首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This study evaluated how differences in the surface properties of prefillable syringe barrels and in-solution sampling methods affect micron aggregates and protein adsorption levels. Three syringe types (glass barrel with silicone oil coating [GLS/SO+], glass barrel without silicone oil coating [GLS/SO?], and cyclo-olefin polymer [COP] barrel syringes) were tested with 3 therapeutic proteins (adalimumab, etanercept, and infliximab) using 2 sampling methods (aspiration or ejection). After quiescent incubation, solutions sampled by aspiration exhibited no significant change in micron aggregate concentration in any syringes, whereas those sampled by ejection exhibited increased micron aggregates in both GLS syringe types. Micron aggregate concentration in ejected solutions generally increased with increasing density of adsorbed proteins. Notably, COP syringes contained the lowest micron aggregate concentrations, which were independent of the sampling method. Correspondingly, the adsorbed protein density on COP syringes was the lowest at 1-2 mg/m2, which was much less compared with that on GLS syringes and was calculated to be equivalent to only 1–2 protein layers, as visually confirmed by high-speed atomic force microscopy. These data indicate that low-adsorption prefillable syringes should be used for therapeutic proteins because protein aggregate concentration in the ejected solution is elevated by increased protein adsorption to the syringe surface.  相似文献   

2.
Adsorption of proteins to primary containers can result in protein loss, protein denaturation, or aggregation. We report a simple and effective method to directly detect and visualize adsorption of proteins to container surfaces by staining adsorbed proteins with gold nanoparticles, which bind proteins nonspecifically. The gold nanoparticle staining method was applied to study adsorption to siliconized glass prefilled syringes (PFSs) of a therapeutic protein in a liquid formulation. The protein was found to preferentially adsorb to glass surfaces over siliconized surfaces in PFSs. The presence of adsorbed proteins on glass surfaces was confirmed by in situ Raman spectroscopy. Gold nanoparticle staining patterns revealed that adsorption of proteins to hydrophobic cyclic olefin polymer plastic vials was minimized compared with hydrophilic type I glass vials. Bovine serum albumin (BSA) also preferentially adsorbed to glass surfaces compared with siliconized surfaces as revealed by the gold staining patterns in PFS incubated with BSA, supporting the use of albumin to minimize loss of proteins in glass containers. The method is particularly valuable for high-concentration protein formulations in which adsorption of proteins to containers cannot be easily detected by other methods.  相似文献   

3.
A number of biopharmaceuticals are available as lyophilized formulations along with a prefilled syringe (PFS) containing water for injection (WFI). Submicron- and micron-size droplets of lubricating silicone oil (SO) applied to the inner surface of the PFS barrel might migrate into the WFI, to which protein pharmaceuticals can adsorb, potentially inducing an immune response. In the present study, we subjected siliconized cyclo-olefin polymer PFSs filled with WFI to dropping stress to simulate actual shipping conditions as well as evaluated the risk associated with the released SO droplets. The results confirmed the undesirable effects of SO on therapeutic proteins, including adsorption to SO droplets and increased secretion of several innate cytokines from human peripheral blood mononuclear cells of a small donor panel. Assessment of immunogenicity in vivo using BALB/c mice revealed a slight increase in the plasma concentrations of antidrug antibodies over 21 days in response to SO-containing antibody samples compared to the absence of SO. These results indicate that SO droplets form complexes with pharmaceutical proteins that can potentially invoke early- and late-stage immune responses. Therefore, the use of SO-free cyclo-olefin polymer PFSs as primary containers for WFI could contribute to the enhanced safety of reconstituted biopharmaceuticals.  相似文献   

