首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From bone lining cell to osteocyte--an SEM study   总被引:1,自引:0,他引:1  
We describe the SEM appearance of the rat endosteal bone lining cell ( BLC ) population, and the sequence of morphological changes of these cells as they self-incorporate into unmineralized bone matrix (osteoid), establish intercellular connections, and construct lacunae. The osteoblast/nascent osteocyte series was progressively unsheathed by gentle digestion of the osteoid with 0.25% collagenase. The osteoblasts which leave the polygonally packed BLC compartment rapidly develop numerous complexly branched processes that contact the processes elaborated by previous generations of maturing and mature osteocytes. As osteoblasts mature and approach the mineralization front, they appear to lose processes. The mature cells begin to form osteocyte lacunae by depositing an asymmetric perimeter of woven collagen fibrils, such that as the cells roof-over, the lacunae appear as pocketlike constructions. The collagen fibrils on the perilacunar matrix are oriented in a tangential or circular pattern, while those in the more distal matrix are arranged in a parallel pattern. With the completion of a lacuna, its wall appears to mineralize quickly, for lacunae could be recognized only when they are forming.  相似文献   

2.
We describe the SEM appearance of the rat endosteal bone lining cell (BLC) population, and the sequence of morphological changes of these cells as they self-incorporate into unmineralized bone matrix (osteoid), establish intercellular connections, and construct lacunae. The osteoblast/nascent osteocyte series was progressively unsheathed by gentle digestion of the osteoid with 0.25% collagenase. The osteoblasts which leave the polygonally packed BLC compartment rapidly develop numerous complexly branched processes that contact the processes elaborated by previous generations of maturing and mature osteocytes. As osteoblasts mature and approach the mineralization front, they appear to lose processes. The mature cells begin to form osteocyte lacunae by depositing an asymmetric perimeter of woven collagen fibrils, such that as the cells roof-over, the lacunae appear as pocketlike constructions. The collagen fibrils on the perilacunar matrix are oriented in a tangential or circular pattern, while those in the more distal matrix are arranged in a parallel pattern. With the completion of a lacuna, its wall appears to mineralize quickly, for lacunae could be recognized only when they are forming.  相似文献   

3.
The three types of bone cells in the nasal turbinates had characteristic ultrastructural features. Osteoblasts were located in areas of new bone formation and had abundant endoplasmic reticulum, prominent Golgi apparatuses, numerous vesicles, and cytoplasmic processes that penetrated the adjacent osteoid. Osteocytes had variable ultrastructural characteristics. The predominant cell filled the lacuna, had few organelles, smooth plasma membranes, and was interpreted to be a mature resting osteocyte. Some osteocytes appeared to be transitional between osteoblasts and mature osteocytes. Evidence of matrix formation was seen near osteocytes with well developed organelles, whereas osteocytes with swollen mitochondria, dense bodies and irregular plasma membranes appeared to be involved with resorption of bone. Multinucleated osteo-clasts contained numerous mitochondria and had crystals or unmineralized collagen fibrils between folds and within vacuoles of the cytoplasmic projections forming the brush border.  相似文献   

4.
The bone of advanced teleost fishes such as those of the family Sparidae is said to lack osteocytes or to be acellular. Acellularity has been determined by apparent lack of osteocyte lacunae. This study questions the validity of this criterion. Scanning electron and light microscopy of paraffin and resin sections were used to show that the sides of sea bream mandibles consist of laminar parallel-fibred bone that we call tubular bone, because it contains tubules, and localised regions of Sharpey fibre bone. Osteocytes lie along the walls of tubules that also contain collagen fibril bundles (T-fibres), or in the lumens of tubules that do not contain T-fibres. We show that the osteocytes are derived from osteoblasts. The T-fibre system is different from other fibre systems that have been described. The tubules enclose wide T-fibres (lenticular in cross-section, maximum width about 8 μm) that taper at their ends and continue as thin T-fibres (round in crosssection, about 2 μm wide). The T-fibres originate in the periosteum. In mature tubular bone, spaces of increasing size develop around the osteocytes. Osteocytes are released from the bone matrix and become postosteocytes or bone-lining cells. Secondary bone lines the largest spaces. In Sharpey fibre bone, small osteocytes in small lacunae (about 2 μm wide) are found in columns parallel to the Sharpey fibres. Large osteocytes are found in large round spaces and are much larger than comparable osteocytes in lacunae in the bone of the salmon Salmo salar. We conclude that an absence of visible or conventional osteocyte lacunae does not mean that the cells themselves are absent. There are cells and two types of collagen fibre bundle in the tubules. The cells are osteocytes derived from osteoblasts, and these osteocytes apparently resorb bone with the result that large amounts of bone are destroyed. “Acellular” tubular and Sharpey fibre bone are types of cellular bone that differ from each other and from conventional cellular bone.  相似文献   

