterior cingulate cortex (Brodmann's Area 24). No significant thickness-activation correlations were found in the prefrontal cortex. Correlations between cortical thickness and activation may occur only in certain brain regions.  相似文献   

8.
Larger error-related negativities (ERNs) have been consistently found in obsessive-compulsive disorder (OCD) patients, and are thought to reflect the activities of a hyperactive cortico-striatal circuit during action monitoring. We previously observed that obsessive-compulsive (OC) symptomatic students (non-patients) have larger ERNs during errors in a response competition task, yet smaller ERNs in a reinforcement learning task. The finding of a task-specific dissociation suggests that distinct yet partially overlapping medio-frontal systems underlie the ERN in different tasks, and that OC symptoms are associated with functional differences in these systems. Here, we used EEG source localization to identify why OC symptoms are associated with hyperactive ERNs to errors yet hypoactive ERNs when selecting maladaptive actions. At rest, OC symptomatology predicted greater activity in rostral anterior cingulate cortex (rACC) and lower activity in dorsal anterior cingulate cortex (dACC). When compared to a group with low OC symptom scores, the high OC group had greater rACC reactivity during errors in the response competition task and less deactivation of dACC activity during errors in the reinforcement learning task. The degree of activation in these areas correlated with ERN amplitudes during both tasks in the high OC group, but not in the low group. Interactive anterior cingulate cortex (ACC) systems associated avoidance of maladaptive actions were intact in the high OC group, but were related to poorer performance on a third task: probabilistic reversal learning. These novel findings link both tonic and phasic activities in the ACC to action monitoring alterations, including dissociation in performance deficits, in OC symptomatic participants.  相似文献   

9.
OBJECTIVE: People with schizophrenia have exhibited reduced functional activity in the anterior cingulate cortex during the performance of many types of cognitive tasks and during the commission of errors. According to conflict theory, the anterior cingulate cortex is involved in the monitoring of response conflict, acting as a signal for a need for greater cognitive control. This study examined whether impaired conflict monitoring in people with schizophrenia could underlie reduced anterior cingulate activity during both correct task performance and error-related activity. METHOD: Functional activity in the anterior cingulate of 13 schizophrenia patients and 13 healthy comparison subjects was investigated by using event-related fMRI and a Stroop task that allowed simultaneous examination of activity during both conflict (incongruent trials) and error (commission of error trials). RESULTS: In the presence of comparable reaction time measures for conflict as well as comparable error rates, the schizophrenia subjects showed both decreased conflict- and error-related activity in the same region of the anterior cingulate cortex. Moreover, those with schizophrenia did not exhibit significant post-conflict or post-error behavioral adjustments. CONCLUSIONS: Concurrently reduced conflict- and error-related activity in the anterior cingulate cortex along with reduced trial-to-trial adjustments in performance has not previously been reported in schizophrenia. The current results suggest that impaired conflict monitoring by the anterior cingulate cortex might play an important role in contributing to cognitive control deficits in patients with schizophrenia.  相似文献   

10.
During tasks requiring response inhibition, intra-individual response time variability, a measure of motor response preparation, has been found to correlate with errors of commission, such that individuals with higher variability show increased commission errors. This study used fMRI to examine the neural correlates of response variability in 30 typically developing children, ages 8-12, using a simplified Go/No-go task with minimal cognitive demands. Lower variability was associated with Go activation in the anterior cerebellum (culmen) and with No-go activation in the rostral supplementary motor area (pre-SMA), the postcentral gyrus, the anterior cerebellum (culmen) and the inferior parietal lobule. For both Go and No-go events, higher variability was associated with activation in prefrontal cortex and the caudate. The findings have implications for neuropsychiatric disorders such as ADHD and suggest that during response inhibition, children with more consistent performance are able to rely on premotor circuits involving the pre-SMA, important for response selection; those with less consistent performance instead recruit prefrontal circuits involved in more complex aspects of behavioral control.  相似文献   