4.
The amount of a phthalate plasticizer on the surface of a sheet of polyvinyl chloride used in the fabrication of blood storage bags was quantified using attenuated total reflectance spectroscopy, water contact angle measurement, and weight loss due to methanol extraction. Water wettability increased as the amount of surface phthalate extracted by methanol increased, which indicates that the accumulation of phthalate on the surface increases hydrophobicity. The extraction of phthalate by methanol consists of two steps: (a) methanol first dissolves surface phthalate, and (b) phthalate in the bulk then diffuses through the surface. The adsorption of plasma proteins was investigated to determine the initial events as blood contacts the surface. The composition of adsorbed proteins on the methanol-cleansed surface differs from that on the uncleansed polyvinyl chloride surface. Albumin adsorption onto phthalate-contaminated surfaces is less than on cleansed surfaces while adsorption of gamma-globulin and fibrinogen is greater on phthalate-contaminated surfaces. Protein adsorption can be related to surface thrombus formation. Increases in platelet numbers appeared on phthalate-contaminated surfaces as compared with methanol-treated surfaces. A phthalate may enhance platelet adhesion and aggregation when it exists on a polymer surface.  相似文献   

5.
Cyclo olefin polymer (COP) is an attractive plastic because it has low protein adsorption despite its hydrophobic chemical structure. Here, the adsorption of model proteins to the COP was evaluated in comparison with a representative plastic, polystyrene (PSt), using reflectometry interference spectroscopy (RIfS) technology. The effects of different salts on adsorption were then examined. The adsorption of bovine serum albumin onto COP increased in the presence of kosmotropic salts, whereas adsorption of IgG increased in the presence of chaotropic salts. By contrast, the adsorption of these 2 proteins to PSt was unaffected by these Hofmeister salts. Langmuir–Freundlich model of COP adsorption suggested that the COP surface is more homogeneous for protein binding than the PSt surface. Furthermore, RIfS and sum frequency generation analyses indicated that water molecules bind more weakly to COP than to PSt. Our data propose a novel viewpoint of the way protein binds to COP surface that is different from the way it binds to PSt.  相似文献   

6.
Hansen solubility parameters (HSP) theory has been successful in explaining the wettability of organic solvents on polymer surfaces and miscibility of different polymers. Here, we demonstrate that the amount of bovine serum albumin (BSA) protein adsorption on different polymer surfaces can also be explained by HSP. Interestingly, the HSP of the adsorbed BSA proteins calculated from the protein adsorption data is different than the HSP of native BSA protein itself. The HSP of the adsorbed BSA proteins are more hydrophobic than the native BSA protein. This observation suggested adsorbed BSA proteins are partially denatured and exposed their hydrophobic core toward the polymer surfaces. These results highlight a new strategic direction to understand interaction of protein with a surface: a theoretical approach that compliments experimental approach. The model in this study could be used to predict the amount of BSA adsorption on a polymer or any other solid surface, if the HSP of that surface is known. Further, the model can serve as a prescreen method to identify surfaces that are problematic at the outset and inform subsequent empirical studies to select packaging that will have the least adsorption for the specific biologic application.  相似文献   

7.
Aggregates play a major role in the immunogenicity of recombinant human interferon beta (rhIFNβ), a protein used to treat multiple sclerosis. A possible cause of aggregation is interaction between therapeutic protein and surfaces encountered during processing, storage, and administration. Moreover, proteins may adsorb to particles shed from these surfaces. In this work, we studied the immunogenicity of recombinant human interferon beta-1a (rhIFNβ-1a) interacting with glass microparticles, stainless steel microparticles, and polystyrene nanoparticles. At physiological pH, rhIFNβ-1a readily adsorbed to the particles, while the degree of adsorption was influenced by the ionic strength of the phosphate buffer. Front-face fluorescence showed that the tertiary structure of rhIFNβ-1a slightly changed upon adsorption to glass. The interaction with stainless steel microparticles resulted in increased levels of aggregates in the free protein fraction. Furthermore, protein adsorbed to stainless steel microparticles was more difficult to desorb than protein adsorbed to glass. Incubation with stainless steel considerably enhanced the immunogenicity of rhIFNβ-1a in transgenic mice immune tolerant for human interferon beta. The protein fraction adsorbed on stainless steel particles was responsible for this. In conclusion, rhIFNβ-1a adsorbs to common hydrophilic surface materials, possibly increasing the immunogenicity of the protein.  相似文献   