5.
The present ultrastructural investigation into osteocyte dendrogenesis represents a continuation of a previous study (Ferretti et al., Anat. Embryol., 2002; 206:21-29), in which we pointed out that, during intramembranous ossification, the well-known dynamic bone formation (DBF), performed by migrating osteoblast laminae, is preceded by static bone formation (SBF), in which cords of stationary osteoblasts transform into osteocytes in the same site where they differentiated. The research was carried out on the perichondral center of ossification surrounding the mid shaft level of various long bones of chick embryos and newborn rabbits. Transmission electron microscope observations showed that the formation of osteocyte dendrites is quite different in the two types of osteogenesis, mainly depending on whether or not osteoblast movement occurs. In DBF, osteoblasts transform into small ovoidal/ellipsoidal osteocytes and their dendrites form in an asynchronous and asymmetrical manner in concomitance with, and depending on, the advancing mineralizing surface and the receding osteogenic laminae. In SBF, stationary osteoblasts give rise to big globous osteocytes, located inside confluent lacunae, with short and symmetrical dendrites that can radiate simultaneously all around their cell body because they are completely surrounded by unmineralized matrix. Contacts and gap junctions were observed between all osteocytes (both SBF- and DBF-derived) and between osteocytes and osteoblasts. Finally, a continuous osteocyte network extends throughout the bone, regardless of its static or dynamic origin. This network has the characteristic of a functional syncytium, potentially capable of modulating, by wiring transmission, the cells of the osteogenic lineage covering the bone surfaces.  相似文献   

6.
An unusual case of sialolith with bone formation, occurring in the submandibular gland of a 33-year-old woman, is reported. In addition to the irregularly laminated structure of sialolith, sparsely scattered foci of bone tissue were found. Some of them were mature, lamellar bone with lacunae containing osteocytes, endosteum and a bone marrow-like element. Others were immature bone associated with or without multinucleated giant cells. Foci of bone tissue were in contact with caliculi or fibrous tissue, and no epithelial component was seen around them. These observations suggest that bone formation in the present case may be in the nature of pathological ossification, and that in the earlier stage, the bone that is deposited is woven and is replaced through successive remodeling cycles by lamellar bone. This is the first case of sialolith with bone formation, although sialolithiasis is a common disease of the salivary glands.  相似文献   

7.
Results on seven cases of osteosarcoma are reported, based on new morphologic methods and quantitative procedures. Tumor tissue was embedded without prior decalcification in plastic and sectioned. Imprint cytology preparations were produced from fresh tumor tissue, and cell nuclei were measured with an electronic image analysing computer system. The loss of differentiation seen in osteosarcomas differs among osteoblasts, osteocytes, and osteoclasts. The differentiation of osteoclasts, namely their resorptive characteristics, disappears relatively early. Tumor osteocytes show loss of differentiation in their osteocyte processes. The new formation of tumor bone tissue remains in the near normal range of volume density when nuclear polymorphy is limited. The formation of ground substance and mineralization are apparently closely couplet to one another, since in our cases mostly ordered osteoid seams were observed. The capacity for mineralization of bone tissue is lost with marked polymorphy. The significance of these results for diagnostic statements and therapeutic consequences will be further discussed in long term studies.  相似文献   

