首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, Cynanchi wilfordii Radix has gained wide use in Asian countries as a functional food effective for relieving fatigue, osteoporosis, and constipation, particularly in menopausal disorders. However, its anti-inflammatory and anti-microbial activities have not been explored in detail to date. The anti-inflammatory, antioxidant, and anti-bacterial properties of the Cynanchi wilfordii Radix extracts obtained with water, methanol, ethanol, and acetone were compared. All 4 polyphenol-containing extracts exhibited anti-inflammatory and antioxidant effects. The ethanol extract was found to elicit the most potent reduction of nitric oxide (NO), prostaglandin E2 (PGE2), and cytokine (IL-1β, IL-6, IL-10, and TNF-α) levels, as well as inhibit the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a concentration-dependent manner. The evaluation of antioxidant activity also revealed the ethanol extract to have the highest free radical scavenging activity, measured as 85.3±0.4%, which is equivalent to 99.9% of the activity of α -tocopherol. In the assessment of anti-bacterial activity, only ethanol extract was found to inhibit the growth of the Bacillus species Bacillus cereus and Bacillus anthracis. These results show that polyphenols of Cynanchi wilfordii Radix have anti-inflammatory, antioxidant, and anti-bacterial properties that can be exploited and further improved for use as a supplementary functional food, in cosmetics, and for pharmaceutical purposes.  相似文献   

2.
  1. In airway epithelium, nitric oxide (NO) is synthesized in the setting of inflammation by inducible nitric oxide synthase (iNOS). Although the role of epithelial derived NO in the regulation of human airways is unknown, prostaglandin E2 (PGE2) is recognised as an important inhibitory mediator in human airways. Cyclo-oxygenase (COX) is the rate limiting enzyme in the production of prostanoids and since inflammatory pathways enhance the expression of an inducible COX (COX-2), both COX-2 and iNOS may be co-expressed in response to an inflammatory stimulus. Although regulation of the COX-2 pathway by NO has been demonstrated in animal models, its potential importance in human airway epithelium has not been investigated.
  2. The effect of endogenous and exogenous NO on the COX-2 pathway was investigated in the A549 human airway epithelial cell culture model. Activity of the COX-2 pathway was assessed by PGE2 EIA, and iNOS pathway activity by nitrite assay. A combination cytokine stimulus of interferon gamma (IFNγ) 100 u ml−1, interleukin-1β (IL-1β) 1 u ml−1 and lipopolysaccharide (LPS) 10 μg ml−1 induced nitrite formation which could be inhibited by the competitive NOS inhibitor NG-nitro-L-arginine-methyl-ester (L-NAME). IL-1β alone (1–50 u ml−1) induced PGE2 formation without significant nitrite formation, a response which was inhibited by the COX-2 specific inhibitor nimesulide. Submaximal stimuli used for further experiments were IFNγ 100 u ml−1, IL-1β 1 u ml−1 and LPS 10 μg ml−1 to induce both the iNOS and COX-2 pathways, and IL-1β 3 u ml−1 to induce COX-2 without iNOS activity.
  3. Cells treated with IFNγ 100 u ml−1, IL-1β 1 u ml−1 and LPS 10 μg ml−1 for 48 h either alone, or with the addition of L-NAME (0 to 10−2M), demonstrated inhibition by L-NAME of PGE2 (3.61±0.55 to 0.51±0.04 pg/104 cells; P<0.001) and nitrite (34.33±8.07 to 0 pmol/104 cells; P<0.001) production. Restoration of the PGE2 response (0.187±0.053 to 15.46±2.59 pg/104 cells; P<0.001) was observed after treating cells with the same cytokine stimulus and L-NAME 10−6M, but with the addition of the NOS substrate L-arginine (0 to 10−5M).
  4. Cells incubated with IL-1β 3 u ml−1 for 6 h, either alone or with addition of the NO donor S-nitroso-acetyl-penicillamine (SNAP) (0 to 10−4M), demonstrated increased PGE2 formation (1.23±0.03 to 2.92±0.19 pg/104 cells; P< 0.05). No increase in PGE2 formation was seen when the experiment was repeated in the presence of the guanylate cyclase inhibitor methylene blue (50 μM). Cells treated with SNAP alone did not demonstrate an increased PGE2 formation. Cells incubated with IL-1β 3 u ml−1 for 6 h in the presence of dibutyryl cyclic guanylate monophosphate (0 to 10−3M) also demonstrated an increased PGE2 response (2.56±0.21 to 4.53±0.64 pg/104 cells; P<0.05).
  5. These data demonstrate that in a human airway epithelial cell culture system, both exogenous and endogenous NO increase the activity of the COX-2 pathway in the setting of inflammatory cytokine stimulation, and that this effect is likely to be mediated by guanylate cyclase. This suggests a role for NO in the regulation of human airway inflammation.
  相似文献   