11.
Neuropsychological investigations of substance abusers have reported impairments on tasks mediated by the frontal executive system, including functions associated with behavioral inhibition and decision making. The higher order or executive components which are involved in decision making include selective attention and short term storage of information, inhibition of response to irrelevant information, initiation of response to relevant information, self-monitoring of performance, and changing internal and external contingencies in order to "stay the course" towards the ultimate goal. Given the hypothesized role of frontal systems in decision making and the previous evidence that executive dysfunctions and structural brain changes exist in subjects who use illicit drugs, we applied fMRI and diffusion tensor imaging (DTI) techniques in a pilot investigation of heavy cannabis smokers and matched control subjects while performing a modification of the classic Stroop task. Marijuana smokers demonstrated significantly lower anterior cingulate activity in focal areas of the anterior cingulate cortex and higher midcingulate activity relative to controls, although both groups were able to perform the task within normal limits. Normal controls also demonstrated increased activity within the right dorsolateral prefrontal cortex (DLPFC) during the interference condition, while marijuana smokers demonstrated a more diffuse, bilateral pattern of DLPFC activation. Similarly, although both groups performed the task well, marijuana smokers made more errors of commission than controls during the interference condition, which were associated with different brain regions than control subjects. These findings suggest that marijuana smokers exhibit different patterns of BOLD response and error response during the Stroop interference condition compared to normal controls despite similar task performance. Furthermore, DTI measures in frontal regions, which include the genu and splenium of the corpus callosum and bilateral anterior cingulate white matter regions, showed no between group differences in fractional anisotropy (FA), a measure of directional coherence within white matter fiber tracts, but a notable increase in trace, a measure of overall isotropic diffusivity in marijuana smokers compared to controls. Overall, results from the present study indicate significant differences in the magnitude and pattern of signal intensity change within the anterior cingulate and the DLPFC during the Stroop interference subtest in chronic marijuana smokers compared to normal controls. Furthermore, although chronic marijuana smokers were able to perform the task reasonably well, the functional activation findings suggest they utilize different cortical processes from the control subjects in order to do so. Findings from this study are consistent with the notion that substance abusers demonstrate evidence of altered frontal neural function during the performance of tasks that involve inhibition and performance monitoring, which may affect the ability to make decisions.  相似文献   

12.
BACKGROUND: Inhibiting prepotent responses is critical to optimal cognitive and behavioral function across many domains. Several behavioral studies have investigated response inhibition in autism, and the findings varied according to the components involved in inhibition. There has been only one published functional magnetic resonance imaging (fMRI) study so far on inhibition in autism, which found greater activation in participants with autism than control participants. METHODS: This study investigated the neural basis of response inhibition in 12 high-functioning adults with autism and 12 age- and intelligence quotient (IQ)-matched control participants during a simple response inhibition task and an inhibition task involving working memory. RESULTS: In both inhibition tasks, the participants with autism showed less brain activation than control participants in areas often found to be active in response inhibition tasks, namely the anterior cingulate cortex. In the more demanding inhibition condition, involving working memory, the participants with autism showed more activation than control participants in the premotor areas. In addition to the activation differences, the participants with autism showed lower levels of synchronization between the inhibition network (anterior cingulate gyrus, middle cingulate gyrus, and insula) and the right middle and inferior frontal and right inferior parietal regions. CONCLUSIONS: The results indicate that the inhibition circuitry in the autism group is activated atypically and is less synchronized, leaving inhibition to be accomplished by strategic control rather than automatically. At the behavioral level, there was no difference between the groups.  相似文献   

13.
In a previous functional magnetic resonance imaging (fMRI) study of high functioning outpatients with remitted schizophrenia, we found increased activity compared with healthy subjects across multiple areas of the brain, including the dorsolateral frontal cortex and the anterior cingulate, during a modified Stroop task. The same fMRI procedure was used in this subsequent study to investigate eight unmedicated patients during an acute episode of schizophrenia and eight healthy control subjects. Patients showed a reduced activation in dorsolateral prefrontal, anterior cingulate and parietal regions and a higher activation in temporal regions and posterior cingulate compared to healthy controls. Healthy controls showed a trend towards higher accuracy in the modified Stroop task compared to schizophrenia patients. Treatment with second generation antipsychotics may improve executive performance in patients with schizophrenia and facilitate a normalization of functional hypofrontality after symptomatic improvement.  相似文献   

