首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following unilateral lesions of the somatic sensorimotor cortex (SMC) in neonatal, but not adult, rats, an aberrant ipsilateral corticospinal projection originates from the undamaged hemisphere (Hicks and D'Amato, 1970; Leong and Lund, 1973; Castro, 1975). We have evaluated the contribution of the hemisphere contralateral to a unilateral lesion of the SMC in the recovery of tactile forelimb-placing behavior. Neither adult-lesioned or neonatally lesioned animals show evidence for placing deficits with either forelimb when tested 30 or 42 d after the lesion. However, in adult-lesioned animals, a subsequent lesion of the undamaged SMC on postlesion day 42 produces placing deficits only with the forelimb contralateral to the second lesion, while such a second lesion in the neonatally lesioned rats results in placing deficits with both forelimbs. Anatomical observations in the animals used for behavioral analyses confirm previous reports of a substantial ipsilateral corticospinal projection in rats with unilateral SMC damage as neonates and demonstrate that many of these aberrant fibers recross the midline within the spinal cord to arborize extensively within the ipsilateral spinal gray. These findings indicate that, following unilateral SMC lesions in neonates, the contralateral hemisphere mediates some aspects of the recovery of forelimb placing. The aberrant ipsilateral corticospinal projection may provide the anatomical substrate through which the cortex effects this recovery.  相似文献   

2.
Following brain injury there is an excessive release of excitatory neurotransmitters that may lead to secondary cell death. Although much research has focused on glutamate-NMDA receptor interactions, acetylcholine-muscarinic receptor interactions may also prove to be important for an understanding of the pathophysiological events that lead to secondary degeneration after brain damage. Previous experiments have shown that the muscarinic receptor antagonist scopolamine facilitates recovery from very transient (1 h-10 days) behavioral deficits after fluid percussion injury. The present study extends these findings by investigating whether scopolamine can facilitate recovery from the more enduring behavioral deficits (14-60 days) that follow electrolytic lesions of the rat somatic sensorimotor cortex (SMC). Rats received unilateral lesions of the SMC and a regimen of scopolamine (1 mg/kg) or saline beginning 15 min after surgery. Following SMC lesions rats exhibited an impairment in placing the forelimb contralateral to the lesion as well as an ipsilateral somatosensory asymmetry on a bilateral tactile stimulation test. Rats treated with scopolamine showed a reduction in the initial magnitude of the contralateral placing deficit and an accelerated rate of recovery compared with saline-treated control rats. In contrast, scopolamine had no effect on recovery from the ipsilateral somatosensory asymmetry. These data are consistent with the idea that muscarinic receptor stimulation plays a role in the production of secondary brain damage, that blockade of this receptor leads to a facilitation of recovery on some behavioral tasks, and that electrolytic lesions may trigger some of the same posttraumatic events described in other models of neural trauma.  相似文献   

3.
Fujimura K  Koga E  Baba S 《Brain research》2003,979(1-2):51-56
The influence of the neonatal frontal lesion in unilateral cerebral hemisphere for the organization of intact forelimb motor cortex in the rat was investigated by intracortical microstimulation (ICMS). The relative size of the rostral forelimb area (RFL) compared to the caudal forelimb area (CFL) in the ipsilateral motor field of lesioned rat was significantly greater than those of contralateral in normal and lesioned rats. The optimal sites of the stimulation for ipsilateral responses in lesioned rats were located in the RFL, while the optimal sites for contralateral were located caudolaterally, as for those of normal rats. At the ipsilateral optimal sites within the RFL in the lesioned animals, the threshold for the ipsilateral responses was lower than that for the contralateral responses. That is, the intact hemisphere of the animal preferentially developed the RFL rather than the CFL, for the ipsilateral forelimb. This may suggest a critical role for the RFL in individual forelimb motor control within the normal hemisphere.  相似文献   