3.
The anti-inflammatory, antioxidant, and antimicrobial properties of artemisinin derived from water, methanol, ethanol, or acetone extracts of Artemisia annua L. were evaluated. All 4 artemisinin-containing extracts had anti-inflammatory effects. Of these, the acetone extract had the greatest inhibitory effect on lipopolysaccharide-induced nitric oxide (NO), prostaglandin E2 (PGE2), and proinflammatory cytokine (IL-1β , IL-6, and IL-10) production. Antioxidant activity evaluations revealed that the ethanol extract had the highest free radical scavenging activity, (91.0±3.2%), similar to α-tocopherol (99.9%). The extracts had antimicrobial activity against the periodontopathic microorganisms Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum subsp. animalis, Fusobacterium nucleatum subsp. polymorphum, and Prevotella intermedia. This study shows that Artemisia annua L. extracts contain anti-inflammatory, antioxidant, and antimicrobial substances and should be considered for use in pharmaceutical products for the treatment of dental diseases.  相似文献   

4.

Aim:

6-Shogaol [1-(4-hydroxy-methoxyphenyl)-4-decen-one], a pungent compound isolated from ginger, has shown various neurobiological and anti-inflammatory effects. The aim of this study was to examine the effects of 6-shogaol on neuroinflammatory-induced damage of dopaminergic (DA) neurons in Parkinson''s disease (PD) models.

Methods:

Cultured rat mesencephalic cells were treated with 6-shogaol (0.001 and 0.01 μmol/L) for 1 h, then with MPP+(10 μmol/L) for another 23 h. The levels of TNF-α and NO in medium were analyzed spectrophotometrically. C57/BL mice were administered 6-shogaol (10 mg·kg−1·d−1, po) for 3 d, and then MPTP (30 mg/kg, ip) for 5 d. Seven days after the last MPTP injection, behavioral testings were performed. The levels of tyrosine hydroxylase (TH) and macrophage antigen (MAC)-1 were determined with immunohistochemistry. The expression of iNOS and COX-2 was measured using RT PCR.

Results:

In MPP+-treated rat mesencephalic cultures, 6-shogaol significantly increased the number of TH-IR neurons and suppressed TNF-α and NO levels. In C57/BL mice, treatment with 6-shogaol reversed MPTP-induced changes in motor coordination and bradykinesia. Furthermore, 6-shogaol reversed MPTP-induced reductions in TH-positive cell number in the substantia nigra pars compacta (SNpc) and TH-IR fiber intensity in stratum (ST). Moreover, 6-shogaol significantly inhibited the MPTP-induced microglial activation and increases in the levels of TNF-α, NO, iNOS, and COX-2 in both SNpc and ST.

Conclusion:

6-Shogaol exerts neuroprotective effects on DA neurons in in vitro and in vivo PD models.  相似文献   