8.
Surface adsorption of two monoclonal antibodies (mAb1 and mAb2), with widely different hydrophobicity and self-association behavior in solution, was examined by quartz crystal microbalance with dissipation monitoring to understand how adsorption and protein self-interactions near the surface are impacted by their intrinsic properties. The dependence of mass and viscoelastic properties of the adsorbed protein layer on the type of surface, presence of a surfactant, protein concentration, and pH were examined. Adsorption was significantly reduced in the presence of surfactant for both proteins, but for the more hydrophobic mAb2, residual adsorption remained on polystyrene (PS) and Teflon surfaces. Protein concentration had little impact on the adsorbed protein mass for silicon dioxide surface but had a significant impact for PS and Teflon surfaces. At high protein concentrations, an irreversible layer formed first upon which a reversible layer builds. Reversible adsorption was significantly greater at higher protein concentrations and significantly higher for mAb2, consistent with its higher propensity to reversibly self-associate in solution. The viscoelastic properties suggest that adsorbed protein layer at high protein concentrations is more hydrated. The adsorbed protein layer at lower pH was more hydrated, and possibly more unfolded, consistent with the behavior of the antibody in bulk solution.  相似文献   

9.
Protein adsorption to primary packaging is one of the problems faced by biopharmaceutical drug companies. An assay was developed to quantify loss of proteins to glass vial surfaces. The assay involves the labeling of protein with a fluorescent dye, incubation of the labeled protein with the vial surface, elution of the adsorbed protein using a stripping buffer, and determination of fluorescence of the adsorbed protein using a fluorometer. The assay is simple to set up, accurate, sensitive, and flexible. The assay can be modified for indirect measurement of protein adsorption and offers an attractive alternative for researchers to quantify protein adsorption to glass vials and syringes.  相似文献   

10.
Poly(D,L-lactide-co-glycolide) (PLGA) microspheres have been studied for intracerebral delivery of anticancer agents. To explore the biocompatibility nature of the polymer in brain, we have investigated the adsorption of brain proteins on the surfaces of PLGA microspheres. Microspheres were made by the solvent evaporation method using an oil/water (o/w) system. The brain protein adsorption experiment was performed by using a sonication eluting method. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to examine the brain proteins adsorbed. Ethyl cellulose microspheres were used in the study as a reference. The amount of brain proteins adsorbed on PLGA microspheres was also determined using a radiolabeling technique. The extent of brain proteins adsorbed on the PLGA microspheres was found to be lower than that adsorbed on the ethyl cellulose microspheres. The adsorption of brain proteins on PLGA microspheres, however, was significant, as indicated quantitatively by the 125I labeling studies. The adsorption of brain proteins on the surface of the PLGA microspheres may be important when considering the use of this polymer as a brain implant delivery system.  相似文献   

11.
The plasma protein adsorption patterns on colloidal drug carriers are regarded as an important factor for their in vivo fate. In this study the adsorption kinetics on oil-in-water emulsions were determined and compared to the adsorption kinetics on polystyrene particles. In addition, the adsorption kinetics on the same systems after surface-modification with a hydrophilic polymer were also investigated. The protein adsorption was determined by means of two dimensional polyacrylamide gel electrophoresis (2D-PAGE). The determination of the plasma protein adsorption kinetics was carried out using different concentrations of human plasma in the incubation medium to prolong the residence time of the more abundant plasma proteins on the surface. Proteins which are likely to be displaced in a split second are thus accessible to analysis. The oil-in-water emulsion showed a distinctly different adsorption behavior from the one previously described for solid surfaces, where initially adsorbed proteins are displaced by others, having a higher affinity to the surface ('Vroman effect'). No competitive protein adsorption could be observed on the emulsions. Moreover, the predominantly adsorbed apolipoproteins A-I, A-IV, C-II and C-III increase in amount with increasing plasma concentration. The knowledge of the adsorption kinetics of colloidal carriers might be helpful for a better understanding of the in vivo behavior of such systems and for the transfer of principles already known from other carrier systems to the controlled development of emulsions for site specific drug delivery.  相似文献   

