首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transdermal delivery has been at the forefront of research addressing the development of non-invasive methods for the systemic administration of peptide and protein therapeutics generated by the biotechnology revolution. Numerous approaches have been suggested for overcoming the skin's formidable barrier function; whereas certain strategies simply act on the drug formulation or transiently increase the skin permeability, others are designed to bypass or even remove the outermost skin layer. This article reviews the technologies currently under investigation, ranging from those in their early-stage of development, such as laser-assisted delivery to others, where feasibility has already been demonstrated, such as microneedle systems, and finally more mature techniques that have already led to commercialisation (e.g., velocity-based technologies). The principles, mechanisms involved, potential applications, limitations and safety considerations are discussed for each approach, and the most advanced devices in each field are described.  相似文献   

2.
Transdermal delivery has been at the forefront of research addressing the development of non-invasive methods for the systemic administration of peptide and protein therapeutics generated by the biotechnology revolution. Numerous approaches have been suggested for overcoming the skin’s formidable barrier function; whereas certain strategies simply act on the drug formulation or transiently increase the skin permeability, others are designed to bypass or even remove the outermost skin layer. This article reviews the technologies currently under investigation, ranging from those in their early-stage of development, such as laser-assisted delivery to others, where feasibility has already been demonstrated, such as microneedle systems, and finally more mature techniques that have already led to commercialisation (e.g., velocity-based technologies). The principles, mechanisms involved, potential applications, limitations and safety considerations are discussed for each approach, and the most advanced devices in each field are described.  相似文献   

3.
The protein and peptide therapeutics have become an important class of drugs due to advancement in molecular biology and recombinant technology. There are more than 100 biopharmaceutical products approved and generating revenue of more than 56 billion US dollars. A safe, effective and patient friendly delivery of these agents is the key to commercial success. Currently, most of therapeutic proteins are administered by the parenteral route which has many drawbacks. Various delivery strategies and specialized companies have evolved over the past few years to improve delivery of proteins and peptides. Polymeric depot and PEGylation technologies have overcome some of the issues associated with parenteral delivery. A considerable research has been focused on non-invasive routes such as pulmonary, per oral and transdermal for delivery of proteins and peptides, in order to increase patient compliance yet their delivery via non-invasive routes remains challenge due to their poor absorption and enzymatic instability. Pulmonary route has shown some success evidenced by recent FDA approval of inhalable insulin. Development of an oral dosage form for protein therapeutics is still the most desirable one but with greater challenge. This review presents the issues of delivery of proteins and peptides, current and potential formulation technologies to improve delivery and current market trends.  相似文献   

4.
《药学学报(英文版)》2023,13(6):2298-2309
Transdermal drug delivery systems (TDDs) avoid gastrointestinal degradation and hepatic first-pass metabolism, providing good drug bioavailability and patient compliance. One emerging type of TDDs is the wearable patch worn on the skin surface to deliver medication through the skin. They can generally be grouped into passive and active types, depending on the properties of materials, design principles and integrated devices. This review describes the latest advancement in the development of wearable patches, focusing on the integration of stimulus-responsive materials and electronics. This development is deemed to provide a dosage, temporal, and spatial control of therapeutics delivery.  相似文献   

5.
杨泗兴  袁伟恩  吴飞  金拓 《上海医药》2012,33(11):45-47
本研究采用化学惰性、可吸收体液溶涨从玻璃态变为水凝胶态的聚合物材料制备了可用于胰岛素透皮给药的微针贴剂,相转化水凝胶微针贴膜。胰岛素是1型和晚期2型糖尿病的必用药。针尖穿透表皮后吸收体液溶涨,使预先担栽的胰岛素在真皮层高效而精确地释放出来,同时不留下针尖物质在皮层的沉积。上述性质使得相转化水凝胶微针贴膜成为需要一生频繁用药的蛋白、多酞药物的理想剂型。  相似文献   

6.
本研究采用化学惰性、可吸收体液溶涨从玻璃态变为水凝胶态的聚合物材料制备了可用于胰岛素透皮给药的微针贴剂,相转化水凝胶微针贴膜。胰岛素是1型和晚期2型糖尿病的必用药。针尖穿透表皮后吸收体液溶涨,使预先担栽的胰岛素在真皮层高效而精确地释放出来,同时不留下针尖物质在皮层的沉积。上述性质使得相转化水凝胶微针贴膜成为需要一生频繁用药的蛋白、多酞药物的理想剂型。  相似文献   

7.
To date, only approximately 20 drugs synthesized with small molecules have been approved by the FDA for use in traditional transdermal patches (TTP) owing to the extremely low permeation rate of the skin barrier for macromolecular drugs. A novel touch-actuated microneedle array patch (TMAP) was developed for transdermal delivery of liquid macromolecular drugs. TMAP is a combination of a typical TTP and a solid microneedle array (MA). High doses of liquid drug formulations, especially heat-sensitive compounds can be easily filled and stored in the drug reservoir of TMAPs. TMAP can easily penetrate the skin and automatically retract from it to create microchannels through the stratum corneum (SC) layer using touch-actuated ‘press and release’ actions for passive permeation of liquid drugs. Comparison of subcutaneous injection, TTP, solid MA, and dissolvable MA, indicated that insulin-loaded TMAP exhibited the best hypoglycemic effect on type 1 diabetic rats. A ‘closed-loop’ permeation control was also provided for on-demand insulin delivery based on feedback of blood glucose levels (BGLs). Twenty IU-insulin-loaded TMAP maintained the type 1 diabetic rats in a normoglycemic state for approximately 11.63?h, the longest therapeutic duration among all previously reported results on microneedle-based transdermal patches. TMAP possesses excellent transdermal drug delivery capabilities.  相似文献   