5.
6.
  1. We have recently suggested the existence in the heart of a ‘putative β4-adrenoceptor'' based on the cardiostimulant effects of non-conventional partial agonists, compounds that cause cardiostimulant effects at greater concentrations than those required to block β1- and β2-adrenoceptors. We sought to obtain further evidence by establishing and validating a radioligand binding assay for this receptor with (−)-[3H]-CGP 12177A ((−)-4-(3-tertiarybutylamino-2-hydroxypropoxy) benzimidazol-2-one) in rat atrium. We investigated (−)-[3H]-CGP 12177A for this purpose for two reasons, because it is a non-conventional partial agonist and also because it is a hydrophilic radioligand.
  2. Increasing concentrations of (−)-[3H]-CGP 12177A, in the absence or presence of 20 μM (−)-CGP 12177A to define non-specific binding, resulted in a biphasic saturation isotherm. Low concentrations bound to β1- and β2-adrenoceptors (pKD 9.4±0.1, Bmax 26.9±3.1 fmol mg-1 protein) and higher concentrations bound to the ‘putative β4-adrenoceptor'' (pKD 7.5±0.1, Bmax 47.7±4.9 fmol mg−1 protein). In other experiments designed to exclude β1- and β2-adrenoceptors, (−)-[3H]-CGP 12177A (1–200 nM) binding in the presence of 500 nM (−)-propranolol was also saturable (pKD 7.6±0.1, Bmax 50.8±7.4 fmol mg−1 protein).
  3. The non-conventional partial agonists (−)-CGP 12177A (pKi 7.3±0.2), (±)-cyanopindolol (pKi 7.6±0.2), (−)-pindolol (pKi 6.6±0.1) and (±)-carazolol (pKi 7.2±0.2) and the antagonist (−)-bupranolol (pKi 6.6±0.2), all competed for (−)-[3H]-CGP 12177A binding in the presence of 500 nM (−)-propranolol at the ‘putative β4-adrenoceptor'', with affinities closely similar to potencies and affinities determined in organ bath studies.
  4. The catecholamines competed with (−)-[3H]-CGP 12177A at the ‘putative β4-adrenoceptor'' in a stereoselective manner, (−)-noradrenaline (pKiH 6.3±0.3, pKiL 3.5±0.1), (−)-adrenaline (pKiH 6.5±0.2, pKiL 2.9±0.1), (−)-isoprenaline (pKiH 6.2±0.5, pKiL 3.4±0.1), (+)-isoprenaline (pKi<1.7), (−)-RO363 ((−)-(1-(3,4-dimethoxyphenethylamino)-3-(3,4-dihydroxyphenoxy)-2-propranol)oxalate, pKi 5.5±0.1).
  5. The inclusion of guanosine 5-triphosphate (GTP 0.1 mM) had no effect on binding of (−)-CGP 12177A or (−)-isoprenaline to the ‘putative β4-adrenoceptor''. In competition binding studies, (−)-CGP 12177A competed with (−)-[3H]-CGP 12177A for one receptor state in the absence (pKi 7.3±0.2) or presence of GTP (pKi 7.3±0.2). (−)-Isoprenaline competed with (−)-[3H]-CGP 12177A for two states in the absence (pKiH 6.6±0.3, pKiL 3.5±0.1; % H 25±7) or presence of GTP (pKiH 6.2±0.5, pKiL 3.4±0.1; % H 37±6). In contrast, at β1-adrenoceptors, GTP stabilized the low affinity state of the receptor for (−)-isoprenaline.
  6. The specificity of binding to the ‘putative β4-adrenoceptor'' was tested with compounds active at other receptors. High concentrations of the β3-adrenoceptor agonists, BRL 37344 ((RR+SS)[4-[2-[[2-(3-chlorophenyl)-2-hydroxy - ethyl]amino]propyl]phenoxy]acetic acid, 6 μM), SR 58611A (ethyl{(7S)-7-[(2R)-2 - (3 - chlorophenyl) - 2 - hydroxyethylamino] - 5,6,7,8 - tetrahydronaphtyl2 - yloxy} acetate hydrochloride, 6 μM), ZD 2079 ((±)-1-phenyl-2-(2-4-carboxymethylphenoxy)-ethylamino)-ethan-1-ol, 60 μM), CL 316243 (disodium (R,R)-5-[2-[2-(3-chlorophenyl)-2-hydroxyethyl-amino]propyl]- 1,3-benzodioxole-2,2-dicarboxylate, 60 μM) and antagonist SR 59230A (3-(2-ethylphenoxy)-1-[(1S)-1,2,3,4-tetrahydronaphth-1-ylamino]-2S-2-propanol oxalate, 6 μM) caused less than 22% inhibition of (−)-[3H]-CGP 12177A binding in the presence of 500 nM (−)-propranolol. Histamine (1 mM), atropine (1 μM), phentolamine (10 μM), 5-HT (100 μM) and the 5-HT4 receptor antagonist SB 207710 ((1-butyl-4-piperidinyl)-methyl 8-amino-7-iodo-1,4-benzodioxan-5-carboxylate, 10 nM) caused less than 26% inhibition of binding.
  7. Non-conventional partial agonists, the antagonist (−)-bupranolol and catecholamines all competed for (−)-[3H]-CGP 12177A binding in the absence of (−)-propranolol at β1-adrenoceptors, with affinities (pKi) ranging from 1.6–3.6 log orders greater than at the ‘putative β4-adrenoceptor''.
  8. We have established and validated a radioligand binding assay in rat atrium for the ‘putative β4-adrenoceptor'' which is distinct from β1-, β2- and β3-adrenoceptors. The stereoselective interaction with the catecholamines provides further support for the classification of the receptor as ‘putative β4-adrenoceptor''.
  相似文献   