12.
Recombinant human interferon-gamma (rhIFN-gamma) was lyophilized or spray-lyophilized in 9.5% trehalose, +/- 0.12% polysorbate 20 in 10 mM potassium phosphate, pH 7.5. We measured recovery of soluble protein after spraying, freeze-thawing, and drying and reconstitution. Infrared spectroscopy showed rhIFN-gamma secondary structure to be native-like in all dried powders. Powders were characterized using electron spectroscopy for chemical analysis, time-of-flight secondary ion mass spectroscopy, X-ray diffraction, and gas adsorption isotherms. rhIFN-gamma adsorbed at air/liquid interfaces during spraying, and to ice/liquid interfaces during lyophilization. The concentration of rhIFN-gamma at ice/liquid interfaces was approximately one-fourth that adsorbed at air/liquid interfaces. Addition of 0.12% polysorbate 20 reduced the concentration of rhIFN-gamma at both interfaces. Time-of-flight secondary ion mass spectroscopy detected polysorbate 20 on surfaces of lyophilized powders. Lyophilized samples dried more slowly but reconstituted more quickly than spray-lyophilized samples. rhIFN-gamma aggregated after nebulization, but aggregation decreased in 0.12% polysorbate 20. Addition of 0.12% polysorbate 20 reduced protein surface adsorption and decreased but did not completely prevent aggregation. Insignificant aggregation occurred after exposure to ice/liquid interfaces, but subsequent drying and reconstitution caused aggregation. The majority of the aggregation is due to adsorption at air-liquid and solid-air interfaces formed during spray-lyophilization or lyophilization.  相似文献   

13.
Therapeutic proteins are exposed to various wetted surfaces that could shed subvisible particles. In this work we measured the adsorption of a monoclonal antibody (mAb) to various microparticles, characterized the adsorbed mAb secondary structure, and determined the reversibility of adsorption. We also developed and used a front-face fluorescence quenching method to determine that the mAb tertiary structure was near-native when adsorbed to glass, cellulose, and silica. Initial adsorption to each of the materials tested was rapid. During incubation studies, exposure to the air–water interface was a significant cause of aggregation but acted independently of the effects of microparticles. Incubations with glass, cellulose, stainless steel, or Fe2O3 microparticles gave very different results. Cellulose preferentially adsorbed aggregates from solution. Glass and Fe2O3 adsorbed the mAb but did not cause aggregation. Adsorption to stainless steel microparticles was irreversible, and caused appearance of soluble aggregates upon incubation. The secondary structure of mAb adsorbed to glass and cellulose was near-native. We suggest that the protocol described in this work could be a useful preformulation stress screening tool to determine the sensitivity of a therapeutic protein to exposure to common surfaces encountered during processing and storage. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:3218–3238, 2009  相似文献   

14.
During the past years, there has been an increasing focus on the presence of silicone oil as a contaminant in pharmaceutical formulations kept in prefilled syringes (PFSs). As the PFSs are coated on the inner wall with silicone oil (polydimethylsiloxane), there is a potential risk that the oil can migrate from the inner surface of the primary packing material into the aqueous solution. Several studies have demonstrated that presence of silicone oil as droplets in a high-concentrated protein formulation can cause protein aggregation. Hence, because the use of silicone-coated primary packing material for protein formulations are increasing, the call for an easy and quantitative method for determination of silicone oil and its degradation products in pharmaceutical formulations is therefore needed. Several analytical techniques have in the past been developed with the aim of detecting the presence of silicone oil and degradation products hereof. Most of these methods require hydrolyzation, derivatization, and extraction steps followed by, for example, gas chromatography-mass spectrometry analysis. Applying these methods can cause a loss in detection or an overestimation of the hydrolytic degradation products of silicone oil, that is, trimethylsilanol and dimethylsilanediol. The 2 silanols are highly hydrophilic and prefers the aqueous environment. Analysis of an aqueous formulation obtained from a PFS by 1H-NMR spectroscopy provides data about the content and levels of silicone oil and the 2 silanols even in levels below 10 ppm. The 1H-NMR method offers an easy and direct, quantitative measurement of samples intended for clinical use and samples kept at elevated temperature for a prolonged time (i.e., stability studies). The result of the study presented here showed dimethylsilanediol to be the main silicone compound present in the aqueous formulation when kept in baked-on PFSs. The degradation product dimethylsilanediol, in full accordance with expected hydrolytic degradation of silicone oil, increased during storage and with elevated temperature. In addition, the method can be applied to aqueous samples where polydimethylsiloxane has been added as, for example, the major constituent of antifoam.  相似文献   