4.
Using different models of focal cortical injury in adult rats, the neural structural and behavioral outcomes of unilateral lesions of the forelimb representation of the sensorimotor cortex (SMC) were assessed. Lesions were produced using either electrolytic, aspiration, or combined ('electroaspiration') techniques. Measurements of dendritic arborization in layer V of the motor cortex opposite the lesion revealed a growth of pyramidal neuron dendritic processes following electrolytic lesions in comparison to shams. This effect was not found in either the aspiration or electroaspiration lesion groups. Behaviorally, animals in all lesion groups developed a hyper-reliance on the forelimb ipsilateral to the lesion and proportionate disuse of the contralateral (impaired) forelimb for postural support behaviors. In comparison to sham-operated animals, the initial asymmetries in behaviors expressed during movement were similar between lesion groups, but were less enduring following electrolytic lesions than following aspiration and electroaspiration lesions. Furthermore, both aspiration lesion groups had more prevalent adduction of the impaired forelimb than the electrolytic-only lesion rats. Thus, cortical aspiration resulted in more severe and enduring forelimb impairments than the electrolytic lesions, despite similar lesion sizes, as assessed using cortical volume measures. These findings suggest that the aspiration lesion procedures, at least as performed in the present study, exacerbate the behavioral effects of focal cortical injury and limit compensatory plasticity in the contralateral cortex.  相似文献   

5.
Unilateral damage to the forelimb representation area of the sensorimotor cortex (SMC) results in a compensatory reliance on the unimpaired (ipsilateral to the lesion) forelimb as well as reorganization of neuronal structure and connectivity in the contralateral motor cortex. Recently, male rats with unilateral electrolytic SMC lesions were found to have enhanced skilled reaching performance with the ipsilesional forelimb compared with sham-operated controls. The present study was performed to determine whether these behavioral findings are replicable using an ischemic lesion and whether there is a link between the enhanced learning and synaptogenesis in motor cortical layer V opposite the trained limb and lesion, as assessed using stereological methods for light and electron microscopy. Rats were given a sham operation or an endothelin-1 (ET-1) induced ischemic SMC lesion. They were then trained for 20 days on a skilled reaching task with the unimpaired limb or received control procedures. As with previous findings using electrolytic lesions, rats with unilateral ischemic SMC lesions performed significantly better using the unimpaired forelimb than did sham-operates. Lesions, but not training, significantly increased the total number of motor cortical layer V synapses per neuron as well as the number of perforated and multisynaptic bouton (MSB) synapses per neuron compared with shams. Thus, in addition to a net increase in synapses, the improved reaching ability was coupled with an increase in synapse subtypes that have previously been linked to enhanced synaptic efficacy. The failure to induce synaptogenesis in layer V with reach training alone is in contrast to previous findings and may be related to training intensity.  相似文献   

6.
Diazepam and other GABA-related agents can prevent or delay recovery from an otherwise short-term somatosensory asymmetry caused by unilateral cortical lesions. Postrecovery treatment does not affect behavior. One possible contributive site of action for these agents is remaining cortical tissue. In the present study, following unilateral anteromedial cortex (AMC) lesions or sham operations, the GABA agonist muscimol or saline was infused once a day for 7 days into the adjacent sensorimotor cortex (SMC) or, as a control, into the more remote occipital cortex (OC) of the ipsilateral hemisphere. Each day the animals were given somatosensory and motor coordination tests at 21 h postinfusion. The SMC-muscimol regimen, but not the SMC-saline or OC-muscimol, retarded recovery from somatosensory asymmetry. The disruptive effect on recovery was enduring, greatly outlasting the week of exposure to muscimol. In sham-operated animals, SMC-muscimoI did not yield a chronic effect on behavior, although during the first hour after each infusion, in which the muscimol presumably was still present in the SMC, somatosensory asymmetry could be observed. Although the AMC lesion created a vulnerability to muscimol in the SMC, no detectable difference in the extent of cortical damage in this group could account for the prolongation of behavioral asymmetry. SMC-muscimol (but not SMC-saline) led to atrophy of SMC projection areas in the ipsilateral thalamus. However, in sham-operated animals, SMC-muscimol did not affect thalamic size. These behavioral and anatomical data suggest that systemically delivered GABAergic drugs might interfere with restoration of function after AMC lesions in part by adversely influencing events in the SMC.  相似文献   