7.

BACKGROUND AND PURPOSE

There is growing evidence that inflammation plays a major role in the pathogenesis of neural damage caused by deposition of amyloid β (Aβ) in the brain. Nimodipine has received attention as a drug that might improve learning and reduce cognitive deficits in Alzheimer''s disease, but the mechanism of action is poorly known. In this study, we tested the hypothesis that nimodipine inhibited Aβ-stimulated IL-1β release from microglia.

EXPERIMENTAL APPROACH

Cultures of N13 microglia cells or primary mouse microglia were treated with nimodipine, and intracellular accumulation and release of IL-1β in response to Aβ or to the P2 receptor agonists ATP and benzoyl ATP (BzATP) were measured. Accumulation of IL-1β was measured in vivo after intrahippocampal inoculation of Aβ in the absence or presence of nimodipine. The effect of nimodipine on Aβ-triggered cytotoxicity was also investigated.

KEY RESULTS

We show here that nimodipine dose-dependently inhibited Aβ-stimulated IL-1β synthesis and release from primary microglia and microglia cell lines. Furthermore, nimodipine also inhibited Aβ-induced IL-1βin vivo accumulation at concentrations known to be reached in the CNS. Finally, nimodipine protected microglia from Aβ-dependent cytotoxicity.

CONCLUSION AND IMPLICATIONS

These data suggest that alleviation of symptoms of Alzheimer''s disease following nimodipine administration might be due to an anti-inflammatory effect and point to a novel role for nimodipine as a centrally acting anti-inflammatory drug.  相似文献   

8.

Background and purpose:

The flavonoids, baicalin and catechin, from Scutellaria baicalensis and Acacia catechu, respectively, have been used for various clinical applications. Flavocoxid is a mixed extract containing baicalin and catechin, and acts as a dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (LOX) enzymes. The anti-inflammatory activity, measured by protein and gene expression of inflammatory markers, of flavocoxid in rat peritoneal macrophages stimulated with Salmonella enteritidis lipopolysaccharide (LPS) was investigated.

Experimental approach:

LPS-stimulated (1 µg·mL−1) peritoneal rat macrophages were co-incubated with different concentrations of flavocoxid (32–128 µg·mL−1) or RPMI medium for different incubation times. Inducible COX-2, 5-LOX, inducible nitric oxide synthase (iNOS) and inhibitory protein κB-α (IκB-α) levels were evaluated by Western blot analysis. Nuclear factor κB (NF-κB) binding activity was investigated by electrophoretic mobility shift assay. Tumour necrosis factor-α (TNF-α) gene and protein expression were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Finally, malondialdehyde (MDA) and nitrite levels in macrophage supernatants were evaluated.

