首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have measured antiviral CD8 T cells responses in bovine respiratory syncytial virus (bRSV) infected calves that had been immunized with either formalin-inactivated (FI) or live-attenuated (L) bRSV, with evidence of immunopathology following challenge of calves vaccinated with FI-bRSV. In all cases, bRSV infection induced potent pulmonary CD8 T cell responses. The kinetics of the post-challenge response in L-bRSV immunized animals was accelerated compared to the FI-bRSV and PBS groups, suggesting that only the L-bRSV vaccine, and not the FI-bRSV vaccine, had primed memory T cells. The differences between primary and post-vaccination secondary infection were very minor, in terms of the proliferation status of pulmonary CD8 T cells. Functional IFN-gamma+ CD8 responses were slightly higher in the FI-bRSV vaccinated animals. Furthermore, the existence of strong IFN-gamma+ CD8 responses in FI-bRSV vaccinated animals after challenge suggests (i) that these IFN-gamma+ responses in FI-bRSV immunized animals do not protect against immunopathology, and (ii) that Th-2 biased responses during bRSV challenge after vaccination with FI-bRSV have a limited impact on the CD8 responses in the bronchoalveolar lavage fluid. Thus, several response patterns (Th-l/Th-2) seem to co-exist during bRSV infection.  相似文献   

2.
Boyer JD  Maciag PC  Parkinson R  Wu L  Lewis MG  Weiner DB  Paterson Y 《Vaccine》2006,24(21):4498-4502
HIV-1 specific cellular immune responses play a significant part in controlling HIV-1 viral replication and are an important component of an HIV-1 vaccine induced immune response. We reported earlier that recombinant DNA vaccine delivered intramuscularly, and recombinant Listeria monocytogenes, delivered orally induced CD8+ and CD4+ T cell immune responses in rhesus macaques and that this vaccine protocol showed partial protection against an SIV239 challenge. In this paper, we have analyzed the SIV antigen-specific immune responses at the time of challenge and during the subsequent infection course. We find that the immune status of the animals, as measured by the frequency of antigen-specific IFN-gamma secreting peripheral blood mononuclear cells, at the time of challenge correlates more strongly with viral loads at set point than peak viral loads. The correlation between the immune response and viral load was strongest early, as viral set-point was just being established and disintegrates overtime. This study demonstrates the cellular immune response to SIV at the time of challenge of a nonhuman primate is able to impact on viral set-point following SIV239 challenge. Further, this study demonstrates that as virus replicates the T cell immune response to SIV antigens induced by the vaccine is modulated by antigen encountered by immune cells during viral replication.  相似文献   

3.
We designed and evaluated in HLA-class I transgenic mouse models a hepatitis C virus (HCV) T cell-based MVA vectored vaccine expressing three viral antigens known to be targets of potent CD8+- and CD4+-mediated responses. An accelerated (3 week-based) vaccination induced specific CD8+ T cells harboring two effector functions (cytolytic activity - both in vitro and in vivo- and production of IFNgamma) as well as specific CD4+ T cells recognizing all three vaccine antigens. Responses were long lasting (6 months), boostable by a fourth MVA vaccination and in vivo cross-reactive as demonstrated in a surrogate Listeria-based challenge assay. This candidate vaccine has now moved into clinical trials.  相似文献   

4.
The difficulty in developing an effective vaccine to contain the HIV/AIDS epidemic coupled with the fact that primary HIV-1 infection typically occurs via mucosal sites has increased emphasis on vaccine approaches that protect at mucosal surfaces. In this study we employed HIV and simian-HIV (SHIV)-derived T helper (Th) and cytotoxic T lymphocyte (CTL) single epitopes incorporated into immuno-stimulating complexes (ISCOM) as a candidate immunogens. Immunized rhesus macaques (Macaca mulatta) were challenged with CCR5-tropic SHIV(SF162p4). On the day of challenge, low levels of virus-neutralizing antibodies (Ab) and CTLs were detected in ISCOM-immunized macaques. Greater than 10(5) viral RNA copies per ml of plasma in 2/5 immunized and 3/4 control macaques were detected within 3 weeks post-challenge. Depletion of CD4+ T cells from gut-associated lymphoid tissues (GALT) was observed by post-challenge day (PCD) 14 in all macaques regardless immunization. Nonetheless, lower viral loads and relatively better preservation of peripheral CD4+ T cells following the SHIV infection was observed in ISCOM-immunized macaques. We predict that if coadministered with additional epitopes and/or more efficacious mucosal delivery system or route, HIV/SIV-derived peptide vaccines may have potential to elicit heterologous protection.  相似文献   