14.
In a previous functional magnetic resonance imaging (fMRI) study of high functioning outpatients with remitted schizophrenia, we found increased activity compared with healthy subjects across multiple areas of the brain, including the dorsolateral frontal cortex and the anterior cingulate, during a modified Stroop task. The same fMRI procedure was used in this subsequent study to investigate eight unmedicated patients during an acute episode of schizophrenia and eight healthy control subjects. Patients showed a reduced activation in dorsolateral prefrontal, anterior cingulate and parietal regions and a higher activation in temporal regions and posterior cingulate compared to healthy controls. Healthy controls showed a trend towards higher accuracy in the modified Stroop task compared to schizophrenia patients. Treatment with second generation antipsychotics may improve executive performance in patients with schizophrenia and facilitate a normalization of functional hypofrontality after symptomatic improvement.  相似文献   

15.
OBJECTIVE: Deficits in motor inhibition may contribute to impulsivity and irritability in children with bipolar disorder. Studies of the neural circuitry engaged during failed motor inhibition in pediatric bipolar disorder may increase our understanding of the pathophysiology of the illness. The authors tested the hypothesis that children with bipolar disorder and comparison subjects would differ in ventral prefrontal cortex, striatal, and anterior cingulate activation during unsuccessful motor inhibition. They also compared activation in medicated versus unmedicated children with bipolar disorder and in children with bipolar disorder and attention deficit hyperactivity disorder (ADHD) versus those with bipolar disorder without ADHD. METHOD: The authors conducted an event-related functional magnetic resonance imaging study comparing neural activation in children with bipolar disorder and healthy comparison subjects while they performed a motor inhibition task. The study group included 26 children with bipolar disorder (13 unmedicated and 15 with ADHD) and 17 comparison subjects matched by age, gender, and IQ. RESULTS: On failed inhibitory trials, comparison subjects showed greater bilateral striatal and right ventral prefrontal cortex activation than did patients. These deficits were present in unmedicated patients, but the role of ADHD in mediating them was unclear. CONCLUSIONS: In relation to comparison subjects, children with bipolar disorder may have deficits in their ability to engage striatal structures and the right ventral prefrontal cortex during unsuccessful inhibition. Further research should ascertain the contribution of ADHD to these deficits and the role that such deficits may play in the emotional and behavioral dysregulation characteristic of bipolar disorder.  相似文献   

16.
Functional magnetic resonance imaging (fMRI) was used to investigate the hypothesis that schizophrenia is associated with a dysfunction of prefrontal brain regions during motor response inhibition. Generic brain activation of six male medicated patients with schizophrenia was compared to that of seven healthy comparison subjects matched for sex, age, and education level while performing 'stop' and 'go-no-go' tasks. No group differences were observed in task performance. Patients, however, showed reduced BOLD signal response in left anterior cingulate during both inhibition tasks and reduced left rostral dorsolateral prefrontal and increased thalamus and putamen BOLD signal response during stop task performance. Despite good task performance, patients with schizophrenia thus showed abnormal neural network patterns of reduced left prefrontal activation and increased subcortical activation when challenged with motor response inhibition.  相似文献   

17.
One drawback of functional magnetic resonance imaging (fMRI) is that the subject must endure intense noise during testing. We examined the possible role of such noise on the activation of early visual cortex during visual mental imagery. We postulated that noise may require subjects to work harder to pay attention to the task, which in turn could alter the activation pattern found in a silent environment. To test this hypothesis, we used positron emission tomography (PET) to monitor regional Cerebral Blood Flow (rCBF) of six subjects while they performed an imagery task either in a silent environment or in an "fMRI-like" noisy environment. Both noisy and silent imagery conditions, as compared to their respective baselines, resulted in activation of a bilateral fronto-parietal network (related to spatial processing), a bilateral inferior temporal area (related to shape processing), and deactivation of anterior calcarine cortex. Among the visual areas, rCBF increased in the most posterior part of the calcarine cortex, but at level just below the statistical threshold. However, blood flow values in the calcarine cortex during the silent imagery condition (but not the noisy imagery condition) were strongly negatively correlated with accuracy; the more challenging subjects found the task, the more strongly the calcarine cortex was activated. The subjects made more errors in the noisy condition than in the silent condition, and a direct comparison of the two conditions revealed that noise resulted in an increase in rCBF in the anterior cingulate cortex (involved in performance monitoring) and in the Wernicke's area (required to encode the verbal cues used in the task). These results thus demonstrate a nonadditive effect of fMRI gradient noise, resulting in a slight but significant effect on both performance and the neural activation pattern.  相似文献   