8.
The bone of advanced teleost fishes such as those of the family Sparidae is said to lack osteocytes or to be acellular. Acellularity has been determined by apparent lack of osteocyte lacunae. This study questions the validity of this criterion. Scanning electron and light microscopy of paraffin and resin sections were used to show that the sides of sea bream mandibles consist of laminar parallel-fibred bone that we call tubular bone, because it contains tubules, and localised regions of Sharpey fibre bone. Osteocytes lie along the walls of tubules that also contain collagen fibril bundles (T-fibres), or in the lumens of tubules that do not contain T-fibres. We show that the osteocytes are derived from osteoblasts. The T-fibre system is different from other fibre systems that have been described. The tubules enclose wide T-fibres (lenticular in cross-section, maximum width about 8 m) that taper at their ends and continue as thin T-fibres (round in crosssection, about 2 m wide). The T-fibres originate in the periosteum. In mature tubular bone, spaces of increasing size develop around the osteocytes. Osteocytes are released from the bone matrix and become postosteocytes or bone-lining cells. Secondary bone lines the largest spaces. In Sharpey fibre bone, small osteocytes in small lacunae (about 2 m wide) are found in columns parallel to the Sharpey fibres. Large osteocytes are found in large round spaces and are much larger than comparable osteocytes in lacunae in the bone of the salmon Salmo salar. We conclude that an absence of visible or conventional osteocyte lacunae does not mean that the cells themselves are absent. There are cells and two types of collagen fibre bundle in the tubules. The cells are osteocytes derived from osteoblasts, and these osteocytes apparently resorb bone with the result that large amounts of bone are destroyed. Acellular tubular and Sharpey fibre bone are types of cellular bone that differ from each other and from conventional cellular bone.  相似文献   

9.
Human bone is constantly renewed through life via the process of bone remodelling, in which individual packets of bone are removed by osteoclasts and replaced by osteoblasts. Remodelling is mechanically controlled, where osteocytes embedded within the bone matrix are thought to act as mechanical sensors. In this computational work, a stochastic model for bone remodelling is used in which the renewal of bone material occurs by exchange of discrete bone packets. We tested different hypotheses of how the mechanical stimulus for bone remodelling is integrated by osteocytes and sent to actor cells on the bone's surface. A collective (summed) signal from multiple osteocytes as opposed to an individual (maximal) signal from a single osteocyte was found to lead to lower inner porosity and surface roughness of the simulated bone structure. This observation can be interpreted in that collective osteocyte signalling provides an effective surface tension to the remodelling process. Furthermore, the material heterogeneity due to remodelling was studied on a network of trabeculae. As the model is discrete, the age of individual bone packets can be monitored with time. The simulation results were compared with experimental data coming from quantitative back scattered electron imaging by transforming the information about the age of the bone packet into a mineral content. Discrepancies with experiments indicate that osteoclasts preferentially resorb low mineralized, i.e. young, bone at the bone's surface.  相似文献   

10.
Delayed healing and nonunions of bone fracture are critical problems in orthopedic surgery. Electrical stimulation has been used as a therapeutic method for enhancing bone healing for a long time. Despite unanimous clinical success, the underlying mechanism concerning bone tissue in response to electrical stimulation remains poorly understood. In the meantime, emerging evidences suggest that osteocytes, with their unique location and morphologies, play an important role in regulating the behaviors of other bone cells, including osteoblasts, osteoclasts and their progenitor cells. In this paper, we hypothesize that osteocytes are the sensory cells for the electrical stimulation, and they orchestrate the whole process of new bone formation and remodeling in the electrotherapy for bone fracture. The postulated electrosensory transduction pathway might be a coupling effect of osteoblasts and osteoclasts, which is regulated by the biochemical signals expressed from osteocytes after sensing the membrane potential changes. It is believed that better understanding of this mechanism would facilitate optimizing the electrotherapy for bone disorders and assist in solving these clinical problems.  相似文献   

11.
Familial bone dysplasia with hyperphosphatasemia is characterized by excessive bone resorption early in life with resulting severe skeletal deformity. The disease can be ameliorated by treatment with human calcitonin. We have the studied the ultrastructure of bone from diseased patients before treatment and at intervals during 1 year of treatment with calcitonin. Pretreatment osteoblasts, osteoclasts, and osteocytes exhibited mitochondria which contained vast amounts of dense microcrystal deposits. Osteocytes were also distinguished by minimal organellar development. Osteoclasts were rare. Calcitonin treatment included a progressive development of a more normal bone structure. Intramitochondrial crystal deposits were absent in mitochondria of osteocytes and osteoclasts but were still present in mitochondria of osteoblasts. Surprisingly, the developing bony matrix during calcitonin treatment exhibited large numbers of elastic fibers. These appeared to develop normally in alignment with the surface membrane of osteocytes. Calcitonin treatment caused a proliferation of osteocyte organellar development. It is concluded that familial bone dysplasia is primarily a disease of osteocytes and that osteocytic activity is influenced by calcitonin.  相似文献   