15.
The adsorption, structural alteration and biological activity of a recombinant Factor VIII was investigated in the presence of the surfactant Tween-80, at hydrophilic and hydrophobic solid-water interfaces. Hydrophilic and silanized, hydrophobic silica surfaces were used as substrates for protein and surfactant adsorption, which was monitored in situ, with ellipsometry. At the hydrophobic surface, the presence of Tween in the protein solution resulted in a reduction in amount of protein adsorbed, while rFVIII adsorption at the hydrophilic surface was entirely unaffected by the presence of Tween. These observations were attributed to high binding strength between Tween and the hydrophobic surface, and low binding strength between Tween and the hydrophilic surface. Colloidal particles bearing hydrophilic and hydrophobic surfaces, and net positive or negative surface charge, were used as substrates for rFVIII adsorption in evaluation of tertiary structure change and biological activity retention at interfaces. Fluorescence emission spectroscopy showed that rFVIII tertiary structure was changed upon exposure to hydrophobic nanoparticle surfaces. Similarly, the biological activity of rFVIII (based on the activated partial thromboplastin time) was reduced at hydrophobic surfaces. At high surfactant concentration, these properties were better preserved. This was attributed to Tween adsorption sterically inhibiting rFVIII adsorption. While hydrophilic surfaces were associated with relatively high rFVIII adsorption, they did not induce large changes in structure or activity. This was attributed to the formation of a tightly packed, ordered adsorbed layer on these surfaces, governed by electrostatic attraction and not mediated by the rFVIII active site.  相似文献   

16.
Tungsten has been associated with protein aggregation in prefilled syringes (PFSs). This study probed the relationship between PFSs, tungsten, visible particles, and protein aggregates. Experiments were carried out spiking solutions of two different model proteins with tungsten species obtained from the extraction of tungsten pins typically used in syringe manufacturing processes. These results were compared to those obtained with various soluble tungsten species from commercial sources. Although visible protein particles and aggregates were induced by tungsten from both sources, the extract from tungsten pins was more effective at inducing the formation of the soluble protein aggregates than the tungsten from other sources. Furthermore, our studies showed that the effect of tungsten on protein aggregation is dependent on the pH of the buffer used, the tungsten species, and the tungsten concentration present. The lower pH and increased tungsten concentration induced more protein aggregation. The protein molecules in the tungsten-induced aggregates had mostly nativelike structure, and aggregation was at least partly reversible. The aggregation was dependent on tungsten and protein concentration, and the ratio of these two and appears to arise through electrostatic interaction between protein and tungsten molecules. The level of tungsten required from the various sources was different, but in all cases it was at least an order of magnitude greater than the typical soluble tungsten levels measured in commercial PFS. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:4695–4710, 2009  相似文献   

17.
Protein adsorbed at the silicone oil-water interface can undergo a conformational change that has the potential to induce protein aggregation on storage. Characterization of the protein structures at interface is therefore critical for understanding the protein-interface interactions. In this article, we have applied sum frequency generation (SFG) spectroscopy for studying the secondary structures of a fusion protein at interface and the surfactant effect on protein adsorption to silicone oil-water interface. SFG and chiral SFG spectra from adsorbed protein in the amide I region were analyzed. The presence of beta-sheet vibrational band at 1635 cm?1 implies the protein secondary structure was likely perturbed when protein adsorbed at silicone oil interface. The time-dependent SFG study showed a significant reduction in the SFG signal of preadsorbed protein when polysorbate 20 was introduced, suggesting surfactant has stronger interaction with the interface leading to desorption of protein from the interface. In the preadsorbed surfactant and a mixture of protein/polysorbate 20, SFG analysis confirmed that surfactant can dramatically prevent the protein adsorption to silicone oil surface. This study has demonstrated the potential of SFG for providing the detailed molecular level understanding of protein conformation at interface and assessing the influence of surfactant on protein adsorption behavior.  相似文献   