7.
Agents which enhance the activity of gamma-aminobutyric acid (GABA) can severely disrupt behavioral recovery in rats following damage to the neocortex if delivered during a sensitive postoperative period. The mechanisms of this disruption have not been found. It has been suggested previously that the ipsilateral striatum and related structures may be transiently disabled after cortical lesions and that diazepam may interfere with restoration of function in these areas. In the present experiment, the subcortical anatomical effects of chronic (3 weeks) administration of diazepam, an indirect GABAergic agonist, were assessed following unilateral lesions of the anteromedial cortex (AMC) or the sensorimotor cortex (SMC) in rats. Atrophic and degenerative changes were examined in the striatum, substantia nigra and thalamus. Following either AMC or SMC lesions, there was a reduction in the size of the ipsilateral striatum and thalamus and a loss of neurons in the ipsilateral substantia nigra pars reticulata (SNr). After AMC lesions, striatal atrophy and neuron loss in the SNr were increased by the diazepam regimen relative to vehicle-treated controls. In addition, diazepam interfered with the behavioral recovery from somatic-sensorimotor asymmetries in AMC-lesioned rats. After SMC lesions, the sites of striatal and thalamic atrophy were different from that observed after AMC lesions, and the extent of atrophy and neuron loss was not exaggerated by diazepam treatment. Consistent with these data, diazepam did not significantly affect recovery from SMC lesions. These findings suggest that the long-term disruptive effects of diazepam on recovery of function after AMC lesions may be related to an augmentation of lesion-induced degeneration.  相似文献   

8.
Previous studies have utilized a lesion model of cortical injury that produces transient behavioral impairments to investigate the recovery of function process. To better understand the recovery process, it would be beneficial to use a lesion model that produces more severe, enduring, behavioral impairments. The purpose of experiment 1 was to validate whether large lesions of the sensorimotor cortex (SMC), which included the rostral forelimb and caudal forelimb regions, produced enduring behavioral deficits. Rats were given large unilateral electrolytic lesions of the SMC, administered either the N-methyl-D-aspartate (NMDA) antagonist, MK-801 or saline 16 h after injury, and tested on a battery of behavioral tests. Enduring behavioral deficits were observed, for at least 6 months, on two tests of forelimb placing while transient deficits were observed on the foot-fault and somatosensory neutralization tests. Administration of MK-801 facilitated recovery on the somatosensory neutralization test; however, it did not induce recovery on either forelimb placing test. A second experiment was performed to determine if earlier administration of MK-801, the NMDA antagonist magnesium chloride (MgCl(2)), or the anti-oxidant N-tert-butyl-alpha-phenylnitrone (PBN) could induce behavioral recovery in this chronic model. Treatment with these drugs induced behavioral recovery on the forelimb placing tests, whereas, the saline-treated rats did not show any signs of behavioral recovery for at least 3 months. Anatomical analysis of the striatum showed that MK-801 and MgCl(2) but not PBN reduced the extent of lesion-induced striatal atrophy. These results suggest that administration of MK-801, MgCl(2), or PBN shortly after cortical injury can induce recovery of function when recovery is otherwise not expected in un-treated rats.  相似文献   

9.
Unilateral damage to cortical areas in the frontal cortex produces sensorimotor deficits on the side contralateral to the lesion. Although there are anecdotal reports of bilateral deficits after stroke in humans and in experimental animals, little is known of the effects of unilateral lesions on the same side of the body. The objective of the present study was to make a systematic examination of the motor skills of the ipsilateral forelimb after frontal cortex lesions to either the motor cortex by devascularization of the surface blood vessels (pial stroke), or to the lateral cortex by electrocoagulation of the distal branches of the middle cerebral artery (MCA stroke). Plastic processes in the intact hemisphere were documented using Golgi-Cox dendritic analysis and by intracortical microstimulation analysis. Although tests of reflexive responses in forelimb placing identified a contralateral motor impairment following both cortical lesions, quantitative and qualitative measures of skilled reaching identified a severe ipsilateral impairment from which recovery was substantial but incomplete. Golgi-impregnated pyramidal cells in the forelimb area showed an increase in dendritic length and branching. Electrophysiological mapping showed normal size forelimb representations in the lesioned rats relative to control animals. The finding of an enduring ipsilateral impairment in skilled movement is consistent with a large but more anecdotal literature in rats, nonhuman primates and humans, and suggests that plastic changes in the intact hemisphere are related to that hemisphere's contribution to skilled movement.  相似文献   