5.
Venezuelan equine encephalitis (VEE) virus-replicon particles (VRP) were used to generate feline immunodeficiency virus (FIV) Gag- and ENV-expressing vaccine vectors. Serum and mucosal FIV-specific antibody was detected in cats immunized subcutaneously, once monthly for 5 months, with FIV-expressing VRP. Expansion of the CD8+ L-selectin negative phenotype and transient CD8+ noncytolytic suppressor activity were seen in cats immunized with FIV-expressing or control VRP. Despite induction of FIV-specific immune responses and nonspecific suppressor responses, all cats became infected following vaginal challenge with high dose, pathogenic cell-associated FIV-NCSU(1) although relative early maintenance of CD4+ cells was seen in FIV-immunized cats.  相似文献   

6.
Based on our prior studies in mouse, monkey, chimpanzee, and human experimental systems, we identified six peptides encoded by highly conserved regions of the human immunodeficiency virus type 1 (HIV-1) envelope gene that selectively induce cellular immune responses in the absence of anti-viral antibody production. We tested a cocktail of the six peptides as a prototype vaccine for protection from simian human immunodeficiency virus (SHIV) infection and acquired immunodeficiency syndrome (AIDS) in a rhesus monkey model. Three monkeys were vaccinated with the peptide cocktail in Freund's adjuvant followed by autologous dendritic cells (DC) pulsed with these peptides. All the vaccinated animals exhibited significant induction of T-cell proliferation and cytotoxic T lymphocytes (CTL) responses, but no neutralizing antibodies. Two control mock-vaccinated monkeys showed no specific immune responses. Upon challenge with the pathogenic SHIV(KU-2), both the control and vaccinated monkeys were infected, but efficient clearance of virus-infected cells was observed in all the three vaccinated animals within 14 weeks. These animals also experienced a boosting of antiviral cellular immune responses after infection, and maintained antigen-specific IFN-gamma-producing cells in circulation beyond 42 weeks post-challenge. In contrast, the two mock-vaccinated monkeys had low to undetectable cellular immune responses and maintained significant levels of viral-infected cells and infectious virus in circulation. Further, in both the control monkeys plasma viremia was detectable beyond 38 weeks post-challenge indicating chronic phase infection. In one control monkey, the CD4+ cells dropped to very low levels by 2 weeks post-challenge and became undetectable by week 39 coinciding with high plasma viremia and AIDS, which included cachexia and ataxia. These results serve as proof of principle for the effectiveness of the HIV envelope peptide cocktail vaccine against chronic infection and AIDS, and support the development of multivalent peptide-based vaccine as a viable strategy to induce cell-mediated immunity (CMI) for protection against HIV and AIDS in humans.  相似文献   

7.
In an earlier study, our group vaccinated rhesus macaques with vesicular stomatitis virus (VSV) vectors expressing Gag, Pol, and Env proteins from a hybrid simian/human immunodeficiency virus (SHIV). This was followed by a single boost with modified vaccinia virus Ankara (MVA) vectors expressing the same proteins. Following challenge with SHIV89.6P, vaccinated animals cleared challenge virus RNA from the blood by day 150 and maintained normal CD4 T cell counts for 8 months. Here we report on the long-term (>5-year post-challenge) status of these animals and the immunological correlates of long-term protection. Using real-time PCR, we found that viral DNA in peripheral blood mononuclear cells (PBMCs) of the vaccinees declined continuously and fell to below detection (<5 copies/105 cells) by approximately 3 years post-challenge. SHIV DNA was also below the limit of detection in the lymph nodes of two of the four animals at 5 years post-challenge. We detected long-term persistence of multi-functional Gag-specific CD8+ T cells in both PBMCs and lymph nodes of the two protected animals with the Mamu A*01+ MHC I allele. All animals also maintained SHIV89.6P neutralizing antibody titers for 5 years. Our results show that this vaccine approach generates solid, long-term control of SHIV infection, and suggest that it is mediated by both cytotoxic T lymphocytes and neutralizing antibody.  相似文献   