18.
The adhesion of neutrophils on a biomaterial surface depends on the surface chemistry of the material and the cell, as well as the composition and conformation of adsorbed protein and the adherence of other cells when the biomaterial is exposed to circulating blood. In this study, HK and HKa were allowed to adsorb on three different polyurethanes: underivatized (PU-base), quaternized (PU-NR4), sulfonated (PU-SO3). The effect of kininogen adsorption on the degree of neutrophil adhesion was examined. The surface density of the adsorbed protein was also investigated. The PU-NR4 surface adsorbed the most HK and HKa and had the high degree of neutrophil adhesion. Although the surface density of adsorbed HK and HKa on the PU-SO3 surface, the degree of neutrophil on adhesion was significantly lower when compared to the PU-NR4 and PU-base surfaces. HK and HKa contain binding sites for both anionic surfaces and neutrophils in the same domain (D5H). When adsorbed to the anionic PU-SO3 surfaces, HK and HKa did not have the neutrophil binding sites available and therefore, exhibited an anti-adhesive effect. In contrast, the neutrophil binding domains D3 and DsH of adsorbed kininogens were available on the PU-NR4 and PU-base surfaces. Thus, adsorbed kininogens on these two surfaces lost their anti-adhesive property and this led to a high degree of neutrophil adhesion.  相似文献   

19.
Solid lipid nanoparticles (SLN) were produced using a full range of poloxamer polymers and poloxamine 908 for stabilization. The protein adsorption pattern acquired on the surface of these particles after intravenous injection is the key factor determining the organ distribution. Two-dimensional polyacrylamide gel electrophoresis (2-DE) was employed for determination of particle interactions with human plasma proteins. The objective of this study was to investigate changes in the plasma protein adsorption patterns in the course of variation of the polymers stabilizing the SLN. Considerable differences in the protein adsorption with regard to preferential adsorbed proteins were detected for the different stabilizers. Possible correlations between the polyethylene oxide (PEO) chain length and the adsorption of various proteins (first of all apolipoproteins) are shown and discussed. Besides the study of protein adsorption patterns, the total protein mass adsorbed to the SLN was also evaluated using the bicinchoninic acid (BCA)-protein assay. The knowledge concerning the interactions of proteins and nanoparticles can be used for a rational development of particulate drug carriers. Based on the findings presented in this paper, we anticipate that the in vivo well-tolerable SLN are a promising site-specific drug delivery system for intravenous injection.  相似文献   

20.
Interfacial adsorption is a major concern in the processing of biopharmaceutics as it not only leads to a loss of protein, but also to particle formation. Protein particle formation during peristaltic pumping is linked to interfacial adsorption to the tubing and subsequent tearing of the formed protein film. In the current study, driving forces and rate of the adsorption of a monoclonal antibody to the silicone rubber surface during pumping, as well as particle formation, were studied in different formulations. Particle concentration and size distribution were influenced by the formulation parameters; specifically high ionic strength led to more particles and the build-up of particles larger than 25 µm. Formulation pH and ionic strength had an effect on the total amount of adsorbed protein. Adsorbed protein amounts increased when the Debye length of the protein was decreased, leading to a higher packing density. Atomic force microscopy and streaming potential determination revealed that the irreversible protein film formation on the hydrophobic tubing surface occurs in less than a second. Electrostatic interactions are the dominating factor for the initial adsorption speed. In intimate contact to the silicone rubber surface, hydrophobic interactions govern the protein adsorption. PS20 quickly coats the tubing surface which leads to an increase in hydrophilicity and shielding of electrostatic interactions, thereby efficiently inhibiting protein adsorption. Overall, atomic force microscopy and streaming potential determination possess great potential for the characterization of adsorbed protein films and the adsorption kinetic evaluation in high-speed mode. Protein adsorption to silicone tubing is driven by a combination of electrostatic and hydrophobic interactions which is effectively shielded by PS20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号