12.
The shape, size and density of osteocyte lacunae in parallel-fibered and lamellar bone were histomorphometrically analyzed in relation to the organization of the collagen fiber texture and the animal species (frog, sheep, dog, bovine, horse and man). The following parameters were measured under the light microscope (LM) by a computer-assisted image analyzer: 1) shape, size and distribution of osteocyte lacunae; 2) osteocyte lacuno-canalicular density. In close agreement with our previous studies, which includes woven bone, it resulted that in all animals (even in frog) osteocyte lacunae have a rounded globous shape in woven bone and an oval shape in both parallel-fibered and lamellar bone; in the latter, however, they are more flattened, only located in loose lamellae and thus regularly distributed in rows. Osteocyte lacunar density is higher in woven-fibered, intermediate in parallel-fibered and lower in lamellar bone, whereas no correlation seems to exist with the animal species. In conclusion, these results suggest that osteocyte shape, size and density seem to depend mainly on collagen fiber texture rather than on the animal species. The role of osteocyte-recruitment on the spatial organization of collagen fibers in bone tissues is discussed.  相似文献   

13.
A comparative scanning and transmission electron microscopy study was carried out on collagen fiber texture and osteocyte lacunae distribution in human lamellar bone. The results show that bony lamellae are not made up of parallel-arranged collagen fibers, as classically maintained. They are instead made up of highly interlaced fibers, and the lamellation appears to be due to the alternation of collagen-rich and collagen-poor layers, namely of dense and loose lamellae. The present study additionally shows that osteocyte lacunae are only located inside loose lamellae. Such structural organization of lamellar bone is briefly discussed in terms of bone biomechanics and osteogenesis.  相似文献   

14.
15.
Bone tissue geometry shows a highly anisotropic architecture, which is derived from its genetic regulation and mechanical environment. Osteoblasts are responsible not only for bone formation, through the secretion of collagen type I, but also for sensing the mechanical stimuli due to bone surface strain. Mechanotransduction by osteoblasts is therefore considered one of the regulators of anisotropic bone tissue morphogenesis. The orientation of osteoblasts and the secreted collagen matrix was successfully regulated by applying a continuous mechanical stress on osteoblasts for a long period. Under a continuous cyclic stretch of 4% magnitude at a rate of 2 cycles min?1, osteoblasts reoriented their actin stress fibers in the direction that minimizes the strain applied to them. Extended culture of up to 2 weeks resulted in the formation of collagen fibers in the extracellular spaces, and the preferred orientation of these fibers was parallel to the direction of cell elongation. To the best of our knowledge, this is the first report to establish anisotropic bone matrix architecture following the alignment of osteoblasts under mechanical stimuli for long-term cultivation.  相似文献   

16.
Mechanical force plays an important role in the regulation of bone remodelling in intact bone and bone repair. In vitro, bone cells demonstrate a high responsiveness to mechanical stimuli. Much debate exists regarding the critical components in the load profile and whether different components, such as fluid shear, tension or compression, can influence cells in differing ways. During dynamic loading of intact bone, fluid is pressed through the osteocyte canaliculi, and it has been demonstrated that fluid shear stress stimulates osteocytes to produce signalling molecules. It is less clear how mechanical loads act on mature osteoblasts present on the surface of cancellous or trabecular bone. Although tissue strain and fluid shear stress both cause cell deformation, these stimuli could excite different signalling pathways. This is confirmed by our experimental findings, in human bone cells, that strain applied through the substrate and fluid flow stimulate the release of signalling molecules to varying extents. Nitric oxide and prostaglandin E2 values increased by between two- and nine-fold after treatment with pulsating fluid flow (0.6±0.3 Pa). Cyclic strain (1000 μstrain) stimulated the release of nitric oxide two-fold, but had no effect on prostaglandin E2. Furthermore, substrate strains enhanced the bone matrix protein collagen I two-fold, whereas fluid shear caused a 50% reduction in collagen I. The relevance of these variations is discussed in relation to bone growth and remodelling. In applications such as tissue engineering, both stimuli offer possibilities for enhancing bone cell growth in vitro.  相似文献   