8.
ABSTRACT

Introduction: Proteins and peptides are prominent therapeutic agents, which are effective in number of ailments. Long-term delivery of protein and peptide therapeutics requires polymeric encapsulation to protect from degradation and for its sustained release. However, results from encapsulation of protein macromolecules in dynamic delivery systems report unreliable clinical outcome, indicating ease of degradation, low permeability, and serious immune responses. A specifically targeted delivery system as tumor or cancer theranostics may surpass these limitations.

Areas covered: This review covers recent advancements in approaches involving conjugated protein nano-formulations as targeting delivery technology for various ailments encompassing mostly cancer treatment options. Progressions in targeted chemotherapeutics, protein nanoparticles, peptide nanoparticles, lipidation, and antibody drug-conjugates are discussed.

Expert opinion: Significant expansions have been made in forming new generation of antitumor-recombinant proteins, which proves a milestone of advancements for more potent and explicit cancer therapies. However, transformation of biologics from laboratory to clinical trials is an immense challenge, because of drop in efficiency of drug-loading, poor reproducibility of nanoparticles, inadequate information regarding long-term toxicity and insufficient pharmacokinetics data. Hence, early stage tumor diagnosis with précised drug delivery to tumor site is crucial for protein- and peptide- based therapeutics for cancer.  相似文献   

9.
10.
微针开启透皮释药的一扇新门   总被引:5,自引:0,他引:5  
黄胜炎 《上海医药》2004,25(11):508-510
透皮控释贴片产品在20年前已开始陆续上市:硝酸甘油贴片治疗心绞痛,东莨菪碱贴片治疗晕动症,可乐定贴片用于降血压,芬太尼贴片控制疼痛,烟碱贴片用来戒烟,雌激素贴片用于激素替代治疗,睾酮贴片治疗男性性腺功能减退,利多卡因贴片局麻和复方雌二醇/地屈孕酮贴片用于避孕……。2003年新上市的奥昔布宁透皮控释贴片用于治疗膀胱活动过度,丁丙诺啡贴片用于镇痛,复方炔雌醇/诺孕曲明贴片用于避孕。这些透皮贴片应用的控释技术主要有固体基质释放系统、膜速率控制储存释放系统和药物储于粘附剂释放系统。  相似文献   

11.
多肽蛋白质类药物离子导入经皮给药的研究进展   总被引:1,自引:1,他引:1  
论述了多肽蛋白质类药物离子导入经皮给药的特点及主要影响因素,重点介绍了近年来国际上对胰岛素、降血钙素、促黄体(生成)激素释放激素、精氨酸抗利尿激素(加压素)等多肽蛋白质类药物离子导入经皮给药的研究进展.  相似文献   

12.
Microneedle patches are gaining increasing attention as an alternative approach for the delivery of vaccines. In this study, a licensed seasonal influenza vaccine from 2007 to 2008 was fabricated into dissolvable microneedles using TheraJect's microneedle technology (VaxMat). The tips of the microneedles were made of antigens mixed with trehalose and sodium carboxymethyl cellulose. The patches containing 15 μg per strain of the influenza antigen were characterized extensively to confirm the stability of the antigen following fabrication into microneedles. The presence of excipients and very low concentrations of the vaccine on the microneedle patches made it challenging to characterize using the conventional single radial immunodiffusion analysis. Novel techniques such as capture enzyme-linked immunosorbent assay and enzyme digestion followed by mass spectroscopy were used to characterize the antigens on the microneedle patches. The in vivo studies in mice upon microneedle administration show immunogenicity against monovalent H1N1 at doses 0.1 and 1 μg and trivalent vaccine at a dose of 1 μg. The initial data from the mouse studies is promising and indicates the potential use of microneedle technology for the delivery of influenza vaccine.  相似文献   

13.
A new frontier in the administration of therapeutic drugs to veterinary species is transdermal drug delivery. The primary challenge in developing these systems is rooted in the wide differences in skin structure and function seen in species ranging from cats to cows. The efficacy of a transdermal system is primarily dependent upon the barrier properties of the targeted species skin, as well as the ratio of the area of the transdermal patch to the species total body mass needed to achieve effective systemic drug concentrations. A drug must have sufficient lipid solubility to traverse the epidermal barrier to be considered for delivery for this route. A number of insecticides have been developed in liquid ‘pour-on’ formulations that illustrate the efficacy of this route of administration for veterinary species. The human transdermal fentanyl patch has been successfully used in cats and dogs for post-operative analgesia. The future development of transdermal drug delivery systems for veterinary species will be drug and species specific. With efficient experimental designs and available transdermal patch technology, there are no obvious hurdles to the development of effective systems in many veterinary species.  相似文献   