Key results:

LPS stimulation induced a pro-inflammatory phenotype in rat peritoneal macrophages. Flavocoxid (128 µg·mL−1) significantly inhibited COX-2 (LPS = 18 ± 2.1; flavocoxid = 3.8 ± 0.9 integrated intensity), 5-LOX (LPS = 20 ± 3.8; flavocoxid = 3.1 ± 0.8 integrated intensity) and iNOS expression (LPS = 15 ± 1.1; flavocoxid = 4.1 ± 0.4 integrated intensity), but did not modify COX-1 expression. PGE2 and LTB4 levels in culture supernatants were consequently decreased. Flavocoxid also prevented the loss of IκB-α protein (LPS = 1.9 ± 0.2; flavocoxid = 7.2 ± 1.6 integrated intensity), blunted increased NF-κB binding activity (LPS = 9.2 ± 2; flavocoxid = 2.4 ± 0.7 integrated intensity) and the enhanced TNF-α mRNA levels (LPS = 8 ± 0.9; flavocoxid = 1.9 ± 0.8 n-fold/β-actin) induced by LPS. Finally, flavocoxid decreased MDA, TNF and nitrite levels from LPS-stimulated macrophages.

Conclusion and implications:

Flavocoxid might be useful as a potential anti-inflammatory agent, acting at the level of gene and protein expression.  相似文献   

9.
10.
  1. Penile small arteries (effective internal lumen diameter of 300–600 μm) were isolated from the horse corpus cavernosum and mounted in microvascular myographs in order to investigate the mechanisms underlying the endothelium-dependent relaxations to acetylcholine (ACh) and bradykinin (BK).
  2. In arteries preconstricted with the thromboxane analogue U46619 (3–30 nM), ACh and BK elicited concentration-dependent relaxations, pD2 and maximal responses being 7.71±0.09 and 91±1% (n=23), and 8.80±0.07 and 89±2% (n=24) for ACh and BK, respectively. These relaxations were abolished by mechanical endothelial cell removal, attenuated by the nitric oxide (NO) synthase (NOS) inhibitor, NG-nitro-L-arginine (L-NOARG, 100 μM) and unchanged by indomethacin (3 μM). However, raising extracellular K+ to concentrations of 20–30 mM significantly inhibited the ACh and BK relaxant responses to 63±4% (P<0.01, n=7) and to 59±4% (P<0.01, n=6), respectively. ACh- and BK-elicited relaxations were abolished in arteries preconstricted with K+ in the presence of 100 μM L-NOARG.
  3. In contrast to the inhibitor of ATP-sensitive K+ channels, the blockers of Ca2+-activated K+ (KCa) channels, charybdotoxin (30 nM) and apamin (0.3 μM), each induced slight but significant rightward shifts of the relaxations to ACh and BK without affecting the maximal responses. Combination of charybdotoxin and apamin did not cause further inhibition of the relaxations compared to either toxin alone. In the presence of L-NOARG (100 μM), combined application of the two toxins resulted in the most effective inhibition of the relaxations to both ACh and BK. Thus, pD2 and maximal responses for ACh and BK were 7.65±0.08 and 98±1%, and 9.17±0.09 and 100±0%, respectively, in controls, and 5.87±0.09 (P<0.05, n=6) and 38±11% (P<0.05, n=6), and 8.09±0.14 (P<0.01, n=6) and 98±1% (n=6), respectively, after combined application of charybdotoxin plus apamin and L-NOARG.
  4. The selective inhibitor of guanylate cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 5 μM) did not alter the maximal responses to either ACh or BK, but slightly decreased the sensitivity to both agonists, δpD2 being 0.25±0.07 (P<0.05, n=6) and 0.62±0.12 (P<0.01, n=6) for ACh and BK, respectively. Combined application of ODQ and charybdotoxin plus apamin produced further inhibition of the sensitivity to both ACh (δpD2=1.39±0.09, P<0.01, n=6) and BK (1.29±0.11, P<0.01, n=6), compared to either ODQ or charybdotoxin plus apamin alone.
  5. Exogenous nitric oxide (NO) present in acidified solutions of sodium nitrite (NaNO2) and S-nitroso-cysteine (SNC) both concentration-dependently relaxed penile resistance arteries, pD2 and maximal responses being 4.84±0.06 and 82±3% (n=12), and 6.72±0.07 and 85±4% (n=19), respectively. Charybdotoxin displaced to the right the dose-relaxation curves for both NO (δpD2 0.38±0.06, P<0.01, n=6) and SNC (δpD2 0.50±0.10, P<0.01, n=5), whereas apamin only reduced sensitivity (δpD2=0.35±0.12, P<0.05, n=5) and maximum response (65±9%, P<0.05, n=6) to SNC. ODQ shifted to the right the dose-relaxation curves to both NO and SNC. The relaxant responses to either NO or SNC were not further inhibited by a combination of ODQ and charybdotoxin or ODQ and charybdotoxin plus apamin, respectively, compared to either blocker alone.
  6. In the presence of 3 μM phentolamine, 5 μM ouabain contracted penile resistance arteries by 50±6% (n=17) of K-PSS, but did not significantly change the relaxant responses to either ACh, BK or NO. However, in the presence of L-NOARG ouabain reduced the ACh- and BK-elicited relaxation from 94±3% to 16±5% (P<0.0001, n=6), and from 98±2% to 13±3% (P<0.0001, n=5), respectively. Combined application of ODQ and ouabain inhibited the relaxations to NO from 92±2% to 26±3% (P<0.0001, n=6).
  7. The present results demonstrate that the endothelium-dependent relaxations of penile small arteries involve the release of NO and a non-NO non-prostanoid factor(s) which probably hyperpolarize(s) smooth muscle by two different mechanisms: an increased charybdotoxin and apamin-sensitive K+ conductance and an activation of the Na+-K+ATPase. These two mechanisms appear to be independent of guanylate cyclase stimulation, although NO itself can also activate charybdotoxin-sensitive K+ channels and the Na+-K+ pump through both cyclic GMP-dependent and independent mechanisms, respectively.
  相似文献   