17.
18.
Traumatic avulsions of ligament or tendon insertions rarely occur at the actual interface with bone, which suggests that this attachment is strong or otherwise protected from injury by the structure of the insertion complex. In this study we describe the terminal extent of quadriceps tendon fibres where they insert into the patellae of adult rabbits, humans, dogs and sheep. Specimens were examined by scanning electron microscopy (SEM) and light microscopy (LM). To facilitate tracing of tendon fibres the specimens were decalcified for SEM, and polarised light microscopy (PLM) was used in the LM segment of the study. By SEM it was possible to identify mature bone by the presence of osteocytes and a lamellar organisation. PLM and SEM showed that, unlike tendon fibres elsewhere, those in the calcified fibrocartilage were not crimped. No specific cement line was identified by SEM. Tendon fibres interdigitated among separate bone lamellar systems, (osteons or marrow spaces), but did not merge with the collagen systems of individual lamellae. The interdigitation was more extensive and the margin between tendon and bone was less distinct in the anterior third of the insertion. The segment of calcified tendon which interdigitated with bone stained less intensely blue and was less cellular than the more proximal calcified fibrocartilage zone adjacent to the tidemark. Lamellar collagen fibres of the bony trabeculae in the anterior patella were unusually parallel and longitudinal in orientation, making distinction of interposed tendon fibres difficult on LM and PLM sections. LM, SEM and transmission electron microscopy of rabbit patellae at birth revealed that anterior quadriceps tendon fibres extended over the patella in a fibrous cellular layer. By 2 wk of age, this layer had acquired chondroid features (i.e. cell lacunae and metachromasia) and contained vessels extending from patellar marrow. At 6 wk of age, part of this fibrocartilaginous layer was replaced by mature bone and osteoid. In the young adult animal, the quadriceps tension interdigitates extensively with the patellar bone. This segment of the insertion is perhaps the remnant of calcified fibrocartilage which has been remodelled by bone formation.  相似文献   

19.
Transformation of osteoblasts into osteocytes is marked by changes in volume and cell shape. The reduction of volume and the entrapment process are correlated with the synthesis activity of the cell which decreases consequently. This transformation process has been extensively investigated by transmission electron microscopy (TEM) but no data have yet been published regarding osteoblast-osteocyte dynamic histomorphometry. Scanning electron microscope (SEM) densitometric analysis was carried out to determine the osteoblast and open osteocyte lacunae density in corresponding areas of a rabbit femur endosteal surface. The lining cell density was 4900.1 ± 30.03 n mm−2, the one of open osteocyte lacunae 72.89 ± 22.55 n mm−2. This corresponds to an index of entrapment of one cell every 67.23 osteoblasts (approximated by defect). The entrapment sequence begins with flattening of the osteoblast and spreading of equatorial processes. At first these are covered by the new apposed matrix and then also the whole cellular body of the osteocyte undergoing entrapment. The dorsal aspect of the cell membrane suggests that closure of the osteocyte lacuna may be partially carried out by the same osteoblast-osteocyte which developed a dorsal secretory territory. A significant proportion of the endosteal surface was analysed by SEM, without observing any evidence of osteoblast mitotic figures. This indicates that recruitment of the pool of osteogenic cells in cortical bone lamellar systems occurs prior to the entrapment process. No further additions occurred once osteoblasts were positioned on the bone surface and began lamellar apposition. The number of active osteoblasts on the endosteal surface exceeded that of the cells which become incorporated as osteocytes (whose number was indicated by the number of osteocyte lacunae). Therefore such a balance must be equilibrated by the osteoblasts'' transformation in resting lining cells or by apoptosis. The current work characterised osteoblast shape changes throughout the entrapment process, allowing approximate calculation of an osteoblast entrapment index in the rabbit endosteal cortex.  相似文献   

20.
The collagen architecture of secondary osteons was studied with scanning electron microscopy (SEM) employing the fractured cortex technique and osmic maceration. Fibrillar orientation and the change in their direction in sequential lamellae was documented where lamellar formation was ongoing, as well as in resorption pits where osteoclasts had exposed the collagen organisation of the underlying layers. Applying an adaptive stereo matching technique, the mean thickness of matrix layers removed by osteoclasts was 1.36 ± 0.45 μm. It was also documented that osteoclasts do not attack the cellular membrane of the exposed osteocytes. The mean linear osteoblast density in fractured hemicanals was assessed with SEM and no significant differences were observed comparing larger with smaller central canal osteons. These findings suggested a balance between the differentiated osteoblasts that have aligned on the surface of the cutting cone and those that are transformed into osteocytes, because the canal surface is progressively reduced as the lamellar apposition advances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号