14.
《药学学报(英文版)》2021,11(8):2326-2343
Proteins and peptides have become a significant therapeutic modality for various diseases because of their high potency and specificity. However, the inherent properties of these drugs, such as large molecular weight, poor stability, and conformational flexibility, make them difficult to be formulated and delivered. Injection is the primary route for clinical administration of protein and peptide drugs, which usually leads to poor patient's compliance. As a portable, minimally invasive device, microneedles (MNs) can overcome the skin barrier and generate reversible microchannels for effective macromolecule permeation. In this review, we highlighted the recent advances in MNs-mediated transdermal delivery of protein and peptide drugs. Emphasis was given to the latest development in representative MNs design and fabrication. We also summarize the current application status of MNs-mediated transdermal protein and peptide delivery, especially in the field of infectious disease, diabetes, cancer, and other disease therapy. Finally, the current status of clinical translation and a perspective on future development are also provided.  相似文献   

15.
16.
The aims of this study were to investigate the utility of solid microneedle arrays (150 µm in length) in enhancing transdermal delivery of peptides and to examine the relationship between peptide permeation rates and D2O flux. Four model peptides were used (Gly–Gln–Pro–Arg [tetrapeptide-3, 456.6 Da], Val–Gly–Val–Ala–Pro–Gly [hexapeptide, 498.6 Da], AC–Glu–Glu–Met–Gln–Arg–Arg–NH2 [acetyl hexapeptide-3, 889 Da] and Cys–Tyr–Ile–Gln–Asn–Cys–Pro–Leu–Gly–NH2 [oxytocin, 1007.2 Da]). The influence of microneedle pretreatment on skin permeation was evaluated using porcine ear skin with Franze diffusion cell. Peptide permeation across the skin was significantly enhanced by microneedle pretreatment, and permeation rates were dependent on peptide molecular weights. A positive correlation between D2O flux and acetyl hexapeptide-3 clearances suggests that convective solvent flow contributes to the enhanced transdermal peptide delivery. It is concluded that solid microneedle arrays are effective devices to enhance skin delivery of peptides.KEY WORDS: Microneedle, Peptide, Transdermal, Convective solvent flow  相似文献   

17.
18.
目的评价青藤碱压敏胶分散型透皮贴剂的定位给药传递能力。方法通过经皮和经口两种给药途径的比较,采用小鼠局部组织分布研究评价青藤碱透皮贴剂的定位给药传递能力。结果与经口给药组相比,青藤碱的浓度在小鼠经皮给药组贴敷贴剂处的肌肉中更加平稳,而且肌肉-血浆浓度比更高。结论将青藤碱透皮贴剂应用于关节炎患病区域,可以定位传递药物至病灶部位,是一种更适宜的给药途径。  相似文献   

19.
The effect of different preparation parameters were analyzed with respect to the rheological and pharmaceutical characteristics of hydrogel blend patches, as transdermal delivery formulation. Mixtures of pectin and gelatin were employed for the production of patches, with adjustable properties, following a two-step gelation procedure. The first gelation, a thermal one, is trigged by the presence of gelatin, whereas, the second gelation, an ionic one, is due to the formation of the typical egg box structure of pectin. In particular, the patch structural properties were assessed by oscillation stress sweep measurements which provided information concerning their viscolelastic properties. In addition, different modalities for drug loading were analyzed with respect to drug homogeneous distribution; testosterone was employed as model drug for transdermal administration. Finally, the performances of the produced transdermal patches were studied, in term of reproducibility and reliability, by determination of in vitro drug release profiles.  相似文献   

20.
This article reports an in vitro study of microneedle-array-enhanced transdermal transport of model drug compounds dispersed in chitosan films. Each microneedle array has 400 out-of-plane, needle-shaped microstructures fabricated using micro-electro-mechanical systems (MEMS) technology to ensure adequate mechanical strength and high precision, and consistency. A nanometer coating on the microneedles ensured the biocompatibility that is important in the application of transdermal drug delivery. Model drugs selected to investigate skin permeation in vitro were calcein, a small molecule (molecular weight, 623 d) that has little skin penetration, and bovine serum albumin (BSA) (molecular weight, 66,000 d), a hydrophilic biological macromolecule. A Franz permeation cell was used to characterize the permeation rate of calcein and BSA through the rat skin. The transdermal transport behavior of BSA was investigated from solid films coated on the surface of microneedle arrays with various chitosan concentrations, film thicknesses, and BSA contents. The BSA permeation rate decreased with the increase of the chitosan concentration; the thicker the film, the slower the permeation rate. In addition, the permeation rate increased with the increase of BSA loading dose. A linear relationship existed between the permeation rate and the square root of the BSA loading dose. Results showed that the chitosan hydrophilic polymer film acts as a matrix that can regulate the BSA release rate. The controlled delivery of BSA can be achieved using the BSA-containing chitosan matrix film incorporated with the microneedle arrays. This will provide a possible way for the transdermal delivery of macromolecular therapeutic agents such as proteins and vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号