11.
Alzheimer''s disease (AD) is a degenerative disease of the central nervous system characterized by progressive cognitive and memory-related impairment. However, current therapeutic treatments have not proved sufficiently effective, mainly due to the complicated pathogenesis of the disease. In this study, a nano-formulation of graphene oxide (GO) loaded with dauricine (Dau) was investigated in terms of the combined anti-inflammatory and anti-oxidative stress effects of Dau and the inhibition of misfolding and aggregation of the amyloid-β (Aβ) protein by GO. Both in vivo and in vitro models were induced using Aβ1-42, and the formulation was administered nasally in mice. The results showed that GO loaded with Dau greatly reduced oxidative stress through increasing superoxide dismutase levels and decreasing reactive oxygen species and malondialdehyde levels in vitro; it also alleviated the cognitive memory deficits and brain glial cell activation in mice with Aβ1-42-induced AD. This proved that GO loaded with Dau could protect against Aβ1-42-induced oxidative damage and apoptosis in both in vitro and in vivo AD models; therefore, GO loaded with Dau has the potential to be an effective and agent for the rapid treatment of AD.  相似文献   

12.

Background

Pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) play an important role in the development of hematopoietic stem cell transplantation (HSCT) complications. We explored the effect of Selenium as an antioxidant and anti-inflammatory agent on pro-inflammatory cytokines levels in HSCT candidates.

Findings

Plasma concentrations of TNF-α, IL-1β and IL-6 were measured in 74 patients from a double-blind, randomized, placebo-controlled study. In both groups, there were 37 patients with median age of 32 years. Patients received oral Se tablets (200 mcg) or placebo twice daily beginning from the first day of high dose chemotherapy (HDC) through 14 days after HSCT. Cytokine levels were determined before starting HDC (prior to first dose of Se), 7 and 14 days after HSCT. Plasma levels of TNF-α were not significantly different between Se and control group (P = 0.13). IL-1 levels were similar between two groups (P = 0.88). No significant differences were detected in IL-6 levels between Se and control group (P = 0.96).

Conclusion

Selenium had no effect on pro-inflammatory cytokines levels in patients undergoing HSCT. It is likely that earlier initiation and/or larger doses of Se are required to affect inflammatory cytokines significantly.  相似文献   

13.

Background

Cyclodextrins (CDs) have been shown to improve physicochemical and biopharmaceutical properties of drugs when low solubility and low safety limit their use in the pharmaceutical field. Recently, a new amphiphilic peptide-substituted-β-CD, hepta-(N-acetyl-Leu-Gly-Leu)-β-CD (hepta-(N-acetyl-LGL)-β-CD), is developed which exhibited good solubility, strong inclusion ability and an appropriate average molecular weight. However, there is limited information available about its toxic effects. This study was designed to evaluate cytotoxic effects of the hepta-(N-acetyl-LGL)-β-CD (50, 200, 400, and 800 μg/ml) on rat pheochromocytoma PC-12 cells.