10.
11.
Previous studies in male rats with unilateral sensorimotor cortical (SMC) damage have demonstrated dendritic structural plasticity in the contralateral homotopic cortex and an enhancement of skilled reaching performance in the forelimb ipsilateral to the lesion compared to sham-operated rats. The purpose of this study was to determine if these findings could be replicated in an ischemic lesion model in female rats. Female rats were given sham operations or unilateral ischemic (endothelin-1 induced) damage in the forelimb representation area of the SMC opposite their preferred forelimb. Animals then received either 20 consecutive days of training on a skilled reaching task with the non-preferred/unimpaired forelimb or no-training control procedures. The surface density of dendrites immunoreactive (IR) for microtubule-associated protein 2 (MAP2) was then measured in the motor cortex opposite the trained limb and/or lesion. Female rats with sufficiently large, but not very small, lesions performed better with the unimpaired forelimb than sham-operated rats on the reaching task. The post-lesion reaching performance was not found to be significantly dependent upon estrous stage at the time of surgery, in agreement with previous studies that failed to find sex or sex-hormone effects after other types of SMC damage. Additionally, there were major laminar-dependent increases in the surface density of MAP2 IR dendrites in the cortex opposite lesions and trained limbs. These findings in female rats are consistent with the dendritic and behavioral changes previously found in male rats. They extend these previous findings by indicating that lesion size is an important variable in the enhancement of reaching performance.  相似文献   

12.
Following brain injury, there is a reduction of intra- and extracellular levels of magnesium (Mg++), which may contribute to the severity of the lesion-induced behavioral impairments. Injections of magnesium prior to or after brain injury attenuate these behavioral impairments. The present study extends these findings by manipulating the number of injections and the time period between the injections and the time of injury. Rats were given either two or five daily preoperative injections of MgCl2 (1 mmol/kg, ip), or saline (1 ml/kg, ip) with the final injection given 24 h prior to electrolytic lesions of the somatic sensorimotor cortex (SMC). Following SMC lesions the rats exhibited contralateral deficits in forelimb placing and locomotor placing. Rats treated with either two or five preoperative injections of MgCl2 showed a reduction in the initial magnitude of the contralateral deficits and an accelerated rate of recovery compared to saline-treated rats. In addition, analysis of striatal atrophy revealed that MgCl2 treatment prevented atrophy in the ipsilateral posterior striatum compared to rats treated with saline. These data suggest that preoperative injections of MgCl2 produce facilitation of sensorimotor recovery and reduce subcortical atrophy. Moreover, to observe the beneficial effects of MgCl2, the timing of injections need not be tied to the period immediately around the brain injury. The present data may indicate that daily supplements of magnesium may partially protect against some of the deleterious effects of brain injury.  相似文献   

13.
Unilateral dopamine depletion in rats induced by injection of 6-hydroxydopamine (6-OHDA) into the nigrostriatal system causes permanent impairments in limb use. The disturbances in limb use, including impairments in skilled reaching, are most severe on the side contralateral to the lesion. A number of studies, however, have also described ipsilateral deficits in skilled reaching. The purpose of this study was to investigate the effects of sequential bilateral striatal 6-OHDA lesions on skilled reaching movements in rats to compare the contribution of contra- versus ipsilateral motor control. Rats were trained in a reaching task to grasp food pellets with their preferred paw prior to receiving an intrastriatal 6-OHDA injection on the side contralateral to the preferred paw. The lesion significantly reduced reaching success along with qualitative impairments in limb use. In addition, animals displayed asymmetry in limb use and contraversive rotation bias after an apomorphine challenge. Three weeks later, animals received a second lesion induced by intrastriatal 6-OHDA injection into the hemisphere ipsilateral to the preferred paw. This lesion exaggerated the previous impairments in limb use and further reduced reaching success of the preferred paw. In the ladder rung walking task, additional impairments were found only in the forelimb ipsilateral to the first lesion. The findings of additive effects of sequential bilateral lesions suggest that both the contra- and ipsilateral striatum control single limb use. This supports the notion of bilateral control of skilled forelimb use by the mesostriatal dopaminergic system.  相似文献   

14.
Seizures and recovery from experimental brain damage   总被引:6,自引:0,他引:6  
The effects of the gamma-aminobutyric acid antagonist, pentylenetetrazol (PTZ), on recovery from somatosensory and motor asymmetries after unilateral sensorimotor cortex lesions were investigated. Behavior was assessed using a bilateral tactile stimulation test and a measure of forelimb motor coordination. Immediately after surgery, the PTZ-treated and saline (SAL) control groups both exhibited severe ipsilateral behavioral asymmetries. Rats receiving PTZ recovered significantly faster from somatosensory asymmetry than those receiving SAL. Recovery was complete in the PTZ group within 3 postoperative weeks, while the SAL group failed to reach a comparable level until 2 months after surgery. There was no difference between PTZ and SAL groups on recovery of forelimb motor coordination. No difference in lesion size between the SAL and the PTZ groups could be found. These data are consistent with the hypothesis that post-traumatic neuronal depression may contribute to the severity of sensorimotor deficits observed after brain damage.  相似文献   