8.
A new vaccine, V3526, is a live-attenuated virus derived by site-directed mutagenesis from a virulent clone of the Venezuelan equine encephalitis virus (VEEV) IA/B Trinidad donkey (TrD) strain, intended for human use in protection against Venezuelan equine encephalitis (VEE). Two studies were conducted in horses to evaluate the safety, immunogenicity, ability to boost and protective efficacy of V3526 against challenges of TrD and VEEV IE 64A99. Horses were vaccinated subcutaneously (SC) with 10(7), 10(5), 10(3) or 10(2) plaque-forming units (pfu) of V3526. Control horses were sham immunized. In the first study, challenge viruses (TrD or 64A99) were administered SC 28 days post-vaccination (PV). No viremia and only mild fluctuation in white blood cell counts were observed PV. None of the V3526 vaccinated horses showed clinical signs of disease or pathology of VEE post-challenge (PC). In contrast, control horses challenged SC with 10(4)pfu TrD became viremic and showed classical signs of VEE beginning on Day 3 PC, including elevated body temperature, anorexia, leukopenia and malaise. Moderate to severe encephalitis was found in three of five control horses challenged with TrD. Control horses challenged with 64A99 failed to develop detectable viremia, but did exhibit a brief febrile episode at 1-3 days PC. None of the 10 immunized horses challenged with 64A99 became pyrexic. Twenty four of 25 horses immunized with V3526 in the first study developed serum neutralizing antibody to TrD and 64A99 within 14 days PV. Vaccinations with V3526, at doses as low as 10(2)pfu, were safe and efficacious in protecting horses against a virulent TrD virus challenge. The second study supported that repeat dosing resulted in an increase in serum neutralizing antibody to TrD.  相似文献   

9.
An LL  Rodriguez F  Harkins S  Zhang J  Whitton JL 《Vaccine》2000,18(20):2132-2141
Vaccines containing minigenes - isolated antigenic epitopes encoded by short open reading frames - can, under certain circumstances, confer protective immunity upon the vaccinee. Here we evaluate the efficacy of the minigene vaccine approach using DNA immunization and find that, to be immunogenic, a minigene-encoded epitope requires a perfect "Kozak" translational initiation region. In addition, using intracellular cytokine staining, we show that immunization with a plasmid encoding a full-length protein induces epitope-specific CD8(+) T cells which are detectable directly ex vivo, and constitute approximately 2% of the vaccinee's splenic CD8(+) T cells. In contrast, such cells are undetectable directly ex vivo in recipients of a minigene vaccine. Nevertheless, the minigene plasmid does induce a low number of epitope-specific CD8(+) T cells, which can be amplified to detectable levels by in vivo stimulation. Indeed, 4 days after in vivo stimulation (by virus infection), all vaccinated mice - regardless of whether they had been vaccinated with the minigene or with the full-length gene - had similar numbers of epitope-specific CD8(+) T cells. However, despite these strong responses at 4 days post-infection, recipients of the minigene vaccine showed no enhanced ability to limit virus replication and dissemination. We therefore observe a dichotomy; minigene vaccinees are not protected, despite the presence of strong virus-specific immune responses at 4 days post-challenge. We suggest that the protective benefits of vaccination exert themselves very soon - perhaps within minutes or hours - after virus challenge. If the vaccine-induced immune response is too low to achieve this early protective effect, virus-specific T cells will expand rapidly, but ineffectually, leading to the strong but non-protective response measured at 4 days post-infection. Thus, vaccine-induced immunity should be monitored very early in infection, since the extent to which these responses may later be amplified is largely irrelevant to the protection observed.  相似文献   

10.
《Vaccine》2020,38(34):5507-5515
Vaccines against virulent Newcastle disease virus (NDV) are widely available and can be protective, but improved vaccination protocols are needed to prevent clinical disease and reduce virus circulation. The present study evaluated the efficacy of two commercial vaccines alone or in combination: a live attenuated NDV vaccine (LV) and a recombinant herpesvirus of turkeys vector expressing the fusion protein of NDV and the virus protein 2 of infectious bursal disease virus (rHVT-ND-IBD). Chickens were vaccinated with one of four vaccination protocols: live vaccine (LV) at 1 and 11 days of age (DOA), rHVT ND-IBD and LV at 1 DOA, rHVT ND-IBD at 1 DOA boosted with an LV at 11 DOA, and rHVT ND-IBD at 1 DOA. The vaccinated birds were challenged at different time points (3 or 4 weeks of age) with the California 2018 virus. The mortality, clinical signs, mean death time (MDT), humoral response before and after vaccination, and virus shedding after challenge were evaluated. All vaccination protocols were able to prevent mortality, reduce virus shedding, and induce antibody levels before the challenge at 3 and 4 weeks-old. Overall, the antibody levels before the challenge at 4 weeks were significantly higher in all groups vaccinated with the rHVT ND-IBD when compared to levels in 3 week old birds. The combination of recombinant rHVT ND-IBD with a live vaccine at one-day-old seems to be a better combination, due to the absence of clinical signs, higher antibody levels pre and post-challenge, and reduced virus shedding at any time point after the challenge at 3 or 4 weeks of age with the California 2018 virus.  相似文献   