Results

A significant reduction of cell viability with IC50 values of 1115.0 μg/ml, 762.4 μg/ml, and 464.9 μg/ml at 6, 12, and 24 h post-treatment, respectively, as well as increased lipid peroxide levels and DNA damage were observed.

Conclusions

In conclusion, hepta-(N-acetyl-Leu-Gly-Leu)-β-CD exhibit significant toxic properties at high concentrations, probably through induction of oxidative stress and genotoxicity.  相似文献   

14.
15.
16.
The fruit of the black raspberry (Rubus coreanus Miquel) has been employed in traditional medicine, and recent studies have demonstrated its measureable biological activities. However, the root of the black raspberry has not been studied. Therefore, in this study, we evaluated the anti-inflammatory and antibacterial properties of the root and unripe fruit polyphenols of the black raspberry. Both polyphenols proved to have anti-inflammatory activity as evidenced by the decreased nitric oxide (NO), cytokines (IL-1β , IL-6, and IL-10) and prostaglandin E2 (PGE2) levels in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages. However, root polyphenols showed stronger anti-inflammatory activity than fruit polyphenols. LPS-induced mRNA and protein expressions of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 levels were also decreased, confirming the anti-inflammatory activity. Root polyphenols showed lethal activity against methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Acinetobacter baumannii (CRAB), and Bacillus anthracis. In contrast, the black raspberry fruit did not demonstrate these properties. These data provide the first demonstration that black raspberry root has potential anti-inflammatory and anti-superbacterial properties that can be exploited as alternatives for use in the food and cosmetic industries and/or as pharmaceuticals.  相似文献   

17.

Background and purpose:

This study investigates the role of α2-adrenoceptor subtypes, α2A, α2B and α2C, on catecholamine synthesis and catabolism in the central nervous system of mice.

Experimental approach:

Activities of the main catecholamine synthetic and catabolic enzymes were determined in whole brains obtained from α2A-, α2B- and α2C-adrenoceptor knockout (KO) and C56Bl\7 wild-type (WT) mice.

Key results:

Although no significant differences were found in tyrosine hydroxylase activity and expression, brain tissue levels of 3,4-dihydroxyphenylalanine were threefold higher in α2A- and α2C-adrenoceptor KO mice. Brain tissue levels of dopamine and noradrenaline were significantly higher in α2A and α2CKOs compared with WT [WT: 2.8 ± 0.5, 1.1 ± 0.1; α2AKO: 6.9 ± 0.7, 1.9 ± 0.1; α2BKO: 2.3 ± 0.2, 1.0 ± 0.1; α2CKO: 4.6 ± 0.8, 1.5 ± 0.2 nmol·(g tissue)−1, for dopamine and noradrenaline respectively]. Aromatic L-amino acid decarboxylase activity was significantly higher in α2A and α2CKO [WT: 40 ± 1; α2A: 77 ± 2; α2B: 40 ± 1; α2C: 50 ± 1, maximum velocity (Vmax) in nmol·(mg protein)−1·h−1], but no significant differences were found in dopamine β-hydroxylase. Of the catabolic enzymes, catechol-O-methyltransferase enzyme activity was significantly higher in all three α2KO mice [WT: 2.0 ± 0.0; α2A: 2.4 ± 0.1; α2B: 2.2 ± 0.0; α2C: 2.2 ± 0.0 nmol·(mg protein)−1·h−1], but no significant differences were found in monoamine oxidase activity between all α2KOs and WT mice.