15.
Motor cortex (MC) injury impairs skilled reaching in rats, but success scores are eventually restored to approximate preoperative levels. The improvement is attributed to compensatory strategies, such as substituting trunk rotations for the chronically lost rotatory movement of the forelimb, that occur during transport and withdrawal. The present study examined the contributions of the rostral motor cortex (RMC) and the caudal motor cortex (CMC) to skilled reaching performance. The study also examined the role of the ipsilateral and the contralateral hemispheres in supporting the spontaneous recovery. Rats were trained to reach for single food pellets, and their recovery from partial or complete MC injury was documented with quantitative scores and movement element measures in three experiments: (1) devascularization of the CMC, or the RMC, or both, in the hemisphere contralateral to the reaching paw; (2) additional lesions to the CMC and RMC injuries such that the conjoint damage amounted to an MC lesion; and (3) MC lesion followed by damage in the neocortex lateral to the injury or in the opposite MC. The results showed that the CMC made the main contribution to skilled reaching performance, and that there was a lesser contribution by the RMC. MC damage was exacerbated by additional damage to the ipsilateral neocortex as compared to the contralateral neocortex. The results are discussed in relation to the idea that the involvement of the neocortical areas in skilled reaching performance and its recovery is proportional to the region from which corticospinal projections originate.  相似文献   

16.
We have previously reported that monoclonal antibody (mAb) IN-1 treatment after ischemic infarct in adult rats results in significant recovery of skilled forelimb use. Such recovery was correlated with axonal outgrowth from the intact, opposite motor cortex into deafferented subcortical motor areas. In the present study, we investigated the effects of mAb IN-1 treatment after adult sensorimotor cortex (SMC) aspiration lesion on behavioral recovery and neuroanatomical plasticity in the corticospinal tract. Adult rats underwent unilateral SMC aspiration lesion and treatment with either mAb IN-1 or a control Ab, or no treatment. Animals were then tested over a 6-week period in the skilled forelimb use task and the skilled ladder rung walking task. We found that animals treated with mAb IN-1 after SMC lesion fully recovered the use of forelimb reaching, but showed no improvement in digit grasping as tested in the skilled forelimb use task. The mAb IN-1 treatment group was also significantly improved as compared to control groups in the skilled ladder rung walking test. Furthermore, neuroanatomical tracing revealed a significant increase in the corticospinal projections into the deafferented motor areas of the spinal cord after mAb IN-1 treatment. These results indicate that treatment with mAb IN-1 after cortical aspiration lesion induces remodeling of motor pathways resulting in recovery in only certain behavioral tasks, suggesting that the cause of brain damage influences behavioral recovery after mAb IN-1 treatment.  相似文献   

17.
We describe a new test of vibrissae-elicited forelimb placing ability that allows testing of sensorimotor integration across the midline. Rats were given unilateral brain lesions using one of three methods: (1) middle cerebral artery occlusion (MCAo) causing significant damage to the cortex and striatum, (2) aspiration lesions to remove tissue from the sensorimotor cortex, and (3) infusions of the catecholamine neurotoxin 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle, producing a parkinsonian syndrome. Application of the new test to these animals revealed that with some lesion types, the ability of vibrissae on the unimpaired side of the body to trigger placing in the functionally impaired forelimb recovers before vibrissae on the impaired side can elicit placing. This occurs despite the lack of any apparent vibrissae sensory deficit, since the contralesional vibrissae maintained the ability to trigger placing in the unimpaired forelimb in all lesions studied. Chronically, MCAo-lesioned rats do not place the impaired forelimb upon stimulation of the impaired-side vibrissae, but do place if the vibrissae on the good side are stimulated (i.e., when the placing is triggered "across the midline"). This is in contrast to 6-OHDA-lesioned rats which, consistent with parkinsonian akinesia, cannot place the impaired limb regardless of sensory trigger. Also, differences in the pattern of recovery between MCAo- and aspiration-lesioned rats suggest a possible anatomical substrate for cross-midline placing ability and its recovery. Unlike other tests, cross-midline placing methods can readily distinguish between severe stroke and severe parkinsonism in rats.  相似文献   