11.
We previously reported that an experimental live-attenuated equine infectious anemia virus (EIAV) vaccine, containing a mutated S2 accessory gene, provided protection from disease and detectable infection after virulent virus (EIAV(PV)) challenge [Li F, Craigo JK, Howe L, Steckbeck JD, Cook S, Issel C, et al. A live-attenuated equine infectious anemia virus proviral vaccine with a modified S2 gene provides protection from detectable infection by intravenous virulent virus challenge of experimentally inoculated horses. J Virol 2003;77(13):7244-53; Craigo JK, Li F, Steckbeck JD, Durkin S, Howe L, Cook SJ, et al. Discerning an effective balance between equine infectious anemia virus attenuation and vaccine efficacy. J Virol 2005;79(5):2666-77]. To determine if attenuated EIAV vaccines actually prevent persistent infection by challenge virus, we employed a 14-day dexamethasone treatment of vaccinated horses post-challenge to suppress host immunity and amplify replication levels of any infecting EIAV. At 2 months post-challenge the horses were all protected from virulent-virus challenge, evidenced by a lack of EIA signs and detectable challenge plasma viral RNA. Upon immune suppression, 6/12 horses displayed clinical EIA. Post-immune suppression characterizations demonstrated that the attenuated vaccine evidently prevented detectable challenge virus infection in 50% of horses. These data highlight the utility of post-challenge immune suppression for evaluating persistent viral vaccine protective efficacy.  相似文献   

12.
《Vaccine》2017,35(8):1124-1131
We have recently demonstrated the effectiveness of an influenza A virus (IAV) subunit vaccine based on biodegradable polyanhydride nanoparticles delivery in mice. In the present study, we evaluated the efficacy of ∼200 nm polyanhydride nanoparticles encapsulating inactivated swine influenza A virus (SwIAV) as a vaccine to induce protective immunity against a heterologous IAV challenge in pigs. Nursery pigs were vaccinated intranasally twice with inactivated SwIAV H1N2 (KAg) or polyanhydride nanoparticle-encapsulated KAg (KAg nanovaccine), and efficacy was evaluated against a heterologous zoonotic virulent SwIAV H1N1 challenge. Pigs were monitored for fever daily. Local and systemic antibody responses, antigen-specific proliferation of peripheral blood mononuclear cells, gross and microscopic lung lesions, and virus load in the respiratory tract were compared among the groups of animals. Our pre-challenge results indicated that KAg nanovaccine induced virus-specific lymphocyte proliferation and increased the frequency of CD4+CD8αα+ T helper and CD8+ cytotoxic T cells in peripheral blood mononuclear cells. KAg nanovaccine-immunized pigs were protected from fever following SwIAV challenge. In addition, pigs immunized with the KAg nanovaccine presented with lower viral antigens in lung sections and had 6 to 8-fold reduction in nasal shedding of SwIAV four days post-challenge compared to control animals. Immunologically, increased IFN-γ secreting T lymphocyte populations against both the vaccine and challenge viruses were detected in KAg nanovaccine-immunized pigs compared to the animals immunized with KAg alone. However, in the KAg nanovaccine-immunized pigs, hemagglutination inhibition, IgG and IgA antibody responses, and virus neutralization titers were comparable to that in the animals immunized with KAg alone. Overall, our data indicated that intranasal delivery of polyanhydride-based SwIAV nanovaccine augmented antigen-specific cellular immune response in pigs, with promise to induce cross-protective immunity.  相似文献   