Conclusions and implications:

In mouse brain, deletion of α2A- or α2C-adrenoceptors increased cerebral aromatic L-amino acid decarboxylase activity and catecholamine tissue levels. Deletion of any α2-adrenoceptor subtypes resulted in increased activity of catechol-O-methyltransferase. Higher 3,4-dihydroxyphenylalanine tissue levels in α2A and α2CKO mice could be explained by increased 3,4-dihydroxyphenylalanine transport.  相似文献   

18.
19.
Metabolic reprogramming is associated with NLRP3 inflammasome activation in activated macrophages, contributing to inflammatory responses. Tanshinone IIA (Tan-IIA) is a major constituent from Salvia miltiorrhiza Bunge, which exhibits anti-inflammatory activity. In this study, we investigated the effects of Tan-IIA on inflammation in macrophages in focus on its regulation of metabolism and redox state. In lipopolysaccharides (LPS)-stimulated mouse bone marrow-derived macrophages (BMDMs), Tan-IIA (10 μM) significantly decreased succinate-boosted IL-1β and IL-6 production, accompanied by upregulation of IL-1RA and IL-10 release via inhibiting succinate dehydrogenase (SDH). Tan-IIA concentration dependently inhibited SDH activity with an estimated IC50 of 4.47 μM in LPS-activated BMDMs. Tan-IIA decreased succinate accumulation, suppressed mitochondrial reactive oxygen species production, thus preventing hypoxia-inducible factor-1α (HIF-1α) induction. Consequently, Tan-IIA reduced glycolysis and protected the activity of Sirtuin2 (Sirt2), an NAD+-dependent protein deacetylase, by raising the ratio of NAD+/NADH in activated macrophages. The acetylation of α-tubulin was required for the assembly of NLRP3 inflammasome; Tan-IIA increased the binding of Sirt2 to α-tubulin, and thus reduced the acetylation of α-tubulin, thus impairing this process. Sirt2 knockdown or application of Sirt2 inhibitor AGK-2 (10 μM) neutralized the effects of Tan-IIA, suggesting that Tan-IIA inactivated NLRP3 inflammasome in a manner dependent on Sirt2 regulation. The anti-inflammatory effects of Tan-IIA were observed in mice subjected to LPS challenge: pre-administration of Tan-IIA (20 mg/kg, ip) significantly attenuated LPS-induced acute inflammatory responses, characterized by elevated IL-1β but reduced IL-10 levels in serum. The peritoneal macrophages isolated from the mice displayed similar metabolic regulation. In conclusion, Tan-IIA reduces HIF-1α induction via SDH inactivation, and preserves Sirt2 activity via downregulation of glycolysis, contributing to suppression of NLRP3 inflammasome activation. This study provides a new insight into the anti-inflammatory action of Tan-IIA from the respect of metabolic and redox regulation.  相似文献   

20.
Smoke bombs are often used in military/fire training, which can produce a large amount of zinc chloride (ZnCl2) smoke. Inhalation of ZnCl2 smoke usually causes acute lung injury (ALI) that would likely develop to acute respiratory distress syndrome (ARDS). However, there is no effective prevention or treatment strategy for the smoke-induced ALI. Resveratrol (RES) is a natural polyphenol with good anti-inflammatory and anti-apoptotic activities, but its low solubility, stability, and bioavailability restrict its clinical application. In this study, an inhalable RES formulation composed of RES-β-cyclodextrin inclusion complexes (RES-β-CD) was prepared for the prevention of ZnCl2 smoke-induced ALI. RES-β-CD powders had a small mass median aerodynamic diameter of 3.61 μm and a high fine particle fraction of 38.84%, suitable for pulmonary inhalation. RES-β-CD exhibited low BEAS-2B cytotoxicity. Pulmonary delivery of RES-β-CD to mice remarkably prevented the smoke-induced ALI with downregulation of TNF-α, IL-1β, STAT3, and GATA3, and upregulation of T-bet and Foxp3. RES-β-CD protected the respiratory function, percutaneous oxygen saturation, physical activity, lung capillary integrity, and lung liquid balance, alleviating inflammation and apoptosis. Pulmonary delivery of the positive drug, budesonide (BUD), also alleviated the smoke-induced ALI by reduction of inflammation and cell apoptosis. RES-β-CD exhibited the regulation of the Th1/Th2 and Treg/Th17 balances, while BUD did not show any effect on immune balances. In conclusion, pulmonary delivery of RES-β-CD is a promising anti-inflammatory and anti-apoptosis strategy for the prevention of ZnCl2 smoke-induced ALI by direct lung drug distribution and regulation of immune balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号