18.
We investigated axonal plasticity in the bilateral motor cortices in rats after unilateral stroke and bone marrow stromal cell (BMSC) treatment. Rats were subjected to permanent right middle cerebral artery occlusion followed by intravenous administration of phosphate-buffered saline or BMSCs 1 day later. Adhesive-removal test and modified neurologic severity score were performed weekly to monitor limb functional deficit and recovery. Anterograde tracing with biotinylated dextran amine injected into the right motor cortex was used to assess axonal sprouting in the contralateral motor cortex and ipsilateral rostral forelimb area. Animals were killed 28 days after stroke. Progressive functional recovery was significantly enhanced by BMSCs. Compared with normal animals, axonal density in both contralateral motor cortex and ipsilateral rostral forelimb area significantly increased after stroke. Bone marrow stromal cells markedly enhanced such interhemispheric and intracortical connections. However, labeled transcallosal axons in the corpus callosum were not altered with either stroke or treatment. Both interhemispheric and intracortical axonal sprouting were significantly and highly correlated with behavioral outcome after stroke. This study suggests that, after stroke, cortical neurons surviving in the peri-infarct motor cortex undergo axonal sprouting to restore connections between different cerebral areas. Bone marrow stromal cells enhance axonal plasticity, which may underlie neurologic functional improvement.  相似文献   

19.
Unilateral forelimb sensorimotor cortex lesions in adult rats produce a compensatory hyper-reliance on the forelimb ipsilateral to the lesion and temporally related glial and neural plasticity in the contralateral homotopic cortex. Recently, we found that these lesions enhance acquisition of a motor skills task with the ipsilateral, non-impaired, forelimb in comparison to shams. This effect might be related to a denervation-induced facilitation of neuroplastic changes in the motor cortex opposite the lesion and/or to the lesion-induced hyper-reliance on the non-impaired forelimb. The present study assessed whether increased forelimb use, denervation of motor cortical callosal afferents, or a combination of the two influences acquisition of a skilled reaching task. Adult rats with partial corpus callosum transections or sham procedures were either forced to rely on one forelimb or permitted normal forelimb use for 8 days. Rats were then trained for 14 days with their previously non-preferred forelimb (and the forced-use limb) on a unilateral pellet retrieval task. Compared to shams, transections produced a greater acquisition rate and asymptotic performance level on the task. Forced-use improved reaching performance relative to controls, but this effect was less enduring than the improvements produced by transections alone. The addition of forced-use to transections did not further enhance performance. These findings suggest that denervation-induced changes are likely to be a major contributor to the enhanced learning observed after unilateral sensorimotor cortex lesions.  相似文献   

20.
The differing effects of partial seizures on neurobehavioral recovery following anteromedial cortex (AMC) injury in rats have previously been reported. Specifically, convulsive Stage 1 seizures evoked ipsilateral to the lesion during the 6-day post-lesion critical period delayed recovery, while non-convulsive Stage 0 seizures were neutral. The present study was designed to elaborate on that research by examining several potential mechanisms for the seizure-associated difference observed in functional outcome. Anesthetized rats sustained unilateral AMC lesions followed by implantation of a stimulating electrode in the amygdala ipsilateral (Expt. 1) or contralateral (Expt. 2) to the lesion. Beginning 48 h after surgery, animals were kindled to evoke Stage 0 or Stage 1 seizure activity during the critical period. Kindling trials and afterdischarge (AD) were controlled to ascertain their role in functional outcome. Recovery from somatosensory deficits was assessed over a two-month period. The results revealed that (i) Stage 0 seizures did not impact recovery regardless of whether initiated ipsilateral or contralateral to the lesion, (ii) Stage 1 seizures prevented recovery only when initiated in the ipsilateral hemisphere during the post-lesion critical period, and (iii) the detrimental effect of Stage 1 seizures appears to be independent of the number of kindling trials provided and cumulative AD. Thus, to determine why Stage 1 seizures evoked in the hemisphere ipsilateral to the lesion impeded recovery, a separate group of animals (Expt. 3) were kindled accordingly and processed for c-Fos and basic fibroblast growth factor (bFGF) immunohistochemistry. It was hypothesized that Stage 1 seizures evoked in the injured hemisphere prevent recovery by blocking lesion-induced bFGF expression in structures shown to be important for recovery after cortex lesions (e.g., striatum). The results confirmed our hypothesis and suggest that the seizure-associated inhibition of lesion-induced bFGF may alter the growth factor-mediated plasticity necessary for functional recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号