13.
To evaluate the efficacy of a multigenic vaccine and its protective immunity in the SIVmac239 challenge model, 12 rhesus macaques were divided into two groups. The vaccine group was intramuscularly immunized with multigenic DNA and recombinant adenovirus vaccine, while the control group received buffers. At 16 weeks after the last immunization, all macaques were challenged orally with pathogenic SIVmac239. The mean plasma SIV RNA loads of the vaccine group were significantly lower than those of the placebo control group up to 16 weeks post-challenge. The vaccine-induced Gag-specific IFN-gamma ELISPOT T cell responses inversely correlated with the viral loads before the chronic phase. Two out of six vaccinated macaques with strong and sustained Gag-specific T cell responses showed viremia control and maintained CD4+ T cell percentage. However, the other four vaccinated macaques showed high viral loads and reduced level of CD4+ T cell percentages during the chronic phase, comparable to those in control macaques. Five out of six vaccinated macaques survived for more than 72 weeks, while five out of six controls died of an AIDS-related disease. Therefore, the vaccination conferred not only reduction of viral loads in a portion of vaccinated macaques (2/6), but also prolonged survival of all vaccinated macaques regardless of viremia control. Our results further suggest that new experimental approaches may be needed to assess protective effects from AIDS-associated disease in the immunized macaques after oral SIV challenge.  相似文献   

14.
Linghua Z  Xingshan T  Yong G  Fengzhen Z 《Vaccine》2006,24(11):1874-1879
CpG ODN is a noval immunostimulatory reagent In this research, the effects of immunostimulatory CpG oligodeoxynucleotides (CpG ODN) on CD4+ and CD8+ T lymphocytes subpopulations in the newborn piglets blood were tested at different time with porcine reproductive and respiratory syndrome killed virus vaccine (PRRS vaccine) with or without CpG ODN. The results suggested that, the CD4+/CD8+ ratio decreased with age in piglets inoculated with vaccine alone or GpC ODN with vaccine or phosphate buffer saline (PBS), however, it was stable in piglets co-inoculated with CpG ODN and PRRS vaccine (p>0.05), the use of CpG ODN can prevent effectively the reduction of the proportion of CD4+ T lymphocytes. High titers of PRRS specific antibody can also be tested in the newborn piglets serum immunized PRRS vaccine and CpG ODN (p<0.05).  相似文献   

15.
A central obstacle to the design of a global HIV-1 vaccine is virus diversity. Pathogen diversity is not unique to HIV-1, and has been successfully conquered in other fields by the creation of vaccine cocktails. Here we describe the testing of an HIV-1 envelope cocktail vaccine. Six macaques received the vaccine, delivered by successive immunizations with recombinant DNA, recombinant vaccinia virus and recombinant envelope proteins. Following vaccination, animals developed a diversity of anti-envelope antibody binding and neutralizing activities toward proteins and viruses that were not represented by sequence in the vaccine. T-cells were also elicited, as measured by gamma-interferon production assays with envelope-derived peptide pools. Vaccinated and control animals were then challenged with the heterologous pathogenic SHIV, 89.6P. Vaccinated monkeys experienced significantly lower virus titers and better maintenance of CD4+ T-cells than unvaccinated controls. The B- and T-cell immune responses were far superior post-challenge in the vaccinated group. Four of six vaccinated animals and only one of six control animals survived a 44-week observation period post-challenge. The present report is the first to describe pathogenic SHIV disease control mediated by a heterologous HIV-1 vaccine, devoid of 89.6 or SIV derivatives.  相似文献   

16.
Although vaccination against tuberculosis (TB) was initiated more than 80 years ago, the correlates of protective immunity against infection by Mycobacterium tuberculosis have still not been well defined. To investigate the vaccine-induced immune responses against TB, we evaluated the early pulmonary cytokine responses elicited by a low dose M. tuberculosis aerogenic challenge in mice that had been immunized with either BCG or a TB DNA vaccine cocktail, two vaccine preparations that induce long-term protection in the mouse model of pulmonary TB. Using three different assays, we showed that specific cytokine responses were elevated in the lungs of vaccinated mice (relative to na?ve controls) during the second week post-challenge. By measuring cytokine levels in the bronchoalveolar lavage fluid (BAL) and cytokine mRNA concentrations in pulmonary cells, the levels of IFN-gamma, IL-12, and RANTES were shown to be elevated from days 7-14 post-challenge in the lungs. By intracellular cytokine staining (ICS), increased numbers of lung CD4 and CD8 cells expressing IFN-gamma were also seen at days 10 and 14 after the infection. Moreover, increased post-challenge IFN-gamma levels were detected using the ICS and cytokine mRNA assays in aging BCG-immunized mice that had been effectively boosted with a TB DNA vaccine. Taken together, these data suggest that the post-infection induction of early type 1 cytokine responses correlate with the induction of long-term protective immunity in vaccinated mice.  相似文献   

17.
A H5N2 low pathogenic avian influenza virus (LPAIV) was isolated from a natural reservoir in Bavaria during a routine screen and was used as a vaccine strain to scrutinize the immune response involved in cross-protection after challenge infection with a H5N1 highly pathogenic avian influenza virus (HPAIV). The challenge virus was also isolated from a natural reservoir in Bavaria. Wild type, antibody deficient (muMT), CD4(-/-) and CD8(-/-) mice were infected with the apathogenic H5N2 vaccine strain and challenge infection with a 100-fold MLD(50) of the H5N1 strain was performed 80 days later. While 100% of the wild type and 100% of the CD8(-/-) mice stayed healthy, only 50% of the CD4(-/-) and none of the antibody deficient mice were protected. These results support the view that the humoral immune response and to certain extends the CD4(+) T helper cells are a prerequisite for cross-protective immunity against H5 influenza virus.  相似文献   

18.
Three vaccines developed for protection against IA/IB subtypes of Venezuelan equine encephalitis (VEE) virus were evaluated in mice for the ability to protect against systemic and mucosal challenges with a virulent virus of the IE subtype. The vaccines were the formaldehyde-inactivated C-84 and live attenuated TC-83 vaccines currently administered to people under investigational new drug (IND) status, and a new live attenuated vaccine candidate, V3526. V3526 was superior for inducing protection to VEE IA/IB within a week of vaccination, and protection persisted for at least a year. All three vaccines induced long-term clinical protection against peripheral or mucosal challenge with IE virus, with the mucosal immunity induced by attenuated vaccines lasting longer than that induced by the inactivated vaccine. These data show that the molecularly cloned V3526 vaccine induces equivalent or improved immunity to homologous and heterologous VEE viruses than the existing vaccines.  相似文献   

19.
《Vaccine》2021,39(40):5940-5953
The development of a safe and effective vaccine is a key requirement to overcoming the COVID-19 pandemic. Recombinant proteins represent the most reliable and safe vaccine approach but generally require a suitable adjuvant for robust and durable immunity. We used the SARS-CoV-2 genomic sequence and in silico structural modelling to design a recombinant spike protein vaccine (Covax-19™). A synthetic gene encoding the spike extracellular domain (ECD) was inserted into a baculovirus backbone to express the protein in insect cell cultures. The spike ECD was formulated with Advax-SM adjuvant and first tested for immunogenicity in C57BL/6 and BALB/c mice. Covax-19 vaccine induced high spike protein binding antibody levels that neutralised the original lineage B.1.319 virus from which the vaccine spike protein was derived, as well as the variant B.1.1.7 lineage virus. Covax-19 vaccine also induced a high frequency of spike-specific CD4 + and CD8 + memory T-cells with a dominant Th1 phenotype associated with the ability to kill spike-labelled target cells in vivo. Ferrets immunised with Covax-19 vaccine intramuscularly twice 2 weeks apart made spike receptor binding domain (RBD) IgG and were protected against an intranasal challenge with SARS-CoV-2 virus given two weeks after the last immunisation. Notably, ferrets that received the two higher doses of Covax-19 vaccine had no detectable virus in their lungs or in nasal washes at day 3 post-challenge, suggesting that in addition to lung protection, Covax-19 vaccine may have the potential to reduce virus transmission. This data supports advancement of Covax-19 vaccine into human clinical trials.  相似文献   

20.
Pinto AR  Fitzgerald JC  Gao GP  Wilson JM  Ertl HC 《Vaccine》2004,22(5-6):697-703
An E1-deleted adenoviral recombinant derived from the chimpanzee serotype 6 expressing a codon-optimized truncated form of gag of human immunodeficiency virus type 1 (HIV-1) was tested for induction of a transgene product-specific CD8+ T cell response upon oral immunization of mice. The vector was shown to induce gag-specific CD8+ T cells detectable at moderate frequencies of approximately 0.5-1.0% in the spleens and to provide partial protection in a surrogate challenge model based on intraperitoneal (i.p.) infection of mice with a vaccinia virus recombinant expressing gag (VVgag) of HIV-1. Frequencies of gag-specific CD8+ T cells could be augmented by using a different, i.e., heterologous, vaccine carrier based on a distinct recombinant virus or an alternative adenoviral serotype expressing the same form of gag for oral or systemic-booster immunization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号