18.
Aggressive, suicidal and violent behaviour have been associated with impulsive personality and difficulty in inhibiting responses. We used functional magnetic resonance imaging (fMRI) of the whole brain to examine the neural correlates of response inhibition in 19 normal subjects as they performed a Go/NoGo task. Subjects completed Eysenck’s Impulsivity Scale, Barratt’s Impulsivity Scale (BIS) and behavioural impulsivity tasks. Associations between blood oxygen level dependent (BOLD) response, trait impulsivity, task performance and National Adult Reading Test (NART) IQ were investigated. Neural response during response inhibition was most prominent in the right lateral orbitofrontal cortex. Responses were also seen in superior temporal gyrus, medial orbitofrontal cortex, cingulate gyrus, and inferior parietal lobule, predominantly on the right side. Subjects with greater scores on impulsivity scales and who made more errors had greater activation of paralimbic areas during response inhibition, while less impulsive individuals and those with least errors activated higher order association areas. Exploratory factor analysis of orbital activations, personality measures and errors of commission did not reveal a unitary dimension of impulsivity. However, the strong association between posterior orbital activation and Eysenck’s impulsivity score on a single factor suggests that greater engagement of right orbitofrontal cortex was needed to maintain behavioural inhibition in impulsive individuals. Lower IQ was more important than impulsivity scores in determining errors of commission during the task. Neuroimaging of brain activity during the Go/NoGo task may be useful in understanding the functional neuroanatomy and associated neurochemistry of response inhibition. It may also allow study of the effects of physical and psychological interventions on response inhibition in clinical conditions such as antisocial personality disorder.  相似文献   

19.
Rostral anterior cingulate cortex (rACC) plays a central role in the pathophysiology of major depressive disorder (MDD). As we reported in our previous study (Wagner et al., 2006), patients with MDD were characterized by an inability to deactivate this region during cognitive processing leading to a compensatory prefrontal hyperactivation. This hyperactivation in rACC may be related to a deficient inhibitory control of negative self-referential processes, which in turn may interfere with cognitive control task execution and the underlying fronto-cingulate network activation. To test this assumption, a functional magnetic resonance imaging study was conducted in 34 healthy subjects. Univariate and functional connectivity analyses in statistical parametric mapping software 8 were used. Self-referential stimuli and the Stroop task were presented in an event-related design. As hypothesized, rACC was specifically engaged during negative self-referential processing (SRP) and was significantly related to the degree of depressive symptoms in participants. BOLD signal in rACC showed increased valence-dependent (negative vs neutral SRP) interaction with BOLD signal in prefrontal and dorsal anterior cingulate regions during Stroop task performance. This result provides strong support for the notion that enhanced rACC interacts with brain regions involved in cognitive control processes and substantiates our previous interpretation of increased rACC and prefrontal activation in patients during Stroop task.  相似文献   

20.
Inhibitory and performance-monitoring functions have been shown to develop throughout adolescence. The developmental functional magnetic resonance imaging (fMRI) literature on inhibitory control, however, has been relatively inconsistent with respect to functional development of prefrontal cortex in the progression from childhood to adulthood. Age-related performance differences between adults and children have been shown to be a confound and may explain inconsistencies in findings. The development of error-related processes has not been studied so far using fMRI. The aim of this study was to investigate the neural substrates of the development of inhibitory control and error-related functions by use of an individually adjusted task design that forced subjects to fail on 50% of trials, and therefore controlled for differences in task difficulty and performance between different age groups. Event-related fMRI was used to compare brain activation between 21 adults and 26 children/adolescents during successful motor inhibition and inhibition failure. Adults compared with children/adolescents showed increased brain activation in right inferior prefrontal cortex during successful inhibition and in anterior cingulate during inhibition failure. A whole-brain age-regression analysis between 10 and 42 years showed progressive age-related changes in activation in these two brain regions, with additional changes in thalamus, striatum, and cerebellum. Age-correlated brain regions correlated with each other and with inhibitory performance, suggesting they form developing fronto-striato-thalamic and fronto-cerebellar neural pathways for inhibitory control. This study shows developmental specialization of the integrated function of right inferior prefrontal cortex, basal ganglia, thalamus, and cerebellum for inhibitory control and of anterior cingulate gyrus for